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That sediment transport estimates have large uncertainty is widely acknowledged. When these estimates are
used as the basis for a subsequent analysis, such as cumulative sediment loads or budgets, treatment of un-
certainty requires careful consideration. The propagation of uncertainty is a problem that has been studied in
many other scientific disciplines. In recent years, Bayesian statistical methods have been successfully used to
this end in hydrology, ecology, climate science, and other disciplines where uncertainty plays a major role—
their applications in sediment transport, however, have been few. Previous work demonstrated how deter-
ministic sediment transport equations can be brought into a probabilistic framework using Bayesian
methods. In this paper, we extend this basic model and apply it to sediment transport observations collected
on the Snake River in Wyoming, USA. These data were used previously to develop a 50-year sediment budget
below Jackson Lake dam. We revisit this example to demonstrate how viewing sediment transport probabi-
listically can help better characterize the propagation of uncertainty in the calculation of cumulative sedi-
ment transport. We present the development of probabilistic sediment rating curves that rely on
deterministic sediment transport equations and then show how these can be used to compute the distribu-
tion of sediment input and output for each year from 1958 to 2007. The Bayesian approach described pro-
vides a robust way to quantify uncertainty and then propagate it through to subsequent analyses. Results
show that transport uncertainty is quantified naturally in the Bayesian approach, making it unnecessary for
modelers to assume some specified error rate (e.g., ±5%) when developing estimates of cumulative trans-
port. Further, we demonstrate that a Bayesian approach better constrains uncertainty and allows sediment
deficit and surplus to be examined in terms of quantified risk.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Estimates of sediment transport rate are widely known to have
large uncertainty (Gomez and Church, 1989; Wilcock, 2001). Uncer-
tainty poses a particular challenge for cases in which the cumulative
transport is of interest. These include the delivery of sediment to res-
ervoirs and other receiving waters, the supply of sediment to a river
reach of concern, and the balance of input and output such that the
net storage of sediment in a reach can be determined. Because these
estimates involve propagating uncertainty over time, typically as a
function of water discharge, defining a model that describes the un-
certainty of the transport estimate is necessary.

The topic of uncertainty is widely treated in many scientific disci-
plines, and recent advances in statistical and computational methods
have created a new set of tools at the disposal of researchers. One
such method that is gaining prominence in diverse scientific fields is
that of Bayesian statistical models. These tools provide a formal and
u (M.L. Schmelter),
ilcock).
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theoretically solid framework in which deterministic process func-
tions can be incorporated into a probabilistic framework thereby fa-
cilitating the quantification of parameter, structural, and predictive
uncertainty. This approach has been used extensively in other disci-
plines, but has not been widely used in sediment transport applica-
tions. Griffiths (1982) was an early proponent of this approach and
demonstrated geomorphically relevant examples, but these examples
could be solved analytically. More complex models were unattainable
until Geman and Geman (1984) and Gelfand and Smith (1990) dem-
onstrated the use of Markov Chain Monte Carlo (MCMC) methods in
Bayesian statistical analysis.

Schmelter et al. (2011) developed a simple Bayesian statistical
model for sediment transport and demonstrated some of the benefits
of this approach, including the ability to incorporate deterministic
functions into a probability framework and to use prior knowledge
and make predictions as probability distributions. In this paper we
extend the basic Bayesian sediment transport model developed in
Schmelter et al. (2011) and apply it to sediment transport observa-
tions made on a large gravel-bed river. Using the model predictions,
we outline the development of a probabilistically based sediment
mass balance using this modeling framework, and we evaluate the
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implications of viewing sediment transport probabilistically on the
calculation of long-term sediment budgets.
1.1. Sediment budgets

One of the most challenging calculations in sediment transport is to
determine the mass balance, or sediment budget, of a reach as the dif-
ference between input and output over a defined period of time. The cu-
mulative transport at upstream and downstream sections, as well as
any significant tributaries, must be determined; and an effective
means is required to combine estimates of variance (due to errors or
natural variability) at each section into a credible variance estimate
for the net change in sediment storage. An alternative approach is to di-
rectly measure changes in sediment storage through field resurveys of
channel morphology as well as the use of repeat aerial photography
comparisons (e.g., Ashmore and Church, 1998; Eaton, 2001; Gaeuman,
2003). These methods, however, are not feasible for systems for
which a historical survey, aerial or otherwise, is unavailable.

Thus, an alternate approach to constructing a sediment budget is to
use the existing streamflow record and sediment rating curves to quan-
tify annual sediment yield. This mass balance approach has been
employed on the lower Colorado River (Schmidt, 1999; Topping et al.,
2000; Hazel et al., 2006), the Sacramento River (Singer and Dunne,
2004), the Toutle River (Major, 2004), the upper Green River below
Flaming Gorge dam (Andrews, 1986; Grams and Schmidt, 2005), the
Fraser River (McLean et al., 1999a), and the Ebro River (Vericat and
Batalla, 2006). While the reasoning behind constructing a sediment
mass balance using historic streamflow records and sediment rating
curves is sound, significant uncertainty is associated with any sediment
rating curve. A common challenge concerns application of sediment
transport relations beyond the period of available observations.

Sediment rating curves that do not account for the variability of
bedload will at best provide a quantification of the mean behavior
of the system, and often the extremes are of the most concern.
What is not quantified in traditional approaches to sediment budgets
is the variability one can expect to see in the sediment influx and out-
flux, as well as the magnitude of the difference between the influx
and outflux required in order to be considered significant. In the ab-
sence of this information, a sediment mass balance may be indetermi-
nate (e.g., Grams and Schmidt, 2005). While the approach to
sediment budgets offered in this paper does not overcome the prob-
lems associated with non stationary sediment rating curves, it does
address the issue of bedload variability for a given flow condition.

Although the uncertainties associated with estimates of sediment
transport developed from sediment rating curves have been widely
acknowledged, no universally accepted strategy for rigorously quan-
tifying uncertainty in long-term estimates of sediment transport has
been identified. Previous efforts to grapple with uncertainty in cumu-
lative estimates of sediment transport include assuming that direct
measurements of sediment transport are accurate to within some
specified percentage of the total transport rate (Topping et al.,
2000; Major, 2004; Grams and Schmidt, 2005), calculation of confi-
dence intervals on the rating relation (Vericat and Batalla, 2006), or
implementation of an error propagation analysis (Dunne et al.,
1998). McLean et al. (1999a) used a Monte Carlo simulation to assess
the precision of the Fraser River sediment sampling program. The
Monte Carlo analysis was used to compute the coefficient of variation
for replicate samples collected at a given vertical in an attempt to
quantify the variability in transport rates resulting from both actual
fluctuations in transport and sampling errors. In contrast, Singer and
Dunne (2004) emphasized the role of streamflow variability in inter-
annual estimates of bed material load. Toward this end, they coupled
a stochastic streamflow model with calibrated sediment transport
formulae to quantify variability in decadal estimates of bed material
flux.
In what follows, we discuss the advantages of a Bayesian modeling
framework over alternative approaches for quantifying uncertainty in
sediment transport problems.

1.2. Bayesian models

Bayesian statistical models have gained increased prominence
over the last 25 years owing in large part to advances in computing
power and the development of sophisticated numerical methods.
This modeling framework possesses several desirable properties
that make it well suited for describing complex phenomena, such as
sediment transport.

The first of these properties relates to the treatment of latent
model parameters—those values which we cannot measure directly
but must infer from observation. In deterministic approaches, model
parameters (such as critical shear in sediment transport) are treated
as fixed but unknown, and any variation around this fixed value is a
metric of the uncertainty of the true single fixed value. It has long
been acknowledged, however, that the threshold at which sediments
move is not a fixed value but is, in fact, a probability distribution (e.g.,
Grass, 1970; Gessler, 1971; Paintal, 1971; Kirchner et al., 1990).
Treating critical shear as a fixed value is therefore inappropriate and
is largely for computational convenience. A Bayesian approach
makes it possible to model (i.e., estimate or infer values of) latent pa-
rameters as random variables arising from probability distributions.
The ability to model parameters, such as critical shear, as a random
variable reconciles the long-established concepts of threshold with
an appropriate modeling framework.

Because the underlying model parameters in a Bayesian approach
are random variables, functions of these parameters (including pre-
dictions) are also random variables. The significance of this is that
model predictions can be defined probabilistically. Deterministic ap-
proaches to sediment transport using fixed parameter values general-
ly involve fitting a line through a distribution of observations. What is
not quantified in the deterministic approach, however, is the extent
to which deviations from this fitted line can be expected—it is well
documented that sediment transport is variable even at steady-state
conditions (Knighton, 1998; Hicks and Gomez, 2005; Turowski,
2010). One approach, then, is to make a set of Monte Carlo simula-
tions using probability distributions for the model parameters there-
by resulting in an ensemble of model predictions. This approach
assumes that (i) the parameters are fixed and their variance is a re-
flection of uncertainty in the point estimate; and (ii) that all of the ob-
served variability in sediment transport is directly because of
parameter uncertainty. This approach will yield useful results only if
the specified parameter distributions are correct. Returning to a Bayes-
ian approach, distributions for the latent parameters (prior distributions)
are assigned just as in the forward stochastic approach and these distri-
butions are ‘updated’ by incorporating observations—sometimes called
data assimilation (e.g., Wikle and Berliner, 2007)—of sediment transport
events into the Bayesian statistical model. These updated distributions,
called posterior distributions, are estimates of the underlying parameters
in light of the observations and prior distributions. Posterior distributions
are weighted combinations of prior knowledge and information from
observation—the more observations you have, the less weight is placed
on prior distributions. These inferred parameter values can then be
used to calculate a posterior predictive distribution (PPD) as opposed
to a single predictive line. Thus, the Bayesian model accomplishes both
parameter estimation and stochastic prediction in one theoretical
framework.

Bayesian statistical models, while based on probability, do not
solely rely upon probability distributions or empirical relations with-
out regard to the relevant physics of the process. In recent years,
statistical approaches to bedload transport employing machine learn-
ing algorithms have been demonstrated (Bhattacharya et al., 2007;
Dogan et al., 2009; Sasal et al., 2009) wherein the nonlinear functions
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that govern transport are derived using sets of covariates and param-
eters trained to the observed bedload discharges. While machine
learning algorithms seek to estimate an unknown function from co-
variates, the Bayesian model described in this paper incorporates de-
terministic equations. Machine learning techniques often result in
good model fits, though the resulting parameters do not necessarily
carry the same interpretability as do models that are based on equa-
tions derived from the physics of the phenomenon—this is especially
true when the covariates are orthogonally transformed, such as in
principal components analysis. As will be shown in what follows, in-
corporating deterministic or physics-based reasoning into Bayesian
models is straightforward. This allows experts to select the determin-
istic models that are most appropriate and still retain the ability to
model the phenomenon probabilistically.

Last, a Bayesian sediment transport model makes it possible to
partition out variability—that is, to quantify the various sources of
variability in the transport process. For instance, because model pa-
rameters are treated as random variables arising from probability dis-
tributions, we can expect some variance in predictions based on this
alone. Further, sediment transport is spatially and temporally variable
due to constantly changing hydraulic conditions, including changing
bed topography, turbulence, varying supplies of bed material from
upstream processes, and lastly irreducible noise brought about by
stochasticity (Grass, 1970; Kirchner et al., 1990; Knighton, 1998;
Gomez and Phillips, 1999; McLean et al., 1999b; Bunte and Abt,
2005; Hicks and Gomez, 2005; Diplas et al., 2008). An additional con-
tributor of variance in model predictions is the conceptual model it-
self that we use to describe the process. Invariably, the models we
use to describe physical systems are simplifications of reality, and
many ways to describe the same process exist (Gomez and Church,
1989). Thus, the selection of a particular deterministic relationship
will have an effect on the variability of predictions. Finally, data col-
lection error will also contribute to observed variability in fluvial
transport (McLean et al., 1999b; Diplas et al., 2008). The model pres-
ented in what follows distinguishes between variability owing to the
model parameters being random variables, and variability because of
stochasticity, measurement error, and model misspecification.

2. Study area

The Bayesian model described above is used here to quantify un-
certainty associated with sediment rating curves developed from
bedload transport data collected on the Snake River in northwestern
Wyoming. The bedload transport data were collected for the purpose
of developing a sediment budget for a 16-km stretch of the Snake
River within Grand Teton National Park (GTNP) (Erwin et al., 2011).
The study reach begins ~9 km downstream from Jackson Lake dam
(JLD) at the confluence with Pacific Creek, shown in Fig. 1, and ex-
tends to Deadman's Bar.

The upper Snake River is a wandering, gravel-bed river. Through
the study area, the Snake River and its tributaries flow through out-
wash produced during the Pinedale glaciation. Much of the Snake
River is flanked by Pleistocene outwash terraces, which intermittent-
ly confine the valley (Love et al., 2003). Deadman's Bar is located in
one of these confined areas, which makes it an ideal sampling loca-
tion because the reach planform has changed very little over the
last 50 years (Nelson, 2007). This eliminates any complications cau-
sed by transitions to multiple threads in the channel, or changes in
sinuosity or braiding index.

Jackson Lake originally formed during the last glaciation when it
was impounded by a recessional moraine. In 1906, JLD was con-
structed at the outlet of Jackson Lake to capitalize on this natural
water storage location. The JLD increased the level of Jackson Lake
by 11.9 m, creating 109 m3 of storage in Jackson Lake reservoir. Im-
portantly, the dam did not change the sediment supply to the up-
stream end of the study area because Jackson Lake existed prior to
construction of JLD and the supply here has effectively been zero for
thousands of years. Thus, the primary source of coarse sediment to
the Snake River in GTNP is tributaries.

The upper Snake River and its tributaries drain the Teton and
Absaroka Mountains and the Yellowstone Plateau. Although stream
flow of the Snake River immediately downstream from JLD is entirely
determined by dam releases, flow farther downstream results from
the combined effects of dam releases and natural inflow from tribu-
taries. The annual flood in the watershed is driven by spring snow-
melt and typically occurs in May or June. However, the average
annual peak flow is now significantly less than the unregulated
peak flow due to dam operations (Marston et al., 2005; Erwin et al.,
2011).

The field data set we used was collected from tethered rafts on
three large gravel-bed rivers (see Fig. 2). The challenges in collecting
the transport samples were exceptional, not least to collect sufficient
samples to represent a highly variable transport field, and the
resulting transport data demonstrate considerable scatter not uncom-
mon in field data sets. Although other gravel rivers can be found with
transport data sets that are more abundant and empirically define a
tighter sediment rating curve, the abundance and scatter in the data
is not a primary consideration in the basic purpose of this paper,
which is to demonstrate application of a Bayesian approach in devel-
oping a more robust characterization of uncertainty and a more cred-
ible estimate of cumulative transport. In fact, the Snake River and its
tributaries provide an appropriate illustration of how the Bayesian
approach can be used to more effectively determine cumulative
transport rates with field sediment transport data.

Developing a long-term sediment budget for the Snake River using
the transport data of Erwin et al. (2011) faces two important chal-
lenges that merit attention. First, transport rates at the budget outlet
(Snake River) were measured in 2007 whereas transport rates at the
budget inlets (Buffalo Fork and Pacific Creek) were measured in 2006.
Second, the cumulative sediment transport and sediment budgets are
developed by applying transport observations from two years to a
fifty-year flow record. This first issue requires the assumption that
transport rates at the sites were similar in both years. The second
issue requires the more severe assumption that the relation between
flow and transport remain stationary over entire period of record.
There is no specific information to inform these assumptions, al-
though several factors suggest that the assumption is worth making.
First, the broad patterns of sediment supply to the reach have
remained unchanged throughout the Holocene (Jackson Lake Dam
altered flows to the reach, but not sediment supply). Second, no
significant changes in the reach planform have been observed since
1945 (Nelson, 2007). Third, sediment supply to the reach is abundant
and tracer experiments indicate that common floods are capable of
fully mobilizing the bed material. Together, these conditions suggest
a transport (rather than supply) limited reach that has been in place
for centuries, such that an assumption of stationary sediment rating
curves is plausible.

The issue of rating curve stationarity is relevant to the accuracy of
the long-term sediment budget determined from short-term data.
This is a common and fundamental challenge that no method, statis-
tical or otherwise, can resolve. Our goal in this paper is not to present
and interpret a sediment budget for the reach (this has already been
done by Erwin et al., 2011), but to demonstrate an approach that
allows uncertainty in the budget calculation to be more effectively
evaluated and applied to calculations of cumulative load. Any error
arising from the assumption of stationarity does not impair this effort.

3. Methods

In this section we describe the methods used to develop the prob-
abilistic sediment rating curves and sediment budget. Sediment input
from tributaries and output from the mainstem were quantified
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Fig. 1. The Snake River in Grand Teton National Park. The study area extends from the confluence of the Snake River with Pacific Creek downstream to Deadman's Bar. Locations of
bedload sampling sites are indicated by stars.
Modified from Erwin et al. (2011).

Fig. 2. Sediment transport sampling on the Snake River at Deadman's Bar.
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across a range of discharges allowing the construction of predictive
sediment distributions for each location. These distributions were
then used to construct long-term estimates of sediment influx and
outflux using historical streamflow records.

3.1. Sediment transport observations

Three sampling sites were established for measuring bedload
transport through the study reach. In 2006, bedload transport was
measured on Buffalo Fork and Pacific Creek for the purpose of deter-
mining sediment inputs to the study reach. In 2007, bedload trans-
port was measured on the Snake River at Deadman's Bar in an effort
to quantify sediment outputs.

The sampling methods are described in detail in Erwin et al.
(2011) but are summarized here. At each sampling site, transport
rates were measured using a raft-based sampling platform and a
Toutle River 2 (TR-2) bedload sampler (Childers, 1999; Wallick et
al., 2010). Samples were collected using a modified version of the
equal width increment (EWI) method, where each complete mea-
surement consisted of one pass across the channel where 10–12 sam-
ples were taken at equally spaced intervals across the active bed. The
sampler remained on the bed for 30–240 s at each vertical, and the
time interval remained constant for each sample. All samples were
sieved and weighed in 1/2-ϕ size classes. Channel conditions
remained consistent during the 2-year sampling period so as to justi-
fy the assumption that there was no pronounced shift in the sediment
rating curve from one year to the next.

3.2. Bayesian sediment transport model

3.2.1. Fundamentals
The basic premise of Bayesian models is discussed below. If we

were to assume some generic process z as a function of some param-
eter θ, a Bayesian model of this process would be:

θ½ jz� ¼ z½ jθ� θ½ �
∫ z½ jθ� θ½ �dθ

ð1Þ

where the square brackets ‘[]’ denote a probability distribution, and
the vertical bar ‘|’ denotes a ‘given’ such that [θ|z] is interpreted as
the distribution of the model parameter θ given observations of the
process z. The model in Eq. (1) is conventionally expressed as a pro-
portionality, [θ|z]∝ [z|θ][θ], because the denominator in Eq. (1) is a
fixed but unknown normalizing constant and MCMC does not require
this normalizing constant to be known.

In words, the Bayesian model above allows us to make inference
on the parameter θ by using the intrinsic information contained
about it in observations of the process z. Given observations of z, it
is possible to back calculate values of θ, but algebraic answers only re-
turn a single value. Because the Bayesian model treats parameters as
distributions, the Bayesian answer is analogous to the back calculated
parameter values for θ, except that it is a distribution instead of a sin-
gle value. This back calculated distribution is the posterior distribu-
tion, [θ|z], which reads as ‘the distribution of θ given observations of
z’. The right-hand side of Eq. (1) consists of the likelihood and the
prior. The prior distribution, [θ], is supplied to the model by the
user. It is a statement of what is known about θ before the new obser-
vations were collected. This could be a summary of the literature on
the parameter, an educated guess, or it can serve to constrain the pa-
rameter space to a physically plausible range. The likelihood, [z|θ],
sometimes called the data model, represents the distribution of ob-
servations given the parameter θ. The likelihood describes the struc-
ture of the process being modeled and recognizes the fact that
observations of z are dependent on the parameter θ.

Readers are referred to Schmelter et al. (2011) for more informa-
tion on Bayesian models, specifically Bayesian sediment transport.
3.2.2. Sediment transport governing equations
As was mentioned previously, the Bayesian framework integrates

deterministic functions into a probabilistic framework. It was
established in Erwin et al. (2011) that the Parker (1979) and Parker
(1990) models represented the observed Snake River transport data
well. Further, Wilcock (2001) advocated their use because they are
well‐suited to predicting sediment transport over different ranges of
grain shear stresses. These equations are used in the present paper
to provide a representative comparison to the work done in Erwin
et al. (2011) (see the cited publications for further justification).
These relationships are:

W� ¼
11:2 1−0:846

τr
τ′

� �4:5
; for

τ′

τr
> 1

0:0025
τ′

τr

 !14:2

; for
τ′

τr
< 1

8>>>><
>>>>:

ð2Þ

(Parker, 1979, 1990) where W∗ is the dimensionless transport rate, τr
is the reference shear (a surrogate for critical shear), and τ′ is the skin
friction. The value for W∗ is defined as:

W� ¼ gqs s−1ð Þ
τ′
ρ

� �1:5 ð3Þ

where g is gravity, qs is the unit bedload transport rate, s is the specific
gravity (2.65), and ρ is the density of the water. The relationship used
to calculate skin friction was derived in Erwin et al. (2011) and is pro-
vided here as a reference:

τ′ ¼ 17k1:5 SD65ð Þ0:25Q1:5m ð4Þ

where S is the slope, D65 is the 65th percentile grain size, Q is dis-
charge, and k and m are empirical coefficients determined in Nelson
(2007). Lastly, the conversion to dimensionless shear stress from
shear stress follows:

τ�r ¼
τr

s−1ð ÞρgD50
: ð5Þ

Using the equations specified in Eq. (2) through Eq. (4), we can
solve for the dimensional transport rate, Qs, resulting in:

Qs ¼
11:2 1−0:846

τr
τ′

� �4:5 τ′

ρ

 !1:5
W

g s−1ð Þ ; for
τ′

τr
> 1

0:0025
τ′

τr

 !14:2
τ′

ρ

 !1:5
W

g s−1ð Þ ; for
τ′

τr
< 1

8>>>>><
>>>>>:

ð6Þ

(Parker, 1979, 1990) where W is the channel width.

3.2.3. Bayesian model formulation
The basic model in Eq. (1) was adapted for sediment transport,

resulting in the following:

τr ; σ2jlog Qs;o

� �h i
|{z}

Posterior

∝ ∏
n

i¼1
log Qs;o;i

� �
jτr ; σ2

h i� �
|{z}

Likelihood

τr½ � σ2
h i
|{z}

Priors

ð7Þ

whereQs,o is the vector of total cross section sediment discharge observa-
tions, Qs,o=(Qs,o,1,…,Qs,o,n)′, assumed to be generally governed by
Eq. (6). The model specified in Eq. (7) makes inference on both τr and
σ2, respectively the reference shear stress and the variance.

The likelihood is the distribution from which the observations
arise, and this distribution must be specified directly. Section 3.2.2
outlined the deterministic models used to describe the dynamics of



6 M.L. Schmelter et al. / Geomorphology 175–176 (2012) 1–13
sediment transport, and we refer to those equations as we construct
the likelihood. In words, the following likelihood specification means
that we believe sediment transport generally behaves according to the
models developed in Parker (1979) and Parker (1990) while providing
a term for the noise associated with this process, in measurements as
well as in natural variability. To this end, we specified a normally dis-
tributed likelihood whose mean is defined by Eq. (6) with variance σ2,
as shown below:

log Qs;o;i

� �
jτr ; σ2∼N log Qs;i

� �
; σ2

� �
; for each observation; i; ð8Þ

where ‘∼’ is a statistical notation meaning ‘is distributed as’. The likeli-
hood specified above integrates a deterministic relationship that de-
scribes sediment transport into a probabilistic framework.

Because the model specified in Eq. (7) makes inference on two pa-
rameters, two prior distributions must be specified. In selecting prior
distributions for parameters, care must be taken to ensure that the
support of the distribution matches that of the parameter. For in-
stance, we know that σ2 must be greater than zero but less than infin-
ity; and so an inverse gamma distribution (σ2∼ I.G. (r, q), where r and
q are ‘hyperpriors’) is an appropriate selection. For the reference
shear parameter, we know that it, too, must be greater than zero
but less than any transport event with W∗b0.002 (by construction).
Thus, a lower- and upper-bound can be placed on τr. To this end, a
truncated normal distribution was specified as the prior for reference
shear ( τr∼T:N: μτr ; στr ; ã; b̃

� �
, respectively representing a mean,

standard deviation, lower-bound, and upper-bound for τr). One ad-
vantage of the truncated normal distribution is that it is very flexible
and can take on a variety of shapes depending on the specified hyper-
prior values μτr ; στr ; ã; b̃

� �
, as shown in Fig. 3.

3.2.4. Parameter inference and prediction
One of the goals of formal statistical methods (both classical and

Bayesian) is to make inference on latent or unobservable parameters.
In order to do this, wemust make observations of the process of inter-
est after which we may then infer parameter values in context of the
new observations. The posterior distribution in Eq. (7) is an updated
joint distribution of the reference shear and variance parameters
after considering the prior distributions (as specified by the expert)
and the information available in the new observations. This distribu-
tion can be used to identify a credible interval or a range of values be-
tween which there is a (1−α)% probability of containing the realized
parameter value. The term ‘credible interval’ is a term in Bayesian sta-
tistics that is analagous to a confidence interval from classical
T.N.(10, 10, 0, 20)
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statistics. The reason for this distinction is rooted in the interpretation
of what probability truly represents. Readers are referred to any
textbook on Bayesian statistics for a more detailed explanation
(e.g., Gelman et al., 2004; Robert, 2007). This credible interval is com-
puted by finding theα/2 and 1−α/2 quantiles for the (1−α)% credible
interval. The distribution of these parameters is not constrained by
requirements of normality (Schmelter and Stevens, in review). Most
classical statistical methods assume that model parameters (or trans-
formations thereof) are normally distributed. These assumptions are
relaxed in a Bayesian approach and only prior distributions on the
parameters are specified. As a result, these specifications of the prior
distributions are based more on scientific merit than computational
convenience (Box and Tiao, 1992). The posterior distribution for these
parameters arises naturally from the prior distributions and likelihood
and represents the updated knowledge on the parameters. These
updated parameter distributions can then be used for prediction.

Prediction in the Bayesian framework is nicely integrated into the
theoretical framework. The posterior predictive distribution repre-
sents the probability distribution of future, in this case, sediment
transport events given the previously observed events. Mathemati-
cally, this is expressed as

log ~Q s;o

� �
jlog Q s;o

� �h i
¼ ∫∫ log ~Q s;o

� �
jlog Q s;o

� �
; τr; σ2

h i
τr ; σ2jlog Q s;o

� �h i
dτrdσ

2
: ð9Þ

The solution to Eq. (9) defines a distribution of sediment transport
rates for a given flow condition. In essence, it is the probabilistic ana-
log of a fitted line through observations. This distribution recognizes
the natural variability in sediment transport noted in the literature
(e.g., Hamamori, 1962; Knighton, 1998; Hicks and Gomez, 2005).

3.2.5. Computational methods
Because a solution to the posterior distribution in Eq. (7) is analyt-

ically intractable, the posterior must be sampled using MCMC with a
Gibbs sampler and Metropolis–Hastings update to simulate observa-
tions from the posterior distribution. Readers are referred to Casella
and George (1992), Chib and Greenberg (1995), Hastings (1970),
and Metropolis et al. (1953) for further information on these
methods. The integration required for the posterior predictive distri-
bution in Eq. (9) is performed by composition sampling of the MCMC
posterior distributions (Tanner, 1996). More detailed information is
available in Schmelter et al. (2011). The R programming environment
(R Development Core Team, 2010) was used to implement this
model.
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3.3. Sediment budget calculation

The approach to developing a probabilistic sediment budget is
very similar to traditional approaches except that, in the probabilistic
approach, we assume that a distribution of sediment transport rates—
instead of a single prediction—may occur for any given flow condition
(as defined by the posterior predictive distribution). The first step is
to get the time-series of streamflow (daily mean discharge) at the
location where a sediment rating curve has been developed. Assum-
ing a period of record of I years, take day j of year i and determine
the streamflow. Using this discharge, get the corresponding sample
of sediment transport rates from the Bayesian rating curve. Because
the posterior predictive distribution consists of a set of samples (as
opposed to some analytic equation) these M samples (M should be
some large number) are stored as the jth column in a matrix—each
column corresponding to the sediment flux for day j in year i. This is
repeated for each day in year i. Because annual sediment yield is
simply the sum of all the daily sediment fluxes, the distribution of an-
nual sediment yield is the sum across all J columns of the matrix—this
results in a single column of M summations comprising the distribu-
tion of annual sediment yield (it should be noted that Nelson
(2007) showed that there was no progressive channel change over
the period from 1945 to 2002, thus we assumed that lateral inputs
are trivial relative to the tributary inputs.) This process is repeated
for all I years.

For the Snake River sediment budget presented here, annual sed-
iment yield was calculated for Pacific Creek and Buffalo Fork to deter-
mine sediment inputs to the study area and for the Snake River at
Deadman's Bar, to determine sediment output. Because JLD complete-
ly disrupts sediment supply from the mainstem to the study area, in-
puts are calculated as the sum of tributary inputs. The sediment
budget was calculated for 1958 to the present, the period influenced
by modern rules for dam releases. Because these influxes and
outfluxes are distributions, their quantiles can be calculated that de-
termine some interval for annual sediment yield at a (1−α)%
credibility.

4. Results

Sediment transport observations and the Bayesian transport
model specified in Eq. (7) were used to estimate the parameter distri-
butions for τr and σ2 at three river sampling sites: Buffalo Fork, Pacific
Creek, and the Snake River at Deadman's Bar (see Fig. 1). Table 1
shows the prior distributions used for each site and Fig. 4 shows the
prior and posterior distributions for τrand σ2 at Deadman's Bar. The
priors and posterior results for Buffalo Fork and Pacific Creek mimic
the general shapes shown in Fig. 4 but with shifted locations. The
prior for reference shear is diffuse and is functionally uniform over
the specified interval. The prior for the variance parameter has a
large variance as well to make it vague, though the inverse gamma
distribution's shape is less flexible than the truncated normal. These
priors were selected so that very little information is assumed, there-
by allowing the observations to provide the most information about
the inferred parameter values. Table 2 presents the inferred values
and credible intervals for reference shear and variance from the
Bayesian model; values and intervals for reference shear from Erwin
et al. (2011); and channel characteristics for each sampling location.
Using these posterior parameter distributions for reference shear
Table 1
Prior distributions for τr and σ2; the truncated normal distributions are specified as
T :N: μτr ; στr ; ã; b̃

� �
; the inverse gamma distribution is specified as I.G. (μσ2, σσ2

2).

Parameter Snake River Buffalo Fork Pacific Creek

[τr]∼ T.N. (7, 1000, 0, 15) T.N. (7, 1000, 0, 15) T.N. (10, 1000, 0, 20)
[σ2]∼ I.G. (0.5, 50) I.G. (0.5, 50) I.G. (0.5, 50)
and variance, the posterior predictive distribution was calculated for
each cross-section. These predictive distributions are presented in
Fig. 5(A) through (C) and are plotted as areas defining the 68%, 90%,
and 95%.

Fig. 6 is a schematic diagram that compares the assumptions asso-
ciated with a forward stochastic and a Bayesian model for sediment
transport. The top half of Fig. 6 (dashed boxes) corresponds to the for-
ward stochastic model and the bottom half to the Bayesian approach.
The ensemble predictions for Deadman's Bar shown in Fig. 6(G) uses
a uniform distribution of reference stresses on the expert-defined un-
certainty envelopes from Erwin et al. (2011). The ensemble predic-
tions were constructed using 7000 samples (to match the number
of MCMC samples from the Bayesian model) of reference shear.
These predictions assume τr to be the only random variable (no log-
additive noise). Fig. 6(H) is the PPD for Deadman's Bar. Fig. 6(H) as-
sumes τr and σ2 are random variables and that the log() of sediment
transport predictions has constant variance defined by σ2 (see
Fig. 6(B) and (F)). While the Bayesian model described in this paper
only assumes two parameters, Fig. 6 illustrates that this is extensible
to an arbitrary number of parameters (see Fig. 6(C) and (D)).

Figs. 7 and 8 show the credible intervals for the sediment mass
balance. The sediment inputs are represented by the red regions in
Figs. 7 and 8. The outflux is represented by the black regions in the
same figures. Inset plot (A) of Figs. 7 and 8 represents the (1−α)%
credible region for annual sediment yield. For any given year there
is a distribution of sediment influx and outflux, and inset plot (A)
shows the width of the (1−α)% credible interval for these distribu-
tions. Sediment influx and outflux, however, is not uniformly distrib-
uted over this interval. Fig. 9 shows actual predictive distributions of
influx and outflux for the years 1960 and 1984 at α=0.05 credible
level along with the α/2 and 1−α/2 quantiles shown as vertical
lines. These lines are used to establish the credible interval width in
inset plot (A) of Figs. 7 and 8. Fig. 9(A) shows that the 1960 influx
and outflux credible intervals overlap for α=0.05, while Fig. 9(B)
shows a distinct gap between the 1984 influx and outflux values for
α=0.05. These elements help define what constitutes a ‘significant’
difference in influx and outflux and are also seen in Fig. 7(A) for
1960 and 1984. Inset plot (B) of Figs. 7 and 8 shows the cumulative
sediment mass balance at the chosen credible level starting in 1950.
These distributions are found by summing the preceding annual sed-
iment yields up to the selected year for both influx and outflux. Inset
plot (C) shows the posterior distribution of cumulative sediment
yield at the end of the period of record, 2007. This distribution
(with both traditional quantiles and highest posterior density (HPD)
interval (Box and Tiao, 1992) denoted by the vertical lines) shows
the probability density function for the difference between the cumu-
lative influx and the cumulative outflux for the study reach.

5. Discussion

5.1. Bayesian sediment transport model

The model proposed in this research is an extension of the Bayes-
ian formulation presented in Schmelter et al. (2011). Here we dem-
onstrate that by modifying the deterministic equation specified as
the mean value of the likelihood function, Eqs. (8) and (2), the simple
Bayesian formulation presented in Schmelter et al. (2011) can be
used to model sediment transport in a large gravel-bed river. Using
non informative priors for the model parameters, we obtained esti-
mates for τr and σ2, as shown in Table 2. From a numerical methods
standpoint, the MCMC algorithm converged quickly on the parameter
space and exhibited the necessary properties—e.g., mixing, accep-
tance rate; (Gelman et al., 2004)—characteristic of stable and valid
computations. The posterior predictive distributions shown in
Fig. 5 are further evidence of model validity; the predictive distribu-
tions appear to be reasonable given the observed transport rates. By



0 5 10 15

D
en

si
ty

(A)

0 1 2 3 4 5

(B)

τr σ2

τr~ T.N.(7,1000,0,15)T. σ2~ I.G.(E[σ2]=0.5, Var[VaV σ2]=50)

Fig. 4. Prior (dash-dot) and posterior (solid) distribution densities for reference shear and variance at Deadman's Bar on the Snake River. (A) Reference shear; (B) variance.

8 M.L. Schmelter et al. / Geomorphology 175–176 (2012) 1–13
all accounts, the Bayesian method infers reasonable parameter
values and produces predictions that are sensible given the
observations.

Regarding parameter inference, we can compare the inferred
values from the Bayesian model to the values fitted manually in
Erwin et al. (2011). One characteristic of these parameter estimates
is that while the point estimates are generally the same for reference
shear between the two approaches, the credible interval of the Bayes-
ian estimates is much tighter than the manually fitted uncertainty en-
velopes used in Erwin et al. (2011). This discrepancy is largely owing
to the fact that in the manually fitted calibration all of the observed
variation is assumed to be solely attributable to variation in τr (see
Fig. 6). The Bayesian model, however, partitions between parameter
variability (as expressed by the credible interval for τr) and variability
because of random noise, measurement error, and model mis-
specification (expressed by the variance parameter σ2).

While the uncertainty envelopes used in Erwin et al. (2011) is a
more simplistic approach to quantifying uncertainty in transport pre-
dictions, they only define an upper and lower limit for reference shear
and do not of themselves define a distribution. What happens between
these bounds is not defined. It could be flat (uniformly distributed),
skewed (e.g., lognormally or gamma distributed), or symmetric
(e.g., normally distributed). To produce stochastic predictions using
these uncertainty envelopes requires defining these distributions,
and the resulting ensemble of predictions is directly dependent on
these assumptions. Fig. 6 outlines how one might use such uncer-
tainty envelopes in a Monte Carlo analysis by assuming a uniform
distribution between the two limits. A uniform distribution for τr
was sampled many times between these bounds, and the ensemble
of predictions is shown in Fig. 6(G). Adopting a Bayesian approach to
Table 2
Inferred and fixed parameters for bedload transport function (top section displays re-
sults from the posterior distributions; middle section shows selected parameters
from Erwin et al. (2011); bottom section shows channel properties for each sitea).

Parameter Snake River Buffalo Fork Pacific Creek

τr, Pa 9.38 (9.05–9.66) 9.67 (9.14–10.15) 14.30 (13.97–14.64)
τr∗ 0.017 (0.016–0.018) 0.033 (0.031–0.035) 0.042 (0.041–0.043)
σ2 1.90 (1.35–2.73) 1.25 (0.81–1.92) 0.62 (0.36–1.08)
τr, Pab 9.80 (8.30–11.30) 9.50 (8.50–12.50) 14.20 (13.20–14.20)
τr∗b 0.018 (0.015–0.021) 0.032 (0.029–0.043) 0.042 (0.039–0.045)
Water surface
slope, S

0.0025 0.0025 0.0035

D65, mm 50 29 29
D50, mm 34 18 21
Active channel
width, m

70 45 43

Num.
observations

62 39 24

a Point estimate is the expected value of the posterior distribution, and values in pa-
rentheses comprise the 95% posterior credible interval for the Bayesian estimates.
Values without credible intervals are assumed fixed and known.

b Values as reported in Erwin et al. (2011).
this problem, however, still allows the modeler to define, to their best
knowledge, the shape and location of the parameter distributions (as
in Fig. 6(C)) but the resulting predictions are based on the posterior dis-
tribution (Fig. 6(D)) and not on these prior distributions. Fig. 4 shows
the difference between the prior distributions for both parameters
and the updated posterior distributions. By collecting observations
and incorporating them into the statistical framework, the prior knowl-
edge (or ignorance)was updated to yield parameter estimates that pro-
duce themost realistic results. The results in Fig. 6(G) and (H) show that
themore simplistic approachproduces predictionswith decreasing var-
iance as discharge increases. The PPD in (H) has constant variance (in
log space) at all discharges due to the specification of the likelihood.
This difference is related to the fact that the forward stochastic ap-
proach in this comparison does not assume any variance structure of
the observations—it assumes all variance is explained by the governing
equation and variation in reference shear. The Bayesian approach incor-
porates a variance structure. In simple models, where only one or two
parameters are involved, an argument could be made that a modeler
could iteratively calibrate the parameter distributions in a forward sto-
chasticmodel to produce a reasonable ensemble of predictions; but this
becomes infeasible with many parameters or highly nonlinear systems
such as sediment transport. To be clear, a forward stochastic approach is
entirely capable of making the same predictions of a Bayesian model.
Certainly, if the forward stochastic model had two parameters instead
of one and the distributions of these parameters matched those of the
posterior distribution of the Bayesian model then the results would be
indistinguishable. In order for this to occur, however, the distributions
for the parameters would need to be identical. The benefit of the Bayes-
ian approach is that the stochastic prediction (formally, the posterior
predictive distribution) and the parameter estimation (the posterior
distribution) are developed in a single theoretical framework. It is
conceivable that one could implement a type of non-linear regression/
estimation for the model parameters for use in the forward stochastic
model, but the results of non-linear regression require parameter nor-
mality, something not always guaranteed. Further, the estimate from
a non-linear regression method is a fixed value and assumes normal
(or t-distribution) errors. The Bayesian approach allows you to inform
themodel via priors, have themupdated formally into the posterior dis-
tribution, and then make predictive distributions. Further, the MCMC
algorithm is much more efficient in identifying the joint parameter
space than a manual, iterative approach, especially because the esti-
mates are distributions and not a point value. This difficulty only in-
creases with dimensionality.

A further consideration that warrants the present estimation–
prediction framework for sediment transport is that the threshold
at which sediments begin to move is highly dependent on evolving
bed configurations that are generally unknowable at the scale of
large gravel-bed rivers such as the Snake (Kirchner et al., 1990;
Eaton and Church, 2010). In a laboratory setting, the critical shear
parameter is often well defined by its size and known bed characteris-
tics (e.g., angle of repose; Dey, 1999). In the absence of this information,
however, defining a grain shear required to producemovement is com-
plicated by the unknown and evolving bed configurations. Thus the
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inferred reference (or critical) shear on large river systems averages
over these unknowns and behaves less as a physically-meaningful
parameter for the individual grains and more like a calibration pa-
rameter for the bed as an ensemble. As such, the inferred values are
unlikely to be portable from one river reach to another.
5.2. Implications for sediment budgets

As described in Section 3.3, one source of uncertainty in sediment
budgets is the uncertainty in sediment transport rating curves. The
probabilistic rating curves described in the preceding sections form
the basis on which the probabilistic sediment budget is constructed
and allows us to robustly propagate uncertainty at different levels.
The first level of uncertainty relates to prior knowledge of parameter
values, and this is considered during the specification of the prior dis-
tributions. The next level pertains to the resulting uncertainty in the
posterior distributions; this uncertainty is propagated through to
the construction of the sediment rating curves. The final step in this
paper is where uncertainty in the rating curves is propagated into
yearly and cumulative sediment budget calculations.
(A)

(C) (D)

(B)

Fig. 6. Flowchart comparing workflows of a forward stochastic model and a Bayesian model
to (G). The Bayesian model goes from (B) to (C) to (D) to (F) to (H). The ensemble predicti
Erwin et al. (2011) shown in Table 2 at Deadman's Bar. (H) PPD for Deadman's Bar. The dens
at the water discharges denoted by the dashed vertical line on the rating curves. The thin h
Grams and Schmidt (2005) presented an example of developing a
sediment budget for the Green River below Flaming Gorge dam and
discussed the various uncertainties associated with this analysis.
One of the conclusions of their paper is that “full consideration of
the uncertainty in the sediment budget indicates that the budget is
better described as indeterminate, which is not equivalent to an equi-
librium condition” (Grams and Schmidt, 2005, p. 178). This conclu-
sion was based on expert-defined error magnitudes that were
applied to the measured annual loads (e.g., 5% and 10%) and under-
scores the reality that a simple description of system uncertainty
may obscure the underlying behavior of a river system. A Bayesian
approach to sediment budgets differs in that the uncertainty associat-
ed with sediment yields is estimated and not assumed. The estima-
tion of sediment yield variability arises naturally from the
specification of priors for the relevant parameters, as well as the ob-
servations that are collected to calibrate the model. At the very
basic level, an expert assessment of uncertainty with respect to the
parameters that govern the process can be stated to initiate the anal-
ysis (even if very approximately). After that, the uncertainties related
to prediction and sediment budget calculations are not assumed be-
cause they are explicitly quantified in the posterior distributions.
(E)

(G)

(H)
(F)

for sediment transport. Forward stochastic model workflow goes from (A) to (C) to (E)
ons in (G) assume a uniform distribution of τr with upper and lower limits defined by
ity curves shown on the right of (G) and (H) are the distributions of sediment transport
orizontal lines correspond to the 68%, 90%, and 95% prediction intervals.
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Another consideration when doing probabilistic sediment budgets is
that the shape of the distributions will also have an effect on uncer-
tainty. If error rates are assumed to be uniform (e.g., any value ±5%
is equally probable) or heavy-tailed (i.e., more probability mass is lo-
cated away from the center of the distribution) subsequent calcula-
tions will be less certain than if a normal distribution were
assumed. When one assumes an error structure rather than estimat-
ing it, these distributions must be specified by the modeler and may
influence the outcome. The approach promoted in this paper removes
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Fig. 8. Sediment budget using 68% credible interval. (A) Annual sediment yield. Shaded reg
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change in sediment storage over period of record.
this burden from the modeler and allows the prior distributions and
the observations to determine the form and bounds of these distribu-
tions as it naturally performs the tasks of parameter estimation and
stochastic prediction.

Erwin et al. (2011) noted that the magnitude of their uncertainty
in sediment flux calculations did not allow them to determine wheth-
er or not the reach is in sediment deficit or surplus. They noted, how-
ever, that the difference between influx and outflux was sufficiently
large in 11 of the 50 years that a deficit could be inferred. A surplus
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could be demonstrated in 1 year. These are the results of manually
defining an upper and lower reference shear that results in a region
that contains 90% of the sediment transport observations. The results
shown in Figs. 7 and 8 show that, at 95% credibility, the system is in
deficit for 15 of the years and in surplus for two years. At 90% credibil-
ity (figure not shown), the number of years in sediment deficit in-
creases to 20 and two years in surplus. The 68% credible interval of
sediment yield indicates that 37 years are in deficit and two are in
surplus. Constructing sediment budgets probabilistically in a Bayesian
framework provides a robust way to propagate uncertainty and an-
swer questions about how different influx and outflux need to be in
order to be considered a real signal and not just noise. The ability to
distinguish between variability attributable to noise and variability
as a characteristic system behavior addresses the uncertainty chal-
lenge posed by Grams and Schmidt (2005).

Questions regarding the sediment budget can be asked and an-
swered at a given tolerance for risk while explicitly accounting for var-
iability and uncertainty. At the limit of taking the credible interval to 0%,
the predictive distributions in Figs. 7 and 8 reduce to the purely deter-
ministic budget calculations. At this level, every year is either in deficit
or surplus. If, for a given year, the influx is 10,000 m3 and the outflux
is 10,005 m3, we intuitively know that this is unlikely to be a significant
difference. But at what difference does significance begin and at what
significance level? We observe that the uncertainty in sediment rating
curves is often the focus of analysis, yet this uncertainty is not always
propagated through to estimates of annual yield (e.g., McLean et al.,
1999a;Major, 2004; Vericat and Batalla, 2006).Without a robustmeth-
od to quantify first the uncertainty of the sediment rating curve and its
distribution and second how this uncertainty affects estimates of sedi-
ment yield, point estimates of sediment yield will always be distinct
and left to intuition to determinewhat constitutes a material difference
versus an immaterial difference. Fig. 9 shows the predictive distribu-
tions for sediment influx and outflux in the study reach for 1960 and
1984. This figure illustrates how calculating the quantiles of the predic-
tive sediment yield distributions facilitates the distinction between sig-
nificant and non significant differences. In 1960, the 95% credible
interval on the influx and outflux overlap—thus one can conclude that
at 95% credibility no significant difference is present. The values for
1984, however, illustrate that because the credible regions do not over-
lap the distance between the influx 0.975 quantile and the outflux 0.025
quantile is the sediment deficit that can be justifiably reported at the
95% credible level. These quantiles form the boundaries shown in
Fig. 7(A) and the regions shown in Figs. 7 and 8 are not flat.

Over the study time period (1958–2007), we accumulated the sedi-
ment yields to develop a cumulative sediment yield distributions
shown as (B) in Figs. 7 and 8. This cumulative distribution sums the pre-
ceding years' annual yield distributions (e.g., Fig. 9) to produce a new
distribution. These annual loads are then accumulated from 1958 to
2007. The total difference in sediment influx and outflux, shown as
(C) in the same figures, demonstrates that every computation on the
sediment budget data is done as a distribution. Thus, we can say with
95% credibility that by 2007 the study reach was in sediment deficit
by at least 600,000 m3 and at most 1,400,000 m3. These intervals can
be reduced by relaxing the credibility requirements (compare the qua-
ntiles in Fig. 8(C) to Fig. 7(C)). The analysis provided in this paper con-
firms the conclusion of Erwin et al. (2011) that the study reach on the
Snake River is generally in deficit (on a yearly basis) but goes further
to provide a robust estimate of the accumulated sediment deficit over
the period of record.

6. Conclusions

The main purposes of this paper were to demonstrate the applica-
bility of the Bayesian sediment transport model developed in
Schmelter et al. (2011) to a large gravel-bed river, provide increased
visibility of the Bayesian approach because of its ability to model
complex systems and to accommodate uncertainty in predictions
and parameters, and evaluate the suitability of the Bayesian approach
as the basis for constructing probabilistic sediment budgets.

The model results indicate that the Bayesian approach to sediment
transport is readily extensible to large gravel-bed rivers and provides
a robust method to incorporate expert knowledge, estimate model pa-
rameters, and define sediment transport predictions in terms of proba-
bilities. This approach naturally incorporates deterministic models,
thereby providing a physically-based approach to model systems that
are generally predictable by governing relationships but have elements
of randomness associated with them. The model described here is able
to partition out variability attributable to parameter variability as well
as stochasticity and measurement error. More simplistic approaches,
such as the forward stochastic model described in Fig. 6, implicitly
assume that all variability is because of parameter uncertainty and
would be difficult to calibrate manually in a nonlinear system where
an error structure was incorporated and or more model parameters
were introduced. The ability of MCMC to search parameter spaces of
complex and nonlinear systems provides an attractive option for quan-
tifying parametric uncertainty of such systems.

The posterior predictive distributions produced from the Bayesian
analysis form the foundation of the probabilistic sediment budgets
described in this paper. Because the uncertainty associated with sed-
iment transport for a given flow is robustly quantified and propagated
into the PPD, the experts modeling the system need not assume error
rates of annual sediment loads for a given location. This further
removes the necessity for modelers to choose the type of distribution
for the uncertainty (e.g., normal, uniform, etc.). This is particularly at-
tractive because uniformly distributed error rates (e.g., ±5%) may be
unnecessarily conservative, potentially resulting in indeterminate
sediment budgets. The Bayesian sediment budget shown in Figs. 7
and 8 indicates that either deficit or surplus can be reliably inferred
for 17 years at the 95% credible interval. Erwin et al. (2011) estimated
this number to be 13 at 90% confidence. Because the sediment yields
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are probability distributions, a credibility interval of sediment flux
can be determined for any given credibility level or tolerance for
risk. Credible intervals for influx, efflux, sediment transport, sediment
accumulation/evacuation are easily obtained at any risk profile by
adjusting the quantiles appropriately. Further, the approach de-
scribed in this paper makes it easy to calculate the cumulative sedi-
ment yield as a distribution in which uncertainties have been fully
propagated from the initial model assumptions.

While the approach that we promote here has advantages over
deterministic and some simple uncertainty estimation schemes, the
Bayesian model itself is quite modest. This general approach offers
significant opportunities for more complex models to be constructed
for fluvial sediment transport that estimate more parameters, incor-
porate competing deterministic functions, use different variance
structures, and evaluate the suitability of different submodels such
as those used for the partitioning of grain shear from total shear.
One weakness of the current model is that it assumes stationary
(time-independent) sediment rating curves for each location—while
certainly not ideal, this assumption was driven by necessity because
no other records from which the sediment rating curves could be es-
timated for previous years were available. This is not a reality unique
to the data of Erwin et al. (2011) but is reflective of many applied geo-
morphic studies at large. Provided, however, that adequate data to
develop time-dependent sediment rating curves are available, this
could be integrated into the sediment budget framework presented
above. Future work could also focus on the uncertainty of other
model unknowns, such as grain size distributions and variability of
estimated water discharges, though this uncertainty may be extreme-
ly small relative to the others. The current paper discusses the use of
Bayesian statistics for bedload transport, and we believe that this ap-
proach will also prove useful in other areas of the field such as
suspended sediment transport, multi-fraction bed load, determina-
tion of the optimal deterministic model for a dataset, and general pre-
diction and inference related to sediment transport phenomena.
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