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Abstract. An efficient compression strategy is indispensable for
3-D digital echocardiography, which can provide more accurate di-
agnostic information than 2-D echocardiography without geometric
assumption, but unfortunately requires a huge storage space. We
describe a new set partitioning in hierarchical trees (SPIHT) algo-
rithm that is based on the wavelet packet transform and use it to
compress 3-D echocardiographic images. The new algorithm origi-
nates from the well-known SPIHT algorithm that is based on a
wavelet transform but outperforms it for the compression of 3-D
echocardiographic images. Experimental results are presented to
verify the effectiveness of the new SPIHT algorithm. Results show
that the new algorithm achieves a very high compression ratio while
retaining good quality 3-D echocardiographic images. © 2006 SPIE
and IS&T. �DOI: 10.1117/1.2194467�

1 Introduction
Real-time three-dimensional �RT3D� echocardiography is
becoming feasible due to the advancement of computer and
visualization technologies. The heart is a moving 3-D com-
plex structure, optimal examination of which can be
achieved with the aid of RT3D echocardiography, enabling
more accurate quantification of the left ventricle without
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geometrical assumptions. The obtained parameter, the ejec-
tion fraction, is used in diagnosis of the ischemic and con-
genital heart diseases. Another important use of RT3D
echocardiography is the visualization of valve morphology,
effectively assisting the diagnosis of valve disease.

Digital storage and review of the RT3D echocardio-
graphic images plays an important role in its successful
application. However, the huge storage requirement and
limited networking bandwidth are obstacles to any mean-
ingful use of the method. For example, a 1-s loop �30
frames� of medium-size 3-D images, each with 196�176
�196 voxels and produced by the Philips Live 3D Echo
System, which is used in this study, requires nearly
200 Mbytes of storage space. The space required by a large
medical center such as the Cleveland Clinic Foundation for
storing the results of examinations daily would be more
than 1 Tbytes.

Many efforts have been made to reduce the required
storage space, and a number of approaches have been de-
veloped for the compression of ultrasonic images including
echocardiographic images. In general, these approaches can
be divided into two categories: standalized and specialized
algorithms.

JPEG �Ref. 1�, which is a standard for still image com-

pression, was examined in Refs. 2 and 3 for its impact on
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the clinical interpretation of 2-D digital echocardiography.
It was concluded that the diagnostic information is retained
at compression ratios as high as 20:1. The JPEG standard
has been accepted by the American Society of Echocardio-
graphy under the Digital Imaging and Communications in
Medicine �DICOM� formatting standard,4 and is utilized by
all major echocardiograph manufacturers. In Ref. 5, the
new image compression standard6 JPEG2000 is applied to
the compression of ultrasonic images.

Motion picture compression standards MPEG-1 and
MPEG-2 �Ref. 7� were clinically validated at compression
ratios up to 100:1 in Refs. 8 and 9, respectively. Further-
more, the new standard MPEG-4 �Ref. 10� was also inves-
tigated in Ref. 11. The authors demonstrated the content-
based coding capability of MPEG-4 by creating video
objects and encoding each of them as a separate bit stream.

As for the specialized compression algorithms, there are
three types: segmentation-based, model-based, and
transform-based methods. The segmentation-based method
aims to preserve the area with important diagnostic infor-
mation and highly compress the background area. In Ref.
12, a wavelet transform is first applied to the echocardio-
graphic image, and then the information of the region of
interest �ROI� is obtained by segmentation. Finally, higher
importance is assigned to the segmented anatomical struc-
ture by keeping more wavelet coefficients. In Ref. 13, vec-
tor quantization with different codebooks is applied to dif-
ferent segmented areas. A larger codebook is created for an
important area, and vice versa.

Model-based methods attempt to keep the speckle pat-
terns in the ultrasound image, treating an ultrasound image
as the combination of two components: image structure and
speckle texture. In Ref. 14, a wavelet-denoising strategy is
used to separate the two components. A general-purpose
image compression strategy such as JPEG is applied for the
compression of the structure component, while the speckle
texture component is compressed by means of texture syn-

Fig. 1 MSPIHT algorithm diagra
Fig. 2 Binary wavelet packet tree.
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thesis and first-order spatial statistics. In Ref. 15, the sepa-
ration of the two components is realized by further decom-
posing the selected high frequency subbands. The image
structure is compressed by a wavelet-based lossy method,
and the speckle part is compressed using a lossless method.

A transform-based compression algorithm consists of
three steps: transform, quantization, and entropy coding,
while wavelet transform is the most often used transform
method. The embedded zero-tree wavelet �EZW�
algorithm16 was used in Ref. 17 for the compression of 2-D
echocardiographic images. And it was extended to three
dimensions in Ref. 18 to compress 3-D echocardiographic
images. Set partitioning in hierarchical trees19 �SPIHT�,
which is also wavelet-based, along with its 3-D extension
has been used for the compression of 2-D echocardio-
graphic image and video.20,21 In Ref. 22, a space-frequency
segmentation �SFS� method23 was used that builds a bal-
anced wavelet packet tree via a tree-pruning algorithm. It is
shown that SFS performs better than SPIHT at the cost of a
much longer execution time. Integer-wavelet-transform-
based methods are also proposed.24,25

Both EZW and SPIHT algorithms, just mentioned, are
wavelet zero-tree algorithms that utilize quad-trees to relate
wavelet coefficients across scales to take advantage of the
decay of the coefficients. SPIHT outperforms EZW with a
so-called set-partitioning technique.

In this paper, a new algorithm similar to SPIHT in spirit
is proposed for the compression of 3-D echocardiographic
images. Two main features characterize the novelty of the
algorithm. First, the new SPIHT algorithm is based on a
wavelet packet transform, while the original SPIHT is
based on a wavelet transform. It is known that wavelet
packets can provide a better localization in the high-
frequency domain than wavelets, because the Heisenberg
box could be narrower with wavelet packets but is usually
wider with high-frequency wavelets.26 Also, highly oscilla-
tory speckle patterns that translate into high-frequency
wavelets are important components of ultrasonic images.
Second, a new wavelet packet zero-tree is defined that is

�a� encoding and �b� decoding.
Fig. 3 Full-scale two-level WPT.
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totally different from the spatial orientation tree used in
SPIHT. We call the new algorithm modified SPIHT
�MSPIHT�.

Figure 1 shows diagrams of the encoder and decoder
procedures of the MSPIHT algorithm. The rest of the paper
is organized as follows. Section 2 reviews the wavelet
packet transform, Sec. 3 focuses on the MSPIHT algorithm,
Sec. 4 gives the coding results and discussion, and the con-
clusion and future work follow in the final section.

2 Wavelet Packet Transform
The wavelet packet transform �WPT� introduced in Ref. 27
enables a finer and more adjustable analysis of the signal at
high frequencies as compared to the wavelet transform. In
this section, the theory of the WPT is reviewed. For the
benefit of further discussion, see Ref. 28. Denoting the fam-
ily of the wavelet packet bases as �� j

m�t−2 jn�� of wavelet
packet space Wj

m, we have

� j
0�t� = 2−j/2��2−jt� , �1�

where � is the scaling function. Figure 2 shows the binary
tree of the wavelet packet space.The recursive equations for
the wavelet packet decomposition are

� j+1
2m �t� = �

n

h�n�� j
m�t − 2 jn� , �2�

and

� j+1
2m+1�t� = �

n

g�n�� j
m�t − 2 jn� , �3�

where h�n� and g�n� are the low-pass scaling filter and the
high-pass wavelet filter for analysis, respectively, with

g�n� = �− 1�1−nh�1 − n� . �4�

Let f�t��W0
0 be a continuous signal, the wavelet packet

coefficients can be denoted as

Fig. 4 Full-scale two-level inverse WPT.
Fig. 5 Structure of the SOT in a 2-D two-level wavelet transform.
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dj
m = �f�t�,� j

m�t − 2 jn�� . �5�

Equations �2�, �3�, and �5� lead to the following wavelet
packet decomposition in the discrete domain:

dj+1
2m �n� = dj

m * h̄�2n� and dj+1
2m+1�n� = dj

m * ḡ�2n� , �6�

where

h�n� = h�− n� and ḡ�n� = g�− n� . �7�

The algorithm in Eq. �6� can be realized by the wavelet
packet analysis filter banks, iterating both the high-pass
wavelet and the low-pass scaling function branches of the
Mallat algorithm tree.29 Figure 3 shows a full-scale two-
level WPT, where d0

0 stands for the input discrete-time sig-
nal. Similarly, for reconstruction, one has

dj
m�n� = dj+1

2m * h̃�n� + dj+1
2m+1 * g̃�n� , �8�

where h̃�n� and g̃�n� are the low-pass scaling filter and the
high-pass wavelet filter for synthesis, respectively. The
wavelet packet synthesis filter banks can perform the com-
putation of Eq. �8�. Figure 4 shows the inverse WPT cor-
responding to the WPT shown in Fig. 3.

The 3-D WPT can be realized by three 1-D WPTs along
x, y, and z, respectively. One concern for the 3-D transform
is the order of the 1-D transform. For example, for the
compression of video signal based on a 3-D wavelet trans-
form, the order of the 1-D transform does affect the com-
pression effect because the statistical property along the
temporal direction is quite different from those along other
two spatial directions.30 For the compression of 3-D
echocardiographic images, on the other hand, since the 3-D
image has symmetric statistical properties along all the spa-
tial directions, the order does not affect the compression
effect. To handle the problem of convolution at the borders
of the data field in the wavelet packet filter banks, the sym-
metric extension method31 is used, which, for subband cod-
ing, has been shown to be superior to other methods such as

Fig. 6 �a� Index numbers of 16 subbands in a 2-D two-level WPT
and �b� the SOT among these 16 subbands.
zero padding and periodic extension. Furthermore, for the
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definition of the spatial orientation tree among the wavelet
packet coefficients described in Sec. 3, we use the full-scale
binary WPT, as shown in Fig. 3. Although the best wavelet
packet bases can be obtained by pruning the full binary tree
using a binary search algorithm,27 the corresponding binary
wavelet packet tree is variable, which is not suitable for the
definition of our fixed wavelet packet zero-tree.

3 MSPIHT Algorithm
The SPIHT algorithm is a very popular image compression
scheme. It is a zero-tree-based wavelet codec, exploiting
the fact that among the wavelet coefficients, if a point in the
higher level of the pyramid is insignificant, its descendants
are also insignificant with a high probability. The zero-tree
used in SPIHT is called the spatial orientation tree �SOT�
and is briefly explained here. Let O�i , j ,k� denote the set of
coordinates of all offspring of the node �i , j ,k�, with 0� i
�M −1,0� j�N−1, and 0�k� P−1 in a 3-D image with
size M �N� P. The SOT among the wavelet coefficients
of an L-level 3-D wavelet transform is built by the recur-
sive definition of O�i , j ,k�, given next.

IF �0� i�M/2L−1� and �0� j� �N/2L−1� and
�0�k�P/2L−1�

IF �i%2=0� and �j%2=0� and �k%2=0�
O�i , j ,k�= � �;

ELSE
IF i%2=0

x0= i;
ELSE

x0=M/2L+ i−1;
IF j%2=0

y0= j;
ELSE

y0=N/2L+ j−1;
IF k%2=0

z0=k;
ELSE

z0=P/2L+k−1;
O�i , j ,k�= ��x0 ,y0 ,z0� , �x0+1,y0 ,z0� , �x0 ,y0+1,z0� ,
�x0+1,y0+1,z0� , �x0 ,y0 ,z0+1� , �x0+1,y0 ,z0+1� ,
�x0 ,y0+1,z0+1� , �x0+1,y0+1,z0+1��;

ELSE IF �i�M/2−1� and �j� �N/2−1� and �k�P/2−1�
x0=2* i;
y0=2* j;
z0=2*k;
O�i , j ,k�= ��x0 ,y0 ,z0� , �x0+1,y0 ,z0� , �x0 ,y0+1,z0� ,
�x0+1,y0+1,z0� , �x0 ,y0 ,z0+1� , �x0+1,y0 ,z0+1� ,
�x0 ,y0+1,z0+1� , �x0+1,y0+1,z0+1��;

ELSE
O�i , j ,k�= � �.

Figure 5 shows the SOT in a 2-D two-level wavelet
transform.

The data generated by the SPIHT algorithm are three
linked lists: the list of insignificant pixels �LIP�, the list of
significant pixels �LSP�, and the list of insignificant sets

�LIS�. The lists are operated by three stages of SPIHT:
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initialization, sorting, and refinement. In the initialization
stage, SPIHT sets the LSP as an empty list, adds every
point in the highest level to the LIP, and puts only those
points with descendants in the highest level to the LIS. At
every sorting stage, corresponding to a threshold that is a
power of 2 and octavely decreasing, every significant point
in an LIP is moved into the LSP, and the sets in the LIS are
partitioned into significant points, insignificant points, and
smaller insignificant sets, which are moved into LSP, LlP,
and LIS, respectively. During this stage, SPIHT also out-
puts the bits about the significance information and the
parent-offspring relation of all the points based on the spa-
tial orientation tree. Following each sorting stage, the re-
finement stage outputs the bits of significance for those
points in LSP at the thresholds that are greater than the
current threshold. The preceding process continues until the
desired bit rate or image quality is reached. Encoding and
decoding are executed along the same path based on the
spatial orientation tree. More details can be found in Ref.
19.

Fig. 7 PSNR3D values under different compression ratios when ap-
plying MSPIHT and SPIHT to �a� dataset 1 and �b� dataset 2.
Our 3-D MSPIHT is based on a 3-D WPT and has a
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different SOT among wavelet packet coefficients. The ra-
tionale of defining the new SOT is, in spirit, very similar to
SPIHT, which utilizes the SOT to define the spatial rela-
tionship on the hierarchical pyramid of wavelet subbands.
And the new SOT is used to define the spatial relationship
on the hierarchical pyramid of full-scale wavelet packet
subbands. Let �dI�i , j ,k�� be the 3-D subbands obtained by
the 3-D L-level WPT described in Sec. 2, where I is the
subband index; I=1¯8L; and i, j, and k are coordinates of
the 3-D subbands. We denote the offspring of every node
dI�i , j ,k� in the new SOT as O�dI�i , j ,k�	. The new SOT is
defined as

O�dI�i, j,k�	

= 
�db�i, j,k�� b = 2 ¯ 8, if I = 1

�d8I−b�i, j,k�� b = 0 ¯ 7, else if 2 � I � 8L − 1

� � , otherwise.
�

�9�

Figure 6�a� shows the index numbers of 16 subbands in a

Fig. 8 PSNR2D values of the slice images of the compressed
dataset 1 at the compression ratio of 100:1, along �a� x, �b� y, and
�c� z, respectively.
Journal of Electronic Imaging 023016-
2-D full-scale two-level WPT, and Fig. 6�b� shows the SOT
among these 16 subbands. For the 3-D case, obviously, the
main difference between the new SOT and the original one
lies in the following two facts: �1� in the new SOT, each
voxel of the first subband, which has the lowest frequency
component, has offspring, while in the original spatial ori-
entation tree one-eighth of the voxels of the first subband
do not have offspring; and �2� in the new SOT, all the
offspring of one voxel are located in different subbands,
while in the original SOT, they are located in the same
subband.

The 3-D MSPIHT still retains the same data structure of
lists LIP, LIS, and LSP, and the same three stages of pro-
cessing �initialization, sorting, and refinement� as in SPIHT.
However, the new algorithm utilizes the new SOT to
traverse the coefficients. According to the definition of the
new SOT, every point in the highest level of the 3-D wave-
let packet coefficients, which is the first subband, has de-
scendants in the initialization stage. Subsequently, each
point of the first subband is put into LIP and LIS, respec-
tively. SPIHT, however, puts only the points at the highest
level of the wavelet coefficients with descendants in LIS.
And the procedures of sorting and refinement are similar to
SPIHT, except that a different SOT is involved during the
execution. The MSPIHT encoder is given next along with

Fig. 9 PSNR2D values of the slice images of the compressed
dataset 2 at the compression ratio of 100:1, along �a� x, �b� y, and
�c� z, respectively.
some new notation.

Apr–Jun 2006/Vol. 15(2)5
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• D�i , j ,k , I�: set of all descendents of node �i , j ,k , I�;
• H: set of all the nodes in the first subband;
• L�i , j ,k , I�=D�i , j ,k , I�−O�i , j ,k , I�;
• A node �i , j ,k , I� in the LIS is of type A if it belongs to

D�i , j ,k , I�, and of type B if it belongs to L�i , j ,k , I�;
•

Sn�T� =�1, maxT�c�i,k,j,I�� � 2n,

0, otherwise, �
where c�i , j ,k , I� is the wavelet packet coefficient at the
node �i , j ,k , I�, and �i , j ,k , I��T.
1. Initialization:

1.1� Output n= �log2�max�i,j,k,I��c�i , j ,k , I�  ���;
1.2� LSP= � �;
1.3� Add all the nodes in H to LIP;
1.4� Add all the nodes in H to LIS as type A;

2. Sorting:
2.1� for each node �i , j ,k , I� in the LIP do:

2.1.1� output Sn�i , j ,k , I�;
2.1.2� if Sn�i , j ,k , I�=1, then

. delete �i , j ,k , I� from LIP;

. add �i , j ,k , I� to LSP;

. output the sign of c�i , j ,k , I�;
2.2� for each node �i , j ,k , I� in the LIS do:

2.2.1� if the node is of type A, then
. output Sn�D�i , j ,k , I��;
. if Sn�D�i , j ,k , I��=1, then

. for each node �l ,m ,n ,P� of O�i , j ,k , I� do:
. output Sn�l ,m ,n ,P�;
. if Sn�l ,m ,n ,P�=1, then

. add
�l ,m ,n ,P� to
LSP;
. output the
sign of
c�l ,m ,n ,P�;

. else
. add
�l ,m ,n ,P� to
LIP;

. if L�i , j ,k , I�= ��, then
. delete �i , j ,k , I� from LIS;

. else
. delete �i , j ,k , I� from LIS;
. �i , j ,k , I�→LIS, as type B;

2.2.2� if the node is of type B, then
. output Sn�L�i , j ,k , I��;
. if Sn�L�i , j ,k , I��=1, then

. for each node �l ,m ,n ,P� of O�i , j ,k , I� do:
. add �l ,m ,n ,P� to LIS as type A;

. delete �i , j ,k , I� from LIS;
3. Refinement:

for each node �i , j ,k , I� in the LSP do:
. if c�i ,k , j , I�  �2n+1, then
. output the n-th MSB of c�i , j ,k , I�;

4. Quantization-step update:
. n−1→n;
. go to Step 2.

The MSPIHT decoder executes along the same path as
the encoder except that “output” should be changed to “in-

put” and the wavelet packet coefficients are appropriately
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reconstructed. Finally, arithmetic coding32 is used for en-
tropy coding. Groups of 2�2�2 voxels are kept together.
Different context models, each with 2m symbols, m
� �1,2 ,3 ,4 ,5 ,6 ,7 ,8�, are used to code the information in
a group of 8 voxels.

4 Coding Results
The two-dimensional peak SNR �PSNR2D� and the 3-D
PSNR �PSNR3D� are used to evaluate the performance of
MSPIHT. They are defined as

PSNR2D = 10 log10
2552M � N

�
i=0

M−1

�
j=0

N−1

�f�i, j� − f̂�i, j�	2

, �10�

where f�i , j� and f̂�i , j� represent the value of each pixel in
the 2-D original image and reconstructed image, respec-
tively, all with size M �N, and

PSNR3D = 10 log10
2552M � N � P

�
i=0

M−1

�
j=0

N−1

�
k=0

P−1

�f�i, j,k� − f̂�i, j,k�	2

, �11�

where f�i , j ,k� and f̂�i , j ,k� represent the value of each
voxel in the 3-D original image and reconstructed image,
respectively, all with size M �N� P.

We selected the suitable wavelet for the compression of
3-D echocardiographic image by testing a group of
wavelets,33 which are listed as follows:

1. Daubechies orthogonal wavelets with number p of
vanishing moments:

p = 1 �‘db2’� ,

p = 2 �‘db2’� ,

p = 3 �‘db3’� ,

p = 4 �‘db4’� ,

p = 5 �‘db5’� .

2. Symmlets orthogonal wavelets with number p of
vanishing moments:

p = 4 �‘sym4’� ,

p = 5 �‘sym5’� .

3. Biorthogonal wavelets with number p of vanishing
moments for synthesis, and number q of vanishing
moments for analysis:

p = 1,q = 3 �‘bior1.3’� ,
p = 1,q = 5 �‘bior1.5’� ,

Apr–Jun 2006/Vol. 15(2)6
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p = 2,q = 2 �‘bior2.2’� ,

p = 2,q = 4 �‘bior2.4’� ,

p = 3,q = 1 �‘bior3.1’� ,

p = 3,q = 3 �‘bior3.3’� ,

p = 4,q = 4 �‘bior4.4’� ,

p = 5,q = 5 �‘bior5.5’� .

4. Reverse biorthogonal wavelets with number p of
vanishing moments for synthesis, and number q of
vanishing moments for analysis. This type of
wavelet is obtained by means of exchanging the
analysis part and the synthesis part of biorthogonal
wavelets with number p of vanishing moments for
synthesis, and number q of vanishing moments for
analysis:

Fig. 10 Slice images at x=95 of dataset 1 and
ential compression ratios: �a� original, �b� 100:1
�d� 160:1 �PSNR=33.82 dB�.
p = 1,q = 3 �‘rbior1.3’� ,

Journal of Electronic Imaging 023016-
p = 1,q = 5 �‘rbior1.5’� ,

p = 2,q = 2 �‘rbior2.2’� ,

p = 2,q = 4 �‘rbior2.4’� ,

p = 3,q = 1 �‘rbior3.1’� ,

p = 3,q = 3 �‘rbior3.3’� ,

p = 4,q = 4 �‘rbior4.4’� ,

p = 5,q = 5 �‘rbior5.5’� .

The mathematical characteristics of the preceding wavelets
can be found in Ref. 33.

Our tests are performed on two randomly selected
datasets: dataset 1 with a volume size of 192�176�192
and a voxel size of 1.05�1.05�1.05 mm3, and dataset 2
with a volume size of 192�176�160 and a voxel size of

3

rresponding compressed datasets under differ-
=35.89 dB�, �c� 140:1 �PSNR=34.79 dB�, and
the co
�PSNR
1.01�1.01�1.01 mm . Both datasets are acquired for the

Apr–Jun 2006/Vol. 15(2)7
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purpose of left ventricle quantification. Tables 1–3 show the
PSNR3D values of the two datasets at a compression ratio
of 80:1, using orthogonal wavelet filters, biorthogonal
wavelet filters, and reverse biorthogonal wavelet filters, re-
spectively. Notice that ‘sym 5’ shows the best performance
among the orthogonal wavelet filters, ‘bior4.4’ among the
biorthogonal wavelet filters, and ‘rbio1.5’ among the re-
verse biorthogonal wavelet filters, respectively. Further-

Table 1 The PSNR3D values �in decibels� of two datasets at the
compression ratio of 80:1, using orthogonal wavelet filters.

Wavelet Filters Dataset 1 Dataset 2

‘db1’ 36.86 34.72

‘db2’ 38.28 36.23

‘db3’ 38.45 36.45

‘db4’ 38.42 36.42

‘db5’ 38.22 36.10

‘sym4’ 39.23 37.18

‘sym5’ 39.49 37.46

Fig. 11 Slice images at y=80 of dataset 1 and
ential compression ratios: �a� original, �b� 100:1
�d� 160:1 �PSNR=33.64 dB�.
Journal of Electronic Imaging 023016-
more, ‘sym5’ is superior to both ‘bior4.4’ and ‘rbio1.5’.
The other results presented in the remainder of this section
are obtained by using ‘sym5’.

The 3-D SPIHT has been studied extensively for com-
pression of video signal. And an asymmetric-tree-based
SPIHT algorithm has been proposed to take advantage of
the asymmetric statistical properties of video signal.30

Table 2 The PSNR3D values �in decibels� of two datasets at the
compression ratio of 80:1, using biorthogonal wavelet filters.

Wavelet Filters Dataset 1 Dataset 2

‘bior1.3’ 36.86 34.25

‘bior1.5’ 35.92 33.90

‘bior2.2’ 37.86 35.49

‘bior2.4’ 38.24 35.89

‘bior3.l’ 30.31 28.05

‘bior3.3’ 35.04 33.39

‘bior4.4’ 39.15 37.21

‘bior5.5’ 37.91 36.16

rresponding compressed datasets under differ-
=35.59 dB�, �c� 140:1 �PSNR=34.51 dB�, and
the co
�PSNR
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Fig. 12 Slice images at z=85 of dataset 1 and the corresponding compressed datasets under differ-
ential compression ratios: �a� original, �b� 100:1 �PSNR=37.41 dB�, �c� 140:1 �PSNR=36.33 dB�, and
�d� 160:1 �PSNR=35.46 dB�.
Fig. 13 Slice images at x=95 of dataset 2 and the corresponding compressed datasets under differ-
ential compression ratios: �a� original, �b� 100:1 �PSNR=34.83 dB�, �c� 140:1 �PSNR=33.21 dB�, and
�d� 160:1 �PSNR=32.86 dB�.
Journal of Electronic Imaging Apr–Jun 2006/Vol. 15(2)023016-9
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Since a 3-D echocardiographic image has symmetric statis-
tic properties, we chose a symmetric-tree-based 3-D SPIHT
for comparison, i.e., the 3-D extension of the original 2-D
SPIHT. Figures 7�a� and 7�b� show the PSNR3D values
under different compression ratios when the 3-D MSPIHT
and the 3-D SPIHT are applied to datasets 1 and 2, respec-
tively. The 3-D MSPIHT shows better performance than the
3-D SPIHT for both datasets.

Table 4, parts �a� to �c�, show the average PSNR2D
values of slice images obtained by setting x, y, and z, re-
spectively, to different constants, which are taken from 1 to
the number of the spatial resolution of x, y, and z, respec-
tively. When the compression ratio increases, the mean
value decreases while the standard deviation increases.

Figures 8�a� to 8�c� show the PSNR2D values of the
slice images of compressed dataset 1 at the compression

Table 3 The PSNR3D values �in decibels� of two datasets at the
compression ratio of 80:1, using reverse biorthogonal wavelet filters.

Wavelet Filters Dataset 1 Dataset 2

‘rbior1.3’ 38.89 36.82

‘rbior1.5’ 39.02 37.07

‘rbior2.2’ 33.95 32.46

‘rbior2.4’ 37.09 34.05

‘rbior3.1’ 9.40 8.57

‘rbior3.3’ 25.25 23.96

‘rbior4.4’ 38.90 36.77

‘rbior5.5’ 38.74 36.38

Table 4 The average PSNR2D values of slice i
z, respectively, under different compression rati

60:1 80:1 1

Dataset 1 43.64±5.88 42.00±6.34 41.3

Dataset 2 39.97±4.70 39.02±4.77 38.2

60:1 80:1 1

Dataset 1 44.79±6.68 43.85±7.79 43.2

Dataset 2 41.10±5.91 40.18±6.02 39.4

60:1 80:1 1

Dataset 1 42.37±3.86 40.59±4.06 39.9

Dataset 2 40.78±4.91 39.84±5.02 39.0
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ratio of 100:1, along x, y, and z, respectively. Similar infor-
mation is shown in Fig. 9 for dataset 2. The PSNR2D val-
ues of the slice images in the middle are much smaller than
those of the slice images at the beginning and at the end.
The reason lies in the fact that most of the content of the
slice images at the beginning and at the end is background
information.

Figures 10–15 show the slice images f1�95,y ,z�,
f1�x ,80,z�, f1�x ,y ,85�, f2�95,y ,z�, f2�x ,80,z�, and
f2�x ,y ,85� including their corresponding compressed im-
ages under compression ratios of 100:1, 140:1, and 160:1,
respectively. And one can see that the MSPIHT approach
produces a high compression ratio while maintaining good
image quality.

In the preceding we studied the properties of our com-
pression algorithms using PSNR values. For medical image
compression, another important concern is how much diag-
nostic information would be kept after compression. Since
both datasets are acquired for the purpose of left ventricle
quantification, we measured the left ventricle volume be-
fore and after compression to study the impact of compres-
sion on left ventricle quantification. To keep the study as
objective as possible, a robust geometric deformable
model34 is used to measure the left ventricle volume, in-
stead of using manual tracing method. For dataset 1, the
measured volumes are 71.60, 74.05, 74.95, and 74.14 ml,
respectively, under the corresponding compression ratios of
1:1, 80:1, 160:1, and 240:1. And for dataset 2, the measured
volumes are 108.73, 112.36, 112.36, and 111.57 ml, respec-
tively, under the same compression ratios. The maximal
errors caused by compression are 4.66 and 3.34%, respec-
tively, for datasets 1 and 2. The errors caused by the com-
pression are smaller than those caused by manual tracing
method,35 which is used by clinical doctors to measure left
ventricle volume. Obviously, compression does not greatly
affect the accuracy of left ventricle quantification. Left ven-

of datasets 1 and 2, along �a� x, �b� y, and �c�

120:1 140:1 160:1

3 40.71±6.58 40.25±6.62 39.46±6.92

8 37.12±4.88 36.68±4.98 36.31±5.03

120:1 140:1 160:1

0 42.66±8.08 42.21±8.13 41.45±8.42

2 38.39±6.30 37.97±6.40 37.67±6.54

120:1 140:1 160:1

3 39.27±4.26 38.79±4.27 37.84±4.32

6 37.93±5.11 37.54±5.16 37.24±5.28
mages
os.

a

00:1

3±6.5

2±4.7

b

00:1

5±8.0

3±6.1

c

00:1

0±4.2

7±5.0
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Fig. 14 Slice images at y=80 of dataset 2 and the corresponding compressed datasets under differ-
ential compression ratios: �a� original, �b� 100:1 �PSNR=33.93 dB�, �c� 140:1 �PSNR=32.48 dB�, and

�d� 160:1 �PSNR=32.16 dB�.
Fig. 15 Slice images at z=85 of dataset 2 and the corresponding compressed datasets under differ-
ential compression ratios: �a� original, �b� 100:1 �PSNR=34.57 dB�, �c� 140:1 �PSNR=33.00 dB�, and
�d� 160:1 �PSNR=32.55 dB�.
Journal of Electronic Imaging Apr–Jun 2006/Vol. 15(2)023016-11
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tricle volume is an important clinical parameter for cardiac
disease diagnosis. The preceding study just shows that un-
der appropriate compression ratio, for example, 80:1, the
compression algorithm may still retain the critical informa-
tion for diagnosis. Further experiments should be per-
formed in the future to study comprehensively the impact
of compression on clinical diagnosis.

5 Conclusions
A new SPIHT algorithm based on the WPT was described.
The algorithm is very powerful in compressing 3-D
echocardiographic images. The experimental results show
that the new algorithm can achieve very high compression
ratios while still retaining good image quality. Furthermore,
the new SPIHT algorithm outperforms the original SPIHT
algorithm for the compression of 3-D echocardiographic
images. Because medical images share many common fea-
tures and structures, the new algorithm may be applied to
the compression of 3-D medical images of other modalities
as well. Future study may incorporate motion compensation
into the new algorithm for the compression of 3-D echocar-
diographic video.
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