
Expert Systems with Applications 41 (2014) 1609–1621
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
An expert system hybrid architecture to support experiment
management
0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.08.058

⇑ Corresponding author.
E-mail address: fiannaca@pa.icar.cnr.it (A. Fiannaca).

1 In the sense it is related to artificial intelligence and knowledge representation,
without any psychological meaning.
Antonino Fiannaca a,⇑, Massimo La Rosa a, Riccardo Rizzo a, Alfonso Urso a, Salvatore Gaglio b

a ICAR-CNR, National Research Council of Italy, Viale delle Scienze, Ed. 11, 90128 Palermo, Italy
b DICGIM, Universitá di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
a r t i c l e i n f o

Keywords:
Expert system
Workflow management system
Hybrid architecture
Ontology
a b s t r a c t

Specific expert systems are used for supporting, speeding-up and adding precision to in silico experimen-
tation in many domains. In particular, many experimentalists exhibit a growing interest in workflow
management systems for making a pipeline of experiments. Unfortunately, these type of systems does
not integrate a systematic approach or a support component for the workflow composition/reuse. For this
reason, in this paper we propose a knowledge-based hybrid architecture for designing expert systems
that are able to support experiment management. This architecture defines a reference cognitive space
and a proper ontology that describe the state of a problem by means of three different perspectives at
the same time: procedural, declarative and workflow-oriented. In addition, we introduce an instance
of our architecture, in order to demonstrate the features of the proposed work. In particular, we model
a bioinformatics case study, according to the proposed hybrid architecture guidelines, in order to explain
how to design and integrate required knowledge into an interactive system for composition and running
of scientific workflows.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Expert Systems (ESs) are designed to support users in
decision making process. One of the most important features
of a ES is the capability to make automated inference and
reasoning. In the last years, other type of systems, called Work-
flow Management Systems (WFMSs) (Hollingsworth, 1995), have
been developed in order to support researchers in scientific
fields, such as biology or chemistry. In details, a WFMS imple-
ments a process management approach (Ko, 2009) that allows
user to produce his own workflow in order to solve a given
problem.

In this paper, we propose a novel hybrid architecture for expert
systems that support experimentalists in process management, by
means of an execution environment that give scientists assistance
to build a workflow of operations, using elementary components
and/or reusing previously provided sub-workflows. In order to
accomplish the realization of an intelligent WFMS, this architec-
ture proposes to arrange both the domain knowledge and all the
components (data, tools and services) necessary to produce a sci-
entific workflow in a cognitive1 space: each point in this reference
space represents a cognitive status of the system in terms of knowl-
edge representation, reasoning inference and workflow design. By
means of this approach, we aim at integrating three different repre-
sentations of a problem as a coherent design method for expert sys-
tems. The integration of these representations is done with respect
to two point of views: the planning area and the workflow building
one.

The knowledge of the proposed architecture is organized by
means of an ontology in a twofold manner: declarative and proce-
dural knowledge are integrated following a biological inspired
point of view. Although they usually are considered as two differ-
ent reasoning approaches, we assume declarative knowledge as
integrated on a procedural knowledge, according to the modularity
processes in the human brain. In facts, as (Ten Berge & Van-
Hezewijk, 1999) stated, the brain has two kinds of memory: the
procedural one is responsible for physical activities, just like a
technique applied when necessary; whereas the declarative one
contains the symbolic knowledge, responsible for storage of facts
and events. In other words, we follow the elementary observation
that different problems require different approaches and most of
them can not be solved only with a sequence of activities or, alter-
natively, with a set of cognitive skills.

Furthermore, the proposed architecture also aims at defining
and executing those activities that are critical for achieving specific
objectives and delivering desired outputs. For this reason, we
investigated the workflow-oriented approach, following a business
process point of view (Thurner, 1998).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2013.08.058&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.08.058
mailto:fiannaca@pa.icar.cnr.it
http://dx.doi.org/10.1016/j.eswa.2013.08.058
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


1610 A. Fiannaca et al. / Expert Systems with Applications 41 (2014) 1609–1621
According to this point of view, the hybrid architecture inte-
grates a knowledge management component that contains all the
elements necessary to manages both interaction among processes,
and all the inputs and outputs that bond these processes together.
This way, each process is handled as an integrated set of activities
that uses resources to transform inputs into outputs or, in other
words, an experiment obtained with the proposed architecture
can be considered consistent whenever several processes are inter-
connected using such input–output relationships. The result of this
approach is the composition of a flowchart (sequence of activities)
or a workflow of tasks.

As previously stated, the proposed hybrid architecture aims at
integrating the three main approaches described above (proce-
dural, declarative and workflow-oriented one). According to the
coexistence between two knowledge representation related to
the human reasoning, our architecture uses both declarative and
procedural approaches at different times, taking advantage of their
different features. Moreover our proposed architecture, following
the workflow-oriented approach, is able to guide scientists to the
composition of a workflow by handling some elementary units that
are interrelated via semantic interconnection elements; their
aggregation generate sub-processes that allow the modularization
of workflow itself. In this contest, the proposed ontology guaran-
tees the coexistence of these three different approaches, in fact it
contains some essential entities and relationships allowing reason-
ing in a twofold manner (declarative and procedural) over an ab-
stract workflow of operations.

The paper is structured as follows. In the next section we briefly
discuss some related works in the field of previously cited ap-
proaches. In Section 3 and Section 4 we define in details our hybrid
architecture as a three–folded cognitive space supported by the
ontology that model knowledge and workflow organization. In Sec-
tion 5, we detail how the proposed hybrid architecture can be
implemented in order to produce a consistent workflow of opera-
tions that can solve a bioinformatics issue. Finally, in the last sec-
tion we provide conclusive remarks.
2. Related work

In the last years, a combined declarative-procedural approach
was adopted for modelling some complex systems oriented to hu-
man–computer interaction. This hybrid approach seems to be use-
ful especially for Decision Support Systems (DSS). In the medical
field, (Mulyar, Pesic, Aalst, Peleg, & Carmel, 2008) proposes to
add flexibility to classical clinical computer-interpretable guide-
lines, introducing a procedural component. More in detail, declar-
ative approach lets the user decide how to work depending on the
possible scenarios; in turn, it introduces a set of tasks and some
dependencies between these tasks. A similar idea was proposed
by Smelik, Tutenel, De Kraker, and Bidarra (2011) in the field of
computer graphic, where an interactive declarative module was
integrated to procedural modelling of virtual worlds. This way,
designers are supported on stating what they want to create,
reducing the complexity of making virtual worlds by combining
semantic-based modelling with manual and procedural ap-
proaches. In particular, as it will be illustrated in next sections,
our proposed system exploits the same technique adopted by Sme-
lik et al. (2011), regarding the use of a layered data structure.

Unfortunately, the above described architectures are not able to
handle systems that also require to produce and execute a pipeline
(i.e. a workflow) of customized processing services. As previously
stated, these kind of systems, also called WFMSs, implement a pro-
cess logic inherited by business process management in order to
build scientific workflows in many research topics. Scientific work-
flows differ from traditional business workflows (Ludäscher et al.,
2006). The main difference is that business workflows focus above
all on control flow, whereas scientific workflows are dataflow-ori-
ented. This difference influences in their execution models and vi-
sual formalism. In fact business workflows are usually represented
by means of flowcharts or state transition diagrams. Scientific
workflows, on the other hand, are shown as dataflow process net-
works (Lee & Parks, 1995), in which each process is composed of a
dataflow actor, representing a single processing step.

Nowadays, two of the most used and famous WFMS for scien-
tific workflows are Taverna (Hull et al., 2006) and Kepler (Altintas
et al., 2004). Taverna is a system that integrates services, tools an
databases available both locally and on the web, in order to build
and run workflows for complex biological and bioinformatics tasks.
The system uses a GUI that integrates a workflow designer with
drag and drop components. Kepler models a scientific workflows
through the composition of processing components, called actor,
that interact each other by means of interfaces. A workflow execu-
tion can be defined using an object called director that sets up the
execution order and the communication details of the actors in-
volved into the workflow. Both Taverna and Kepler are oriented
to support the researchers, simplifying the selection and execution
of predefined workflows or atomic processing components in order
to compose the desired scientific workflow. Nevertheless, a typical
user of these systems should have the necessary domain knowl-
edge and skill in order to choose and link together the proper tools
to accomplish an experiment; in fact, available WFMSs have not a
reasoning component that supports user, by suggesting and assem-
bling the proper tools and services in order to build the desired
goal. The need of an intelligent system that can support the auto-
matic composition of services and their smart linking during work-
flow design represent, in fact, one of the requirements for scientific
workflow management system (Ludäscher et al., 2006).

A first attempt to incorporate a declarative approach, into a
workflow system, was proposed by Moreno and Kearney (2002).
More in detail, authors integrate an artificial intelligence planning
phase that generates a sequence of activity linked by dependences;
each activity will be translated into a partial job of the workflow,
corresponding to the partial plan. This way, they are able to man-
age alternative control flows and different incomplete portion of
plans.

Later, authors in Chung et al. (2003) introduced another project
that aim to extend standard workflow systems with dynamically
changing processes. In order to obtain an adaptive workflow,
authors added a knowledge-based component to WFMS, that en-
able system to make reasoning about processes within the problem
domain. The reasoning contribution is used, according to the
declarative approach, for the selection of some plans, that define
a set of tasks, together with their ordering constraints. Those tasks
can be planned at different hierarchical levels (considering also
sub-tasks) and represent the structure of processes, that will be
implemented into the workflow.

With regards to the last two works, in order to add decision
making features to workflow management, we explicitly consider
a procedural component that is combined with a declarative ap-
proach. Considering all the previous systems, our architecture uses
both a declarative and procedural approach and it integrates them
with a process oriented approach in order to provide decision
making and workflow management features at the same time.
Moreover, we developed an ontology, called Data-Problem–
Solution-to-Experiment, in order to organize the knowledge base
of the proposed architecture according to the three-folded
approach. Ontologies, in fact, are usually adopted in order to orga-
nize in a well structured way the knowledge of an expert system
(Chandrasekaran, Josephson, & Benjamins, 1999) Expert systems
can support different kinds of application domains depending on
the content and the organization of its own knowledge-base



A. Fiannaca et al. / Expert Systems with Applications 41 (2014) 1609–1621 1611
(KB). For example, authors in Chen, Huang, Bau, and Chen (2012)
used two different ontologies in order to model the knowledge
about both drugs and patients. By means of that knowledge struc-
ture, they adopted a set of rules and an inference engine in order to
analyse the symptoms of diabetes and to suggest treatment. Onto-
logical knowledge-based systems have been adopted in a wide
range of application domains, from the management of supply
chains (Cheung, Cheung, & Kwok, 2011) and gas and oil facilities
(Zarri, 2011), to the decision support for managing emergencies
(De Maio, Fenza, Gaeta, Loia, & Orciuoli, 2011). An interesting ap-
proach was suggested by Shue, Chen, and Shiue (2009): they devel-
oped a knowledge-based expert system to assess financial quality
of an enterprise considering a domain knowledge, structured with
an ontology, in order to model the accounting categories and their
relationships, and an operational knowledge consisting of a set of
production rules which use the domain knowledge to automati-
cally process the assessment.
3. Hybrid architecture

As stated in the previous section, the proposed hybrid system
collects at the same time three different perspectives: declarative,
procedural and workflow-oriented one. The coexistence of these
different approaches to the same architecture is guaranteed by
assuming a working space that can be visually represented as a
three-folded cognitive space, where each component represents a
perspective (view) of a proper approach. It is important to notice
that this space does not define an euclidean or metric space, but
it allows us to underline relationships among the three main con-
cepts at the basis of our hybrid architecture. In other words, when
an expert system implementing this architecture is running, a
point inside the cognitive space will identify the current state of
the system in terms of three well defined views.

Fig. 1 provides a visual representation of the cognitive space
implemented in the hybrid architecture; the main characteristics
of each component are reported in the following.

Abstraction layer perspective (based on procedural approach):
Fig. 1. A visual representation of the cognitive space of the hybrid architecture. It
integrates three perspective for the problem, i.e. abstraction layers (based on
procedural approach), decision making levels (based on declarative approach) and
workflow timeline (based on workflow oriented approach).
1. it is responsible for ‘‘how to achieve’’ a specific result for an
input problem;

2. it allows the decomposition of complex problems into different
abstraction layers;

3. it manages the organization of elements of the different layers.

Decision making level perspective (based on declarative
approach):

1. it is responsible about‘‘what to do’’ given an input problem;
2. it deals with unstructured data;
3. it manages all decision making steps for the problem solving

process.

Workflow timeline perspective (based on workflow oriented
approach):

1. it is responsible for the generation of a workflow of operations,
dealing with the execution of each processing element;

2. it is responsible for the running all the algorithms and services,
taking care of the management and organization of issues
related to inputs-outputs interface;

3. it allows reconfiguration of each selected tool or service, with
back-tracking features;

4. it collects all the intermediate results, saving the process repre-
sentation of the problem.

In the next subsections, first we will explain how the reasoning
activity of the proposed architecture integrates with the above de-
scribed perspectives. Moreover we will analyse the three perspec-
tives, one by one, explaining what they represent for our hybrid
architecture. Afterwards, we will describe these perspectives pair-
wise, underlining other interesting features of the proposed space.

3.1. Reasoning activity

The reasoning capabilities of the proposed architecture inte-
grate both a direct reasoning according to user request, and the
ability to takes into account the available resources and knowledge
for decision making.

According to the guideline suggested by Baker et al. (2002), the
reasoning activity is composed of the following steps, reported in
the Fig. 2.
Fig. 2. Reasoning activity guidelines for the proposed architecture.



Fig. 3. Abstraction layer perspective. Flow-chart representation of procedural
approach template, consisting of three abstraction layers.

1612 A. Fiannaca et al. / Expert Systems with Applications 41 (2014) 1609–1621
1. Problem statement: In this phase, the reasoning process identi-
fies the current goal (also in case of complex decision problems)
according to the user request and the actual knowledge of the
system.

2. Requirement setting: Constraints describing the set of the
admissible solutions to the problem detected in step 1 are ana-
lysed: i.e. for any possible solution it has decided unambigu-
ously whether a strategy is acceptable or not.

3. Alternatives identification: Alternatives strategies or heuristics
offering different approaches for finding a solution have to be
evaluated, in order to better match with the user desired goal
and the boundary conditions.

4. Attributes definition: In order to support the comparison of dif-
ferent alternatives, it is necessary to define discriminating crite-
ria to measure how effectively well each alternative achieves
the goal or almost a sub-goal.

5. Decision-making tool selection: Although it could exist several
tools for solving a decision problem, the selection of the appro-
priate tool depends on the concrete decision problem, as well as
some characteristics of a tool (requirement of additional
resources, computational complexity) or computing power.
The selected tool is proposed to user with a list of pros and cons.

6. Alternative tools evaluation: Since more than a tool can satisfy
discriminating criteria, it is shown to the user a set of the most
promising alternative tools and/or services, once again with a
list of pros and cons for each tool and/or service. In complex
problems, the proposed alternatives may also call the attention
of the user, that could add further goals or requirements to the
decision model.

The above described reasoning phases represent the reasoning
guidelines implemented in our architecture. In the next sections
it will be explained how these concepts can be matched with the
three-folded perspective of our cognitive space. In particular, the
most of reasoning activity steps will be recalled in Section 3.5,
‘‘Abstraction Layer Vs Decision Making Level’’.

3.2. Abstraction layer perspective

This perspective deals with an input problem according to its
complexity. In facts, for each problem, the proposed architecture
can support several views: from the top abstraction layer (i.e. the
problem itself) to the bottom abstraction layer (i.e. tool/service in-
stances). At each intermediate abstraction layer, the system archi-
tecture shows a different representation of the problem. Therefore,
procedural analysis of the problem is done such as a top-down pro-
cess, starting from its conceptual representation and refining its
specification to an executable form in several refinement steps.
The number of layers can change according to the implementation
of the system architecture, and it is related to the detail level pro-
vided by the problem solving strategy. As reported by Smelik et al.
(2011), we identify at least three mandatory layers, able to repre-
sent a problem with our architecture: the Problem (highest abstrac-
tion), the Solution (medium abstraction) and the Object (lowest
abstraction) one. Problem Layer contains the problem definition
and the input parameters. Here the problem is separated in a set
of tasks, arranged according to the hierarchy of problems and
sub-problems of minor complexity. Once a specific task is identi-
fied, the Solution Layer provides a platform allowing user to select
alternative strategies and/or heuristics to solve this task. Finally, at
Object Layer, it will be explored all the set of algorithms and/or ser-
vices able to meet the target provided by the previous strategy.

As defined, each abstraction layer executes some processes
where implementation details are hidden from all the processes
at other layers, in fact each abstraction layer implements its spe-
cific procedural analysis. Since this perspective does not contain
any problem solving method, only a cross-view among abstraction
layers and decision making levels can provide resolution methods
for a given input problem.

Fig. 3 shows the procedural approach for solving a problem at
the three main abstraction layers. The choice of task(s), strat-
egy(ies) and tool(s) is done by means of the declarative approach,
representing the reasoning component of the proposed architec-
ture. The integration of the declarative and procedural approach
is done according to the modularity processes in the human brain
as proposed by Ten Berge and VanHezewijk (1999) and previously
described in Section 1.

3.3. Decision making level perspective

This perspective reports the main element of the decision mak-
ing activity of the system. This activity in our architecture is orga-
nized in functional modules. Each module has two elements: the
knowledge, containing information about a specific problem, and
the expertise (skill), being able to making reasoning about its
knowledge. For this reason, each module takes care of a specific
part of the reasoning process and it is responsible for making deci-
sions about a well defined goal.

Since problems could be very complex, their management could
be difficult and, consequently, some large decision modules, i.e.
containing a lot of knowledge and expertise, could be needed.
For this reason, it is convenient to split problems into sub-prob-
lems (as said in the previous section), and, in turn, to build a hier-
archy of modules and sub-modules, each of them containing the
knowledge and expertise required to model and solve those spe-
cific sub-problems. The data structure used to link modules is
the multi-tree.

For a specific problem we can represent this perspective by
means of a treemap representation (Johnson & Shneiderman,
1991). A treemap is a visual representation for displaying tree-
structured data as a set of nested boxes. A treemap allows us to
show attributes of each leaf module using size and colour coding,
providing an overall view of the entire hierarchy and making the
navigation of large hierarchies much easier. An example of this



Fig. 4. Decision making level perspective. Hierarchical relationship among eleven
decision making modules represented by means of a treemap.

A. Fiannaca et al. / Expert Systems with Applications 41 (2014) 1609–1621 1613
representation is shown in Fig. 4. Here the problem solved by deci-
sion making activity of module A, can be broken down into three
sub-problem, and so on. For instance, module A.3 contains four dif-
ferent ways to handle with a part of it. All the modules are clearly
separated and users can compare modules and sub-modules even
at varying depth in the tree, also detecting mutually related prop-
erties among modules. As we will show later, this representation is
useful to offer a view of the whole space of the hybrid architecture.

3.4. Workflow timeline perspective

This view traces all the phases of the workflow generation. This
one appears as the results of a sequence of decision making pro-
cesses at different abstraction layers, where the main goal, sub-
tasks, business processes and internal/external tools are specified.

In general, the obtained workflow is a collection of tasks orga-
nized to accomplish some business process. A task is performed
by one or more software (e.g. preprocessing tools), or by means
the human interaction (e.g., providing input commands), or a com-
bination of these. In addition, the workflow defines the order of
task invocation, task synchronization, and information flow
(data-flow).

In Fig. 5a simple workflow of a generic problem is shown.2 Yel-
low elements are the used algorithms/services, green files are input/
output data and lilac blocks are tool resources. For the sake of sim-
plicity, we can consider this workflow as represented at the object
abstraction layer. The proposed hybrid architecture supports the
evolution, replacement, and addition of workflow applications, as
well as the re-engineering of system components and processes; in
facts, users can navigate along this view in order to interact with
the sequence of tools, changing algorithms, services and/or parame-
ters. Notice the workflow does not clearly contain any decision ele-
ment, because, as we will show later, the reasoning activity is
accomplished by the decision making level.

In the following we analyse the interaction between each pair of
perspectives, in order to discuss the features of these projection
planes.

3.5. Abstraction layer Vs Decision making level

This view is the combination of abstraction layer and decision
making level perspectives. From the decision making activity point
of view, we can define this view as the abstraction-decomposition
2 For interpretation of color in Fig. 5, the reader is referred to the web version of
this article.
of the reasoning process. In fact, with respect to Fig. 2, we can iden-
tify respectively Problem Statement and Requirement Setting, as a
decision making activity at highest abstraction layer (Task Layer);
Alternative Identification and Attributes Definition, as the activity at
medium abstraction layer (Strategy Layer); Decision Making Tool
Selection and Alternative Tools Evaluation, as the activity at lowest
abstraction layer (Tool Layer).

A representation of the two combined perspectives is reported
in Fig. 6, where decision making modules are arranged into three
layers, according to Fig. 3. It is important to notice that the hierar-
chical organization of the modules along the abstraction layers
perspective, is the unpacked view of the treemap representation
in Fig. 4. In Fig. 6, each rectangle (each module) makes reasoning
with an inference mechanism that can be represented, for instance,
with a decision tree (the blue tree-like structure) where each leaf
node can give focus to a lower layer decision making module. By
means of the combination of this two perspectives, we can navi-
gate through the hierarchy of the entire reasoning tree for explor-
ing sub-modules in different abstraction layers; this way, an user
can interact with this view in order to both see in a glass-box the
inference mechanism behind the reasoning of the system and learn
about each reasoning path, working at task, strategy and tool lay-
ers. Communication between decision modules is managed from
parent to child: each child is able to solve a specific task that its
parent can only propose to solve, without having the knowledge
about it. As shown in Fig. 6, the parent module A can give focus
to child module A.1 in order to request the solution about a specific
strategy and, in turn, the module A.1 can give focus to its child
A.1.1 to reasoning about the tool.

3.6. Abstraction layer Vs Workflow timeline

This view allows to see the data pipeline at different abstraction
layers, according to the problem complexity. In facts, it shows sev-
eral views of the workflow: from the top abstraction layer, where
the workflow is composed by the sequence of tasks, to the lowest
abstraction layer, where the workflow is composed by the se-
quence of executed tools.

Fig. 7 shows an example of this view, where the problem is triv-
ially solved by one task, called ‘‘Main Task’’. This view is able to
represent only dependences among tasks, strategies and tools,
without information about decision process on the selection of a
specific strategy or tool; for instance, in Fig. 7, the element ‘‘Strat-
egy 1’’ could have a plan for executing ‘‘Tool 1’’ and ‘‘Tool 2’’ in se-
quence (if they belongs to the same decision making module) or
two different plans for respectively ‘‘Tool 1’’ and ‘‘Tool 2’’ (if they
belong to two different decision making modules). This last infor-
mation is given by the decision making level perspective.

3.7. Decision making level Vs Workflow timeline

This view allows to investigates the interaction between deci-
sion making level and workflow timeline perspectives. In particu-
lar, when an user analyses a part of the whole pipeline, he can
capture reasoning behind a single tool, exploring decision making
modules responsible for the choice of this tool. This feature allows
the user to modify the sequence of tools and to change algorithms
and/or parameters; in fact, the proposed hybrid architecture sup-
ports the evolution, replacement, and addition of workflow appli-
cations, as well as the re-engineering of system components and
processes.

Fig. 8 reports six decision making modules and three tools in a
view containing both perspectives. In this figure, with respect to
Fig. 4, boxes representing modules are arranged in a three-dimen-
sional treemap, where only active modules are reported, i.e. those
modules that lead to make an tool. According to the Fig. 5, tools



Fig. 5. Workflow timeline perspective. A view of a simple sequence of algorithms. No information about abstraction layers or decision making modules is taken into account.

1614 A. Fiannaca et al. / Expert Systems with Applications 41 (2014) 1609–1621
follow the workflow timeline, that give us the sequence (execution
order) of tools into the data pipeline. Fig. 8 also shows that, in order
to resolve a required strategy, more than a tool could be managed
by the same decision making module. For example, two tools (here
called Tool 1, Tool 2) have been executed under the supervision
of the module A.1 and then it gives the focus back to the parent
module A.
4. Knowledge organization

In the previous Sections, we described our three-folded archi-
tecture for the design of expert systems. In order to fully define
and structure the knowledge at the basis of our system, we also
developed an ontological paradigm designed to exploit the main
features of the hybrid architecture. In the next subsections we ex-
plain in details the main features and concepts of our ontology and
we explain how this ontology matches with the three perspectives.
4.1. DPS2E ontology

In our proposed architecture, we adopt a general purpose ontol-
ogy called Data-Problem–Solution-to-Experiment (DPS2E) that
matches, as we will explain up next, with the concepts discussed
in Section 3. DPS2E represents an extension of our previously
published ontological specification for knowledge organization in
Fig. 6. Abstraction layer Vs. Decisi
expert systems design, called Data Problem Solver (DPS) (Fiannaca,
La Rosa, Rizzo, Urso, & Gaglio, 2012c; Fiannaca, Gaglio, La Rosa, Riz-
zo, & Urso, 2012a; Fiannaca, La Rosa, Rizzo, Urso, & Gaglio, 2013).
At the basis of our new ontological paradigm, whose main assump-
tions have been briefly anticipated in Fiannaca, La Rosa, Gaglio, Riz-
zo, and Urso (2012b), there is the link between declarative
knowledge, i.e. the organization of the knowledge, usually pro-
vided by an expert of the domain, into a stable structure for prob-
lem specification in an application domain; and procedural
knowledge, meant as how declarative knowledge can be put to-
gether in order to obtain a sequence of processing components
(workflow).

In DPS2E, in fact, we clearly define a Knowledge Area (KA),
responsible for its declarative assumptions, and an Execution Area
(EA), which models the concepts of workflow and experiment.
DPS2E ontology, implemented using Protege ontology editor
(Noy et al., 2001), is shown, using an UML notation (Kogut et al.,
2002), in Fig. 9. From here on, bold font will be used for the classes,
and typewriter font will be used for the relationships among
classes. In the upper part of Fig. 9 it is shown the KA, whereas in
the lower part there is the EA. DPS2E is defined in terms of four
main entities: Data, Problem, Solution, Experiment. All of these
concepts are modeled by means of metaclasses, i.e. a class whose
instances are other classes. In the same way a class defines the fea-
tures of its objects, a metaclass sets the behavior of other classes
and their instances. Problem, Data and Solution concepts belong
on making level perspectives.



Fig. 7. Abstraction layer Vs. Workflow timeline perspectives.

Fig. 8. Decision making Level Vs. Workflow timeline perspectives.

A. Fiannaca et al. / Expert Systems with Applications 41 (2014) 1609–1621 1615
to the KA. Problem metaclass represents the actual formulation of
issues that can be addressed in a certain application domain. Data
metaclass encloses all the information, in terms of input and out-
put, needed to deal with a problem. Solution metaclass models
the necessary skill and expertise in order to solve a problem. Prob-
lem and Data concepts are linked with the mutual relation uses/

isUsedBy; Problem and Solution are bound with the mutual rela-
tion resolves/isResolvedBy. This well separated modeling
among Data, Problem and Solution clearly distinguishes among
a problem to address from the way to solve it and the information
content required to solve it. On the other hand it allows to take
advantage of re-usability and modularity properties of ontologies.
Each of these three main branches, in fact, can be updated or mod-
ified without changing the other ones. For example it is possible to
add new Solution instances for a given problem without modify-
ing the definition of the problem itself. Unlikely the original DPS
paradigm, in DPS2E we introduce the concept of Experiment, a
metaclass representing the implementation of a Problem in terms
of its workflow representation and actual running of all its process-
ing components. Data, Problem, Solution and Experiment de-
scribe very general abstract concepts: their ontological definition
will be discussed in the following Sections.

4.1.1. Knowledge Area
The Knowledge Area of DPS2E ontology collects Data, Problem

and Solution metaclasses and their ontological models. Problem
metaclass, meant as ‘‘what to do’’ in an application domain, is
simply instantiated as a hierarchy of Task metaclasses. This
decomposition allows to consider the problems to solve at differ-
ent abstraction levels, from more complex goals to simpler ones.
The slots of Task metaclass are reported in Table 1. Each Task
has a sub-task field that can contain one or more subtasks of
decreasing complexity. Precondition slot indicates if a task requires
the previous accomplishment of other tasks. Finally each Task has
a link with an instance of Data metaclass, through the uses rela-
tionship, and with a Solution instance, by means of the isResol-
vedBy relation. The remaining slots are described in Table 1.

Data concept aims at modeling the inputs and outputs related
to an application domain. It is instantiated through the Data_type
metaclass, representing an aggregation of domain-dependent
information. For example, Data_type can model proteomic data,
sequence data and so on. Each Data_type is characterized by a
set of Attributes, that are typical properties of each Data_type in-
stance. The generic features of each Data_type element are sum-
marized in Table 2. A Data_type metaclass is coded through one
or more instances of Data_Format class: for example in the case
of genomic sequence data, Data_Format can be fasta or genbank
format.

Solution part of DPS2E ontology is expanded with the Solver
metaclass, whose instances describe groups of resolving methodol-
ogies and strategies for a given Task. In the same way a Task can be
decomposed into subtasks of lesser complexity, a Solver can have
other Solvers that deal with narrow parts of the original solving
strategy. Each Solver instance, whose slots are shown in Table 3,



Fig. 9. Data-Problem–Solution-to-Experiment (DPS2E) ontology specification using UML notation.

1616 A. Fiannaca et al. / Expert Systems with Applications 41 (2014) 1609–1621
is defined in terms of its pros, cons, computational approach (e.g.
probabilistic or deterministic) and it is linked with the resolves

relation to an instance of Task ontology. This bound determines
a map between a task to resolve and its solving components. Final-
ly each Solver element, in order to be actually processed, runs an
instance of Tool metaclass. Tool models the processing units that
are able to fulfill the solving strategy described by Solver’s in-
stances. In our DPS2E paradigm, Tool metaclass encloses the con-
cept of external Device, Web Service, Application, Algorithm
and Custom Service, i.e. a programmable component such scripts
or simple code snippets. The slots of all Tool classes are shown
in Table 4. Each Tool has a list of pros and cons, a list of inputs
and outputs, meant as links to Data_Format objects, its computa-
tional complexity, bibliographical references, and a set of parame-
ters modeled into a Parameter class.

4.1.2. Execution Area
The Execution Area represents the main improvement with re-

spect to the original DPS paradigm. We introduced this new part in
our ontology in order to build a bridge between the Knowledge
Area and its implementation and visualization through a scientific
workflow. KA, in fact, models the knowledge about an application
Table 1
The slots for Task metaclass in DPS2E ontology.

Slot name Type Inverse

name String
description String
uses Data isUsedBy

isResolvedBy Solver resolves

sub-task Task
precondition Task
reference String
domain only in terms of a set of issues (Problem), the inputs/out-
puts (Data), the solving strategies and their corresponding tools
(Solver and Tool, respectively). EA is responsible for the organiza-
tion of an abstract sequence of tasks, strategies and tools into a
concrete workflow of operations, taking care of all the needed con-
nection among workflow’s components. The Experiment meta-
class is the entity that translates into a workflow specification a
Problem instance found in the KA. Experiment concept is instan-
tiated by the Workflow metaclass. Workflow is defined in a recur-
sive way, i.e. a Workflow class is composed of one or more
Workflow classes through the composition relation. In our onto-
logical paradigm, a Workflow is an aggregation of atomic entities
called ExecutionBlock, that represent a single processing unit in a
scientific workflow environment. Workflow and ExecutionBlock
are bound to the concepts of KA in a straight way. Workflow in-
stances match with Task instances and ExecutionBlock instances
match with instances of Tool class, so that each task has its own
workflow representation seen as a succession of ExecutionBlocks.
Since, as we described in the previous Section, a Task can be
decomposed into simpler subtasks, the recursive definition of
Workflow class allows us to deal with task hierarchy considering
a global workflow as composed of nested workflows, each one with
Cardinality Comment

1 Problem’s name
1 A brief explanation
1..n The type of data needed
1..n The implementation of the task
0..n Task(s) that can manage a sub-process
0..n Required task(s) to be previously run
1..n One or more bibliographic references



Table 2
The slots for Data_Type metaclass in DPS2E ontology.

Slot name Type Inverse Cardinality Comment

name String 1 Data’s name
description String 1 A brief explanation
isUsedBy Problem uses 1..n The problem that uses the data
applicationDomain String 1 Indicate the application domain
attributes Attribute 0..n A list of data attributes

Table 3
The slots for Solver metaclass in DPS2E ontology.

Slot name Type Inverse Cardinality Comment

name String 1 Solver’s name
description String 1 A brief explanation
runs Tool 1 The tool that implements Solver goal
resolves Problem isResolvedBy 1 The calling task
sub-solver Solver 1..n A list of component sub-solvers
proposes Workflow 1..n The proposed Workflow instance implementing the Solver
approach String 1 Give the purpose of the tool
pros String 0..n A list of strong points for solving a task with a tool
cons String 0..n A list of weak points for solving a task with a tool
reference String 1..n Bibliographic reference(s) about the Solver solution

A. Fiannaca et al. / Expert Systems with Applications 41 (2014) 1609–1621 1617
its own set of ExecutionBlocks. The slots for Workflow and Exe-
cutionBlock classes are shown respectively in Tables 5 and 6. Fi-
nally in the EA Data_Format metaclass is matched to
Data_Content entity, which is the real information content pro-
vided to ExecutionBlocks as input and obtained as output after a
processing step. The ontological model of the EA can also be used
to store pieces of already executed workflows, that can be sug-
gested by Solver’s instances by means of the proposes relation-
ship between Solver and Workflow classes. This way the EA part
of DPS2E ontology represents a kind of dynamic memory that is
enriched as the scientific workflows are executed, so that it pro-
motes the re-use of workflows.

4.2. DPS2E and hybrid architecture

DPS2E paradigm has been designed in order to support the pro-
posed hybrid architecture and its cognitive space. Looking at Fig. 3,
the Problem part of the ontology, in fact, can be matched with the
highest abstraction layer, providing the knowledge useful to de-
scribe the tasks by means of the slot defined into the ontology
(e.g. sub-task, isResolvedBy, pros, cons). The Solution part of the
ontology defines the way to solve a task, and it can be matched
with the Solution layer, because it defines the knowledge useful
to describe strategies and heuristics in terms of approach, compu-
tational paradigm and implementing tools. The Tool part of the
ontology, then, corresponds to the Object layer, with its knowledge
related to algorithms, web services, devices and applications that
actually run a Solver instance (i.e. a strategy). The KA of DPS2E
ontology, then, can be populated with facts, i.e ontology instances,
Table 4
The slots for Tool metaclass in DPS2E ontology.

Slot name Type Inverse

name String
description String
input Data_Format
output Data_Format
parameters Parameter
pros String
cons String
complexity String
reference String
representing the information content needed by the decision-mak-
ing perspective in order to perform its reasoning activity. KB’s pop-
ulation is done by a human expert of the domain or extracting
information by hand from scientific literature, following the tem-
plates defined in the ontology. The decision-making procedure
can be carried out through a set of IF–THEN production rules and
an inference engine. It is possible to define both general rules,
based on the relationships among ontology entities, such as the
isResolvedBy relation between Task and Solver, and more spe-
cific rules, that take also into account the slot values of the in-
stances. Moreover, facts and rules belonging to the KA can be
seen as high level rules whose purpose is to aid in the assembling
of an abstract workflow composed of task, solver and tools in-
stances. On the other hand, facts and rules related to the Execution
Area guarantee the consistency of the workflow itself. These low
level rules, in fact, deal with the workflow implementation details,
like for instance the correctness of inputs and outputs, the need of
data conversion or the priority and precedence among the Execu-
tionBlocks. Fact and rules of the EA, therefore, allow to translate
an abstract workflow, seen as a sequence of tasks and solvers, into
a concrete workflow that can be actually executed (Ogasawara,
Paulino, Murta, Werner, & Mattoso, 2009; Ludascher, Altintas, &
Gupta, 2003).
5. Case study

The concept of hybrid architecture for expert systems as re-
ported in this work is quite general, in fact in order to be used in
Cardinality Comment

1 Tool’s name
1 A brief explanation
1..n Type of input data
1..n Type of output data
0..n A list of input parameters
1..n A list of tool’s strong points
1..n A list of tool’s weak points
1 Computational complexity
1..n Bibliographic reference(s) about the tool



Table 5
The slots for Workflow metaclass in DPS2E ontology.

Slot name Type Inverse Cardinality Comment

name String 1 Workflow’s name
description String 1 A brief explanation
implements Task 1 The Task implemented by the workflow
sub-workflow Workflow 1..n A list of component nested workflows
block ExecutionBlock 1..n A list of component ExecutionBlocks
meta-info String 1..n A list of extra information (i.e. author, score)
reference String 1..n Bibliographic reference(s) about the workflow

Table 6
The slots for ExecutionBlock metaclass in DPS2E ontology.

Slot name Type Inverse Cardinality Comment

name String 1 ExecutionBlock’s name
description String 1 A brief explanation
implements Tool 1 The Tool implemented by the ExecutionBlock
links_to ExecutionBlock 1..n A list of linked ExecutionBlocks
input Data_Content 1..n A list of input Data_Content
output Data_Content 1..n A list of output Data_Content

1618 A. Fiannaca et al. / Expert Systems with Applications 41 (2014) 1609–1621
an application scenario, it must be instanced (or customized) for
that specific domain. This architecture, in fact, has been created
to support cognitive system designers who want to analyse, config-
ure and exploit together their strategies, tools and/or processes in a
semi-automatic system for analytical pipelines. In this Section, we
present the main features of a customization of the proposed archi-
tecture for a bioinformatics application scenario, i.e. the identifica-
tion of protein interaction sub-network markers that are correlated
with cancer metastasis.
5.1. Bioinformatics scenario

One of the most interesting challenge in cancer research is the
identification of protein interaction sub-network markers that
are correlated with cancer metastasis. The study of angiogenesis
and metastasis development among cancer patients, usually takes
into account only clinical and pathological risk factors (i.e. patient
age, tumour size and so on). Anyway, it has been demonstrated
that these factors can be considered a secondary manifestations
rather than primary mechanisms of disease (Wang et al., 2005;
van ’t Veer et al., 2002). For this reason, a main challenge in bioin-
formatics is the prediction of the risk of metastasis, by means of
the identification of a new prognostic markers that are more di-
rectly related to disease (Chuang, Lee, Liu, Lee, & Ideker, 2007).

In the last years, bioinformatics researchers produced several
works in this field, proposing different strategies and heuristics
that could help the prediction of tumour markers. A few authors,
such as (Chuang et al., 2007; Nibbe, Koyutürk, & Chance, 2010;
Dao et al., 2011), take into account both protein–protein interac-
tion (PPI) sub-networks (protein complexes) and gene expression
profiles that demonstrate a differential expression with respect
Table 7
Example of extraction table. These tables aims at supporting domain expert and/or knowled
resolves these queries (e.g.. ‘‘In order to resolve a goal of interest that operate on a specifi
possible to create ontology entities and relationships.

Goal of interest (Task) 0perate on (Data_Type)

Complex Clustering PPIN
Complex Clustering PPIN
PPIN Filtering PPIN/PPI
PPIN Filtering PPIN/PPI
Marker Identification PPIN
to carcinogenesis phenotype; in facts, each protein complex is sug-
gestive of a distinct functional pathway, that can provide novel
hypotheses in organisms analysis (Sharan, Ulitsky, & Shamir,
2007).

As regarding our methodology, we suppose to collect as many
information as possible about the problem of the identification of
tumour markers. In addition, we suppose a domain expert, in con-
junction with a knowledge engineer, is able to identify some key
assumptions that can be used to define entities and their relation-
ships, as described into the DPS2E ontology. This process can be
done by means of some specific ‘‘extraction tables’’, such as that
showed in Table 7.

Once all the available knowledge and the potentially useful re-
sources (i.e. data frame, tools, web services and so on) of the prob-
lem are arranged or linked into the DPS2E ontology schema, it is
possible to complete the implementation of the hybrid architec-
ture, by adding a reasoning engine and producing suitable rules
as discussed in Section 4.2.

In particular, for the proposed scenario, we build a small, but for
our demonstration exhaustive, ontology considering state-of-the-
art literature about this topic. In the following Section is reported
the DPS2E ontology instance.
5.2. Ontology instance

In this scenario, as a start point we consider the ‘‘identification
of protein networks for disease classification’’, that, according to
DPS2E ontology, represents the Problem concept. As regards the
data input we consider a list of protein–protein interactions and
as data output a list of marked protein network, that could be
responsible for some specific diseases. According to the related
ge engineer in designing structured knowledge. In facts, finding the assumptions that
c data, which method(s), implementing a proper strategy(ies), could be used?’’), it is

Strategy (Solver) Method (Tool)

Local Search MCODE
Flow Simulation MCL
Remove FP Betweenness Centrality
Add FN Detect Defective Cliques
Integrative-omics Overlaying + Significance Eval.



Fig. 10. A part of the Knowledge Area of the DPS2E ontology instance for the problem of the ‘‘identification of protein networks for disease classification’’.

Fig. 11. A part of the Execution Area of the DPS2E ontology instance for the problem of the ‘‘identification of protein networks for disease classification’’. The ‘‘precedes’’
relationship gives information about the execution timeline.

A. Fiannaca et al. / Expert Systems with Applications 41 (2014) 1609–1621 1619
literature, this problem could be arranged in three main tasks: fil-
tering, clustering and identification. For instance, the first task has
been handled by some authors (Ucar, Parthasarathy, Asur, & Wang,
2005) with a topological approach; in facts, they developed some
graph-based algorithms in order to eliminate redundant false posi-
tive interactions from the original PPI dataset. This preprocessing
strategy points to increase the reliability of PPI-Network. As
regarding the second task, i.e. finding meaningful groups of biolog-
ical units, a number of approaches have been proposed and a lot of
them are based on clustering (Chua, Ning, Sung, Leong, & Wong,
2008; Gao & Sun, 2009). A well-know algorithm is Markov Cluster-
ing Algorithm (MCL) (Enright, Van Dongen, & Ouzounis, 2002), that
divides the graph by means of ‘‘flow simulation paradigm’’. In facts,
it separates the graph into different segments, with an iteration of
simulated random walks within a graph. Once sub-networks are
obtained, it is possible to identify those complexes that demon-
strate a differential expression with respect to carcinogenesis phe-
notype, by means of an integrative-omics approach proposed in
Nibbe et al. (2010).

Using these elements, we could obtain some putative disease
protein sub-networks. Ultimately, in order to face with this case
of study, we populated the KB with the knowledge about three
main tasks (filtering, clustering, identification), three different
solver approaches (statistical, topological, integrative-omics) and
five tools (both algorithms and applications).

For clarity reason, the problem ontology has been decomposed
in two figures: Fig. 10 shows a part of the Knowledge Area, Fig. 11
contains a part of the Execution Area.

For lack of space, Fig. 10 contains only a small part of the struc-
tured knowledge related to the current scenario, showing only a
sub-set of elements, that represent a possible solution for the prob-
lem. Obviously, starting from this knowledge organization, it is
possible to increase the knowledge base by adding other tools
implementing already identified solvers and/or new solvers coding
different strategies/approaches that solve the three main tasks.

The knowledge related to the Task, Solver and Tool is used in
order to perform the decision making activity, respectively at the
three abstraction layers (problem, solution, object) as shown in
Fig. 6. This knowledge will be organized in modules, as explained
in Section 3.3. For example, in the proposed scenario it is possible
to define three modules, namely Filtering, Clustering and Identifica-
tion, that contain the expertise needed to perform the decision
making activity for the choice of the proper solving strategy.

As regards the DPS2E Execution Area for the current scenario,
the Fig. 11 reports a set of execution blocks used for obtaining a
concrete workflow that implements the case study. This concrete



Fig. 12. A possible workflow for the current scenario. The layout shows the workflow in terms of Tasks (purple boxes), Solvers (blue boxes) and tools (yellow boxes). Each
component of this workflow is the result of the decision-making activity, at different abstraction layers, of the proposed hybrid architecture for expert systems. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1620 A. Fiannaca et al. / Expert Systems with Applications 41 (2014) 1609–1621
workflow represents a possible solution for the case study, just
using the knowledge available into the showed DPS2E Knowledge
Area. In Fig. 11, it is important to notice the execution blocks lay-
out: in facts it has been arranged according to the ‘‘precedes’’ rela-
tionship, in order to show the execution timeline. Obviously, each
execution block contain information about (eventually formatted)
input file(s), executed tool(s), parameter(s) and output file(s).

Following the three different approaches (procedural, declara-
tive and workflow-oriented one) integrated into the described cog-
nitive space (see Section 3) and the reasoning mechanism
introduced in Section 3.1, it is possible to support an experimental-
ist in his own activity, from the design of an abstract workflow to
the implementation of a concrete workflow. The resulting work-
flow can, eventually, be run on the most recent WFMS, like Taver-
na, whenever the adopted tools are available.

Another point of view of the final workflow for the ‘‘identifica-
tion of protein networks for disease classification’’ problem is
shown in Fig. 12. The workflow layout respects the color pattern
of DPS2E ontology: tasks are represented with orange rectangles,
solvers with blue rectangles and tools with yellow rectangles and
each component of this workflow is the result of the decision-mak-
ing activity, at different abstraction layers, of the proposed hybrid
architecture. In particular, the Filtering task consists of the concat-
enation of two different strategies, implemented by two different
algorithms; whereas the last task, i.e. Identification, is composed
of one strategy consisting of the sequential execution of two algo-
rithms. Of course this is not the only workflow resolving the prob-
lem: the possible alternative tools and strategies (solvers) depend
on the richness of the KB, organized according to DPS2E ontology.

6. Conclusion

Nowadays, many experimentalists require intelligent systems
that can support them for laboratory experiments. In this work,
we proposed a novel hybrid architecture for designing expert sys-
tems able to support experiment management. The proposed
architecture is defined in a cognitive space composed by three dif-
ferent approaches: procedural, declarative and workflow-oriented.
Following the introduced reasoning mechanism over them, it is
possible to support an experimentalist in his own activity, from
the composition of an abstract workflow to the implementation
of a concrete workflow.

The proposed hybrid architecture is supported by an ontological
paradigm, called Data-Problem–Solution-to-Experiment (DPS2E),
that allows to organize the knowledge of an expert system follow-
ing the guidelines summarized by the architecture.

The proposed architecture have been used for design a proto-
type system in bioinformatics field. Modelling the knowledge re-
lated to that scenario according to the DPS2E ontology, the
decision-making component of the architecture, implemented
by means of a set of production rules and an inference engine,
is able to produce a scientific workflow, as a combination of
the instances (facts) contained into the knowledge base, or reus-
ing some pieces of sub-workflows previously developed. The
resulting workflow can, eventually, be run on the most
recent WFMS, like Taverna, whenever the adopted tools are
available.
References

Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., & Mock, S. (2004). Kepler: An
extensible system for design and execution of scientific workflows. 2004
Proceedings 16th International Conference on Scientific and Statistical Database
Management (pp. 423–424). IEEE. http://dx.doi.org/10.1109/SSDM.2004.1311241.

Baker, D., Bridges, D., Hunter, R., Johnson, G., Krupa, J., Murphy, J., & Sorenson, K.
(2002). Guidebook to decision making methods. Technical Report. Department
of Energy, USA.

Chandrasekaran, B., Josephson, J., & Benjamins, V. (1999). What are ontologies, and
why do we need them? Intelligent Systems and Their Applications. IEEE. .

Chen, R. C., Huang, Y. H., Bau, C. T., & Chen, S. M. (2012). A recommendation system
based on domain ontology and SWRL for anti-diabetic drugs selection. Expert
Systems with Applications, 39, 3995–4006. http://dx.doi.org/10.1016/
j.eswa.2011.09.061.

Cheung, C., Cheung, C., & Kwok, S. (2011). A knowledge-based customization system
for supply chain integration. Expert Systems with Applications, 39, 3906–3924.
http://dx.doi.org/10.1016/j.eswa.2011.08.096.

Chua, H. N., Ning, K., Sung, W. K., Leong, H. W., & Wong, L. (2008). Using indirect
protein-protein interactions for protein complex prediction. Journal of
Bioinformatics and Computational Biology, 6, 435–466.

Chuang, H. Y., Lee, E., Liu, Y. T., Lee, D., & Ideker, T. (2007). Network-based
classification of breast cancer metastasis. Molecular Systems Biology, 3, 140.
http://dx.doi.org/10.1038/msb4100180.

Chung, P., Cheung, L., Stader, J., Jarvis, P., Moore, J., & Macintosh, A. (2003).
Knowledge-based process management – An approach to handling adaptive
workflow. Knowledge-Based Systems, 16, 149–160. http://dx.doi.org/10.1016/
S0950-7051(02)00080-1.

Dao, P., Wang, K., Collins, C., Ester, M., Lapuk, A., & Sahinalp, S. C. (2011). Optimally
discriminative subnetwork markers predict response to chemotherapy.
Bioinformatics, 27, 205–213. http://dx.doi.org/10.1093/bioinformatics/btr245.

De Maio, C., Fenza, G., Gaeta, M., Loia, V., & Orciuoli, F. (2011). A knowledge-based
framework for emergency DSS. Knowledge-Based Systems, 24, 1372–1379.
http://dx.doi.org/10.1016/j.knosys.2011.06.011.

Enright, A. J., Van Dongen, S., & Ouzounis, C. A. (2002). An efficient algorithm for
large-scale detection of protein families. Nucleic Acids Research, 30, 1575–1584.

Fiannaca, A., Gaglio, S., La Rosa, M., Rizzo, R., & Urso, A. (2012a). An intelligent
system for building bioinformatics workflows. In 6th International Conference on

http://dx.doi.org/10.1109/SSDM.2004.1311241
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0010
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0010
http://dx.doi.org/10.1016/j.eswa.2011.09.061
http://dx.doi.org/10.1016/j.eswa.2011.09.061
http://dx.doi.org/10.1016/j.eswa.2011.08.096
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0025
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0025
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0025
http://dx.doi.org/10.1038/msb4100180
http://dx.doi.org/10.1016/S0950-7051(02)00080-1
http://dx.doi.org/10.1016/S0950-7051(02)00080-1
http://dx.doi.org/10.1093/bioinformatics/btr245
http://dx.doi.org/10.1016/j.knosys.2011.06.011
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0050
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0050


A. Fiannaca et al. / Expert Systems with Applications 41 (2014) 1609–1621 1621
Complex, Intelligent, and Software Intensive Systems (CISIS) (pp. 212–218). IEEE.
http://dx.doi.org/10.1109/CISIS.2012.141.

Fiannaca, A., La Rosa, M., Gaglio, S., Rizzo, R., & Urso, A. (2012b). An ontological-
based knowledge organization for bioinformatics workflow management
system. EMBnet Journal, 18, 110–112.

Fiannaca, A., La Rosa, M., Rizzo, R., Urso, A., & Gaglio, S. (2012c). An ontology design
methodology for knowledge-based systems with application to bioinformatics.
In 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB) (pp. 85–91). IEEE. http://dx.doi.org/10.1109/
CIBCB.2012.6217215.

Fiannaca, A., La Rosa, M., Rizzo, R., Urso, A., & Gaglio, S. (2013). A knowledge-based
decision support system in bioinformatics: An application to protein complex
extraction. BMC Bioinformatics, 14, S5.

Gao, L., & Sun, P. (2009). Clustering algorithms for detecting functional modules in
protein interaction networks. Journal of Bioinformatics and Computational
Biology, 7, 217–242.

Hollingsworth, D. (1995). The workflow reference model. Technical Report 1.
Workflow Management Coalition.

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M. R., Li, P., et al. (2006).
Taverna: A tool for building and running workflows of services. Nucleic Acids
Research, 34, W729–W732. http://dx.doi.org/10.1093/nar/gkl320.

Johnson, B. & Shneiderman, B. (1991). Tree-maps: A space-filling approach to the
visualization of hierarchical information structures. In Proceedings of IEEE
conference on visualization (pp. 284–291).

Ko, R. K. L. (2009). A computer scientist’s introductory guide to business process
management (BPM). Crossroad, 15, 11–18. http://dx.doi.org/10.1145/
1558897.1558901.

Kogut, P., Cranefield, S., Hart, L., Dutra, M., Baclawski, K., Kokar, M., et al. (2002).
UML for ontology development. The Knowledge Engineering Review, 17. http://
dx.doi.org/10.1017/S0269888902000358.

Lee, E. A. & Parks, T. M., (1995). Dataflow process networks. http://dx.doi.org/
10.1109/5.381846.

Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., et al. (2006).
Scientific workflow management and the Kepler system. Concurrency and
Computation: Practice and Experience, 18, 1039–1065. http://dx.doi.org/10.1002/
cpe.994.

Ludascher, B., Altintas, I., & Gupta, A. (2003). Compiling abstract scientific
workflows into Web service workflows. 15th International Conference on
Scientific and Statistical Database Management (pp. 251–254). IEEE Comput.
Soc.. http://dx.doi.org/10.1109/SSDM.2003.1214990.

Moreno, M., & Kearney, P. (2002). Integrating AI planning techniques with workflow
management system. Knowledge-Based Systems, 15, 285–291. http://dx.doi.org/
10.1016/S0950-7051(01)00167-8.
Mulyar, N., Pesic, M., Aalst, W. M. P. V. D., Peleg, M., & Carmel, M. (2008). Declarative
and procedural approaches for modelling clinical guidelines: Addressing
flexibility issues. Knowledge Creation Diffusion Utilization, 4928, 335–346.

Nibbe, R. K., Koyutürk, M., & Chance, M. R. (2010). An integrative-omics approach to
identify functional sub-networks in human colorectal cancer. PLoS
Computational Biology, 6, 15.

Noy, N., Sintek, M., Decker, S., Crubezy, M., Fergerson, R., & Musen, M. (2001).
Creating semantic web contents with Protege-2000. IEEE Intelligent Systems, 16,
60–71. http://dx.doi.org/10.1109/5254.920601.

Ogasawara, E., Paulino, C., Murta, L., Werner, C., & Mattoso, M. (2009). Experiment
line: Software reuse in scientific workflows. In M. Winslett (Ed.), Scientific and
Statistical Database Management (pp. 264–272). Berlin, Heidelberg: Springer
Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-02279-1.

Sharan, R., Ulitsky, I., & Shamir, R. (2007). Network-based prediction of protein
function. Molecular Systems Biology, 3, 88.

Shue, L., Chen, C., & Shiue, W. (2009). The development of an ontology-based expert
system for corporate financial rating. Expert Systems with Applications, 36,
2130–2142. http://dx.doi.org/10.1016/j.eswa.2007.12.044.

Smelik, R. M., Tutenel, T., De Kraker, K. J., & Bidarra, R. (2011). A declarative
approach to procedural modeling of virtual worlds. Computers & Graphics, 35,
352–363. http://dx.doi.org/10.1016/j.cag.2010.11.011.

Ten Berge, T., & VanHezewijk, R. (1999). Procedural and declarative knowledge: An
evolutionary perspective. Theory Psychology, 9, 605–624. http://dx.doi.org/
10.1177/0959354399095002.

Thurner, V. (1998). A formally founded description technique for business
processes. Proceedings International Symposium on Software Engineering for
Parallel and Distributed Systems (pp. 254–261). IEEE Comput. Soc.. http://
dx.doi.org/10.1109/PDSE.1998.668193.

Ucar, D., Parthasarathy, S., Asur, S., & Wang, C. E. C. (2005). Effective pre-processing
strategies for functional clustering of a protein-protein interactions network.
5th IEEE Symposium on Bioinformatics and Bioengineering BIBE05 (pp. 129–136).
IEEE. http://dx.doi.org/10.1109/BIBE.2005.25.

van ’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A. M., Mao, M., et al.
(2002). Gene expression profiling predicts clinical outcome of breast cancer.
Nature, 415, 530–536. http://dx.doi.org/10.1038/415530a.

Wang, Y., Klijn, J. G. M., Zhang, Y., Sieuwerts, A. M., Look, M. P., Yang, F., et al. (2005).
Gene-expression profiles to predict distant metastasis of lymph-node-negative
primary breast cancer. Lancet, 365, 671–679. http://dx.doi.org/10.1016/S0140-
6736(05)17947-1.

Zarri, G. P. (2011). Knowledge representation and inference techniques to improve
the management of gas and oil facilities. Knowledge-Based Systems, 24,
989–1003. http://dx.doi.org/10.1016/j.knosys.2011.04.010.

http://dx.doi.org/10.1109/CISIS.2012.141
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0060
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0060
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0060
http://dx.doi.org/10.1109/CIBCB.2012.6217215
http://dx.doi.org/10.1109/CIBCB.2012.6217215
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0070
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0070
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0070
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0075
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0075
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0075
http://dx.doi.org/10.1093/nar/gkl320
http://dx.doi.org/10.1145/1558897.1558901
http://dx.doi.org/10.1145/1558897.1558901
http://dx.doi.org/10.1017/S0269888902000358
http://dx.doi.org/10.1017/S0269888902000358
http://dx.doi.org/10.1109/5.381846
http://dx.doi.org/10.1109/5.381846
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1109/SSDM.2003.1214990
http://dx.doi.org/10.1016/S0950-7051(01)00167-8
http://dx.doi.org/10.1016/S0950-7051(01)00167-8
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0110
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0110
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0110
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0115
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0115
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0115
http://dx.doi.org/10.1109/5254.920601
http://dx.doi.org/10.1007/978-3-642-02279-1
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0130
http://refhub.elsevier.com/S0957-4174(13)00679-9/h0130
http://dx.doi.org/10.1016/j.eswa.2007.12.044
http://dx.doi.org/10.1016/j.cag.2010.11.011
http://dx.doi.org/10.1177/0959354399095002
http://dx.doi.org/10.1177/0959354399095002
http://dx.doi.org/10.1109/PDSE.1998.668193
http://dx.doi.org/10.1109/PDSE.1998.668193
http://dx.doi.org/10.1109/BIBE.2005.25
http://dx.doi.org/10.1038/415530a
http://dx.doi.org/10.1016/S0140-6736(05)17947-1
http://dx.doi.org/10.1016/S0140-6736(05)17947-1
http://dx.doi.org/10.1016/j.knosys.2011.04.010

	An expert system hybrid architecture to support experiment management
	1 Introduction
	2 Related work
	3 Hybrid architecture
	3.1 Reasoning activity
	3.2 Abstraction layer perspective
	3.3 Decision making level perspective
	3.4 Workflow timeline perspective
	3.5 Abstraction layer Vs Decision making level
	3.6 Abstraction layer Vs Workflow timeline
	3.7 Decision making level Vs Workflow timeline

	4 Knowledge organization
	4.1 DPS2E ontology
	4.1.1 Knowledge Area
	4.1.2 Execution Area

	4.2 DPS2E and hybrid architecture

	5 Case study
	5.1 Bioinformatics scenario
	5.2 Ontology instance

	6 Conclusion
	References


