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Abstract 

Brain tumor pathology is one of the most common mortality issues considered as an essential 

priority for health care societies. Accurate diagnosis of the type of disorder is crucial to make 

a plan for remedy that can minimize the deadly results. The main purpose of segmentation 

and detection is to make distinction between different regions of the brain. Besides accuracy, 

these techniques should be implemented quickly.  

In this paper an automatic method for brain tumor detection in 3D images has been 

proposed. In the first step, the bias field correction and histogram matching are used for pre-

processing of the images. In the next step, the region of interest is identified and separated 

from the background of the Flair image. Local binary pattern in three orthogonal planes 

(LBP-TOP) and histogram of orientation gradients (HOG-TOP) are used as the learning 

features. Since 3D images are used in this research we use the idea of in local binary pattern 

in three orthogonal planes in order to extend histogram orientation gradients for 3D images. 

The random forest is then used to segment tumorous regions. We evaluate the performance 

of our algorithm on glioma images from BRATS 2013. Our experimental results and 

analyses indicate that our proposed framework is superior in detecting brain tumors in 

comparison with other techniques.  
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1. Introduction 

Nowadays with the accelerating developments in science and technology and availability of 

medicinal data there is a need for more accurate machine learning algorithms. In recent decades, 

many researchers focus on processing medical data using machine learning algorithms [1,2]. 



Brain tumor is a growth of abnormal cells inside the brain [3]. A tumor threat depends on a 

combination of different factors such as type of the tumor, location, size of the tumor, and the 

way the tumor is spread and developed. Glioma is the most common primary brain tumor in 

adults. They arise from glial cells and they can be classified into four grades; grade 3 or 4 is the 

high-grade glioma. Grades 1 and 2 can be used as low-grade glioma tumors in treated group [4].  

Magnetic resonance imaging is a medical imaging technique used by radiologists to study 

the anatomy of the body. As MRI can present a lot of information about the soft tissue of the 

human body anatomy, these images can also contribute to the diagnosis of the brain tumor [5,6]. 

These images are also used to analyze and study the behavior of the brain. In this imaging 

technique, it is also possible to make different tissue contrast making it a useful tool for imaging 

different desirable structures. Regarding the nature and appearance of the brain tumors, just one 

MRI technique is not enough for segmentation of the brain tumor including all area. Nowadays a 

combination of different MRI techniques is usually used to diagnose tumor. These techniques 

include    weighted MRI,    weighted MRI with contrast enhancement (   )     weighted MRI, 

and    weighted MRI with fluid-attenuated inversion recovery           [7]. In     Weighted 

MRI images with contrast enhancement (i.e.    ), the tumor borders look brighter because of the 

accumulation of contrast agent in brain vessels. MRI contrast agent are a group of contrast media 

that are used to improve the visibility of the internal body structure. In       images, the Necrotic 

and active tumor area can be easily recognized. In methods with    weighted MRI, the Edema 

area which has surrounded the tumor looks bright. The     Weighted MRI with fluid-attenuated 

inversion recovery           is a special method which helps to separate edema from 

cerebrospinal fluid (CSF) [7]. In order to have a precise and accurate segmentation of tumor area, 

a sequence of these MRI images (                 ) should be used which can be called multi-

quality MRI image. Figure 1 presents a case of a patient’s tumor with                   MRI 

images.  

  

 

 

 

Fig. 1. Typical diagnostic MR scanning modalities, left to right:                   

   

Nowadays with regards to the fact that a lot of data is generated in clinical institutes, image 

segmentation in a reasonable time is impossible. Moreover the manual analyses of the images 

are very time-consuming and tiring. Another issue with these techniques is that there is a 

noticeable variety in labels produced by the experts of different medical specialties [8]. Applying 

automatic or semi-automatic methods by which the images can be analyzed with computers 

seems to be more effective and desired. Accomplishing such an automatic process is very 

challenging due to the large variety in the tumor texture appearance, heterogeneous shape, 

similarity between tumors and natural texture, and the high irregularity, discontinuity, and 



unclear borders of gliomas. The goal of automatic or semi-automatic techniques is to detect the 

tumor area reliably and accurately since the high speed and high accuracy in texture detection is 

a very vital in radiotherapy and surgery.  

In recent years, different methods of segmentation for the brain tumor images have been 

proposed. Great advances have been made in the field of differential power analysis and medical 

image processing. Cai et al. [9] and Verma et al. [10] use the intensity of a large number of the 

MRI multi-quality images to create the feature vector. Then they use the support vector machines 

in classifying stage. They not only be able to segment the healthy tissue, but also they can 

segment the sub-region of the healthy and tumor tissues.  

Ruan et al. [11] also detect just one region of the tumor using few numbers of MRI images 

then they demonstrate that the feature selection improves the results clearly compared to their 

previous work [12]. Jenson and Schmainda [13] investigate different neutral networks to detect 

invasive brain tumor using multi-parameter images (diffusion, perfusion). Shuihua Wang et al. 

[14] extract stationary wavelet transform features.  They propose an automatic system based on 

PSO and ABC for classification phase. Criminisi et al. [15] apply context-aware features along 

with generative model as an input to determine the sub-region of the tumor using multi-quality of 

MRI images. They indicate that by using context-aware features, there will be no need for post 

processing step of the images. Geremia et al. [16] generate the tumor images artificially and they 

train discriminative regression forest algorithm using different groups of the features. They argue 

that this approach not only allows them to segment the patient's images, but it can also let them 

estimate the density of tumor. Hassan Khotanlou et al. [17] used the idea of inherent symmetry 

of the right and left hemisphere of human brain. Studies indicate that using the brain symmetry 

idea help faster diagnosis of tumor or edema. However finding the axis symmetry is a 

challenging issue and in some rare cases, where the tumor coincides with the axis symmetry, the 

method fails.  

In order to detect brain tumors, Remamany et al. [18] apply a maximum fuzzy entropy based 

approach to magnetic resonance images. This method is based on adaptive thresholding. MR 

brain images are classified into two membership functions. Optimal parameters of fuzzy MFs are 

obtained using the modified particle swarm optimization (MPSO) algorithm. In order to obtain  

optimal fuzzy entropy parameters, the objective function is considered with maximum fuzzy 

entropy. Mikael Agn et al. [19] propose a generative method for the segmentation of brain tumor 

images. Their paper employs tumor prior, which models the shape of the tumor core and 

complete tumor. 

Wang et al. [20] have used a fluid vector to specify the contour about the tumor’s boundaries 

in the images by    weighting. Sachdeva et al. [21] have proposed content-based brightness 

intensity and texture patterns to specify the active contour around the tumor in all MRI imaging 

methods. Hu et al. [22] determine the probability of a tumor or a background using the difference 

between     and    images (images before and after contrast). They then use the entire image to 

specify the (sphere) boundaries of the tumor. Rexilius et al. [23] have used the growing region 

algorithm to obtain the tumor area. A. Pinto et al. [24] employ the random decision forest 



approach. More specifically, they extract gray level, appearance-based, and context-based 

features and apply the morphological operator at the post-processing step to increase the 

segmentation accuracy. Reza et al. [25] exploit novel context features for brain tumor image 

segmentation, including piece-wise triangular prism surface area (PTPSA), multi-fractional 

Brownian motion (mBm) and Gabor-like textons. Kumar et al.  [26] have proposed a method 

based on texture using the growing region algorithm. In order to analyze texture, their method 

exploits a hierarchical segmentation algorithm in different directions. Accordingly, anomalies are 

identified and then the growing region algorithm is applied. Harati et al. [27] have proposed the 

fuzzy connectedness algorithm, which considers regional features without knowing spatial 

constraints for connectedness. 

Unsupervised classification was first proposed by Schad et al. [28] for the segmentation of 

brain tumor images. Accordingly, differences and similarities of texture algorithms were 

analyzed. Phillips et al. [29] exploit the C-means fuzzy classification method and compares this 

method with an unsupervised k-nearest neighbor classification method to specify the volume of 

the tumor during treatment. 2D slices of multi-spectral images are used in this study. Menon et 

al. [30] propose an automatic segmentation method for brain tumor images. This approach is 

based on Artificial Bee Colony (ABC) and Fuzzy-C Means (FCM) algorithms. This paper first 

estimates a threshold using the ABC algorithm and then exploits the FCM algorithm for 

clustering. Clark et al. [29] extend this method by combining it with knowledge-based methods. 

Fletcher et al. [31] combine the fuzzy unsupervised classification method with knowledge-based 

methods. 

In most algorithms presented so far, the segmentation is performed on multi-quality 

sequence of MRI images. Few presented methods are semi-automatic which rely on the user 

interaction. Although the user interactive property of these techniques making them more 

flexible [7], there is a need for a user. 

 In many automatic methods the segmentation of brain tumor images is carried out based on 

the intensity of voxels and the neighborhood information. These methods are flexible and have 

reliable results. Other categories of methods, which are based on object detection or local limits, 

are regarded less effective than previous category of techniques. They have less flexibility on 

different types of tumor and different information.  

In this paper we propose an automatic and fast framework which benefits from the 

advantages of both categories of methods. In other words, our proposed algorithm applies 

features that are using the intensity of voxels and neighborhood information together with the 

object detection and local limit approaches. In order to reduce the time and space complexity of 

the feature extracting phase and to provide more balanced distribution for the training data, we 

use a clustering algorithm. This clustering algorithm, which is a kind of thresholding algorithm 

and is called multi-level Otsu [32], uses only the         images since in these images the tumor 

regions are brighter than other regions. Multi-level Otsu is a very fast algorithm and it does not 

need any parameters to be tuned.  



The rest of the paper is organized as follows: Section 2 represents our proposed method in 

detail. Our experimental results are provided in Section 3. Analyses of the results and discussion 

are provided in Section 4. Finally, Section 5 concludes the paper by a conclusion part and 

summarizes our findings.   

2. Materials and Methods 

Brain tumor pathology is one of the most common mortality issues considered as an essential 

priority for health care societies. Thus accurate diagnosis of the type of disorder is very 

necessary to make a plan for remedy that can minimize the deadly results. Accurate results can 

be obtained by computer with the help of automatic systems. In medical imaging the image 

segmentation is used to diagnose the disease and study the tumor growth.  

In this paper an automatic technique for brain tumor detection in 3D images is proposed. 

Figure 2 illustrates the major steps of the segmentation pipeline. 

 

Fig. 2. Illustration of the main blocks used segmentation pipeline. 

 

2.1 . Pre-processing  

The raw MRI images usually include artifacts such as uneven brightness and additional 

tissues (e.g. skull, eyes, etc.) which reduce the accuracy of the results. One of the major issues in 

medical imaging is noise and finding a technique to reduce it. Signal to noise ratio is a measure 

that compares the level of the desired signal to the level of background noise. Image noise occurs 

when the signal to noise ratio is relatively low. Noise elimination in the image is a standard 

method for pre-processing. Diaz et al. [33] investigate different methods for noise removal of 

brain tumor segmentation. They conclude that these methods reduce the noise in the image; 

however, they negatively affect the image segmentation in most cases because they destroy the 

details of the required structures in the image. 

Our proposed technique applies “bias field correction” on MRI images using the N4ITK 

method [34]. N4ITK technique has several small utilities that can be used to reduce such bias 

field. To estimate the bias field, it uses Legendre polynomials. The evolutionary optimizer 

searches for the best parameters of a Legendre polynomial (bias field estimate) which minimizes 

the total energy value of each image after bias field is eliminated [34]. Then, the intensity scale 

of each sequence was normalized by a histogram matching algorithm implemented in ITK [35]. 

Histogram matching is a method in image processing of color adjustment of two images using 
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the image histograms. In this research the histogram of each image is adjusted with the all 

images mean’s histogram.  

 

2.2 . Clustering  

After pre-processing of the image, the Otsu algorithm is applied to extract the region of 

interest. This algorithm is unsupervised. As a result, the time and space complexity of the image 

processing will decrease dramatically. Moreover, this clustering algorithm provides balanced 

data for training phase. It does not have any parameters to be tuned and consequently it is a fast 

technique to select the threshold of the image. In order to achieve more accurate clusters this 

algorithm is applied on each slice of 3D images.  

The Otsu algorithm [36] has been applied to the Flair image because in the Flair image, the 

region of interest is brighter than the other regions (Figure 3). Otsu algorithm is a popular 

method in image processing and computer vision. This method uses a simple idea which 

maximizes within-class variance. In this paper the multi-level Otsu algorithm [32] is used for 

image segmentation.  

Considering an image with   gray level          .     is the number of pixels with gray 

level of i;  therefor the total pixels equals                   In an image the gray-level 

probability is computed by following equation: 
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If an image is segmented to   clusters,     thresholds should be selected. The cumulative 

probability    and mean gray-level    for each cluster    are as follows: 
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 Then the mean intensity of the whole image    and between class variance   
  are computed 

as follows: 
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The optimum Thresholds (  
    

        
 ) can be determined by maximizing the between 

class variance as: 
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Fig. 3. Separation region of interest from background using OTSU thresholding; First row represents Flair images, 

second row represents OTSU thresholding.    

2.3 Feature Extraction 

The next step for automatic diagnosis is to extract features from the image. The purpose of 

extracting features is to make the raw data more usable for the next processing. In this step the 

features are extracted from different textures in such a way that within-class similarity is 

maximized and the between-class similarity is minimized. The features used in brain tumor 

segmentation depend on the type and grade of the tumor because different tumors with different 

grades can be very different in appearance. Regarding the complexity of different texture 

structures such as gray material (GM), white material (WM), and Cerebro Spinal Fluid (CSF) in 

brain images, the feature extraction is a very useful yet challenging task. 

One of the most common features used for brain tumor segmentation is the image intensity 

since there is an assumption that different textures have different gray levels [37]. Because of the 

existence of noise and heterogeneity, caused by radio frequency couples, using the intensity of 

the images solely as feature in MRI image segmentation does not produce reliable results. 

 It seems that using the texture data within the texture features brings about good results for 

MRI image segmentation because different regions of the tumor have different textural patterns 

[38–40]. 

 

 LBP (Local Binary Patterns)-TOP 

The local binary pattern is a simple, quick, and very efficient method for extracting feature 

from image texture. In this method, first a neighborhood of an image is selected. Then, the 

intensity of the points existing in this neighborhood is compared with the intensity of the pixel 



located in the center of the neighborhood and a binary code is considered for each pixel 

according to equation 6. In order to make the algorithm rotation-invariant usually circular 

neighborhood is considered. The pixels whose coordinates are not exactly located on the 

neighborhood of pixel center are obtained by interpolation [41]. In equation 6,   represents the 

number of neighborhood pixels of a considered center pixel,   is the neighborhood radius,    is 

the intensity of the neighborhood pixels, and    is the intensity of the central pixel. 

 

      =∑          
    

    

 

      {
          
          

  

 

 

(6) 

 

Fig. 4. Binary code of each pixel in local binary patterns. 

A measure called uniformity was proposed in the modified version of LBP [42]. A bit 

pattern is called uniform if it has at least two circular bit transitions from zero to one or vice 

versa. For instance, the bit pattern (00000000) has a zero transition and it is uniform; whereas, 

the bit pattern (01010011) has six transitions and it is not uniform. In the uniform binary pattern 

mapping, there is a separate output label for each uniform pattern and all non-uniform patterns 

are assigned to a label. There are two reasons to remove non-uniform binary patterns and assign 

them to a label. First, it has been shown that most local binary patterns are uniform in natural 

images. The second reason is that considering uniform patterns instead of all possible patterns 

provides better detection results. There are signs that indicate uniform binary patterns have more 

robustness and less sensitivity to noise. In this method, each pixel is labeled by a code of the 

main texture, which is the best match with local neighbors.  

The main LBP operator [43] was only defined with spatial information. Subsequently, it was 

extended for dynamic textures analysis [44]. One of the methods in dynamic texture analysis 

considers each voxel in three orthogonal planes (XY-XY-YT). Here, X and Y are spatial 

coordination and T as the third dimensions represents time. More specifically, binary codes are 

extracted from all voxels in XY, YT, and XT planes and specified as XY-LBP, YT-LBP, and 

XT-LBP. Subsequently, histograms are computed and concatenated in a histogram. As we can 

see in figure 5, each voxel is located at the intersection of the three orthogonal planes (XY, XT, 

and YT). In these planes, eight neighbors are delineated for each voxel. The local binary pattern 

for each voxel is separately extracted based on its location on each plane. The  final feature 

vector is achieved by arranging the values of the local binary pattern. 

 



 

Fig. 5. Neighborhood point of each voxel in three orthogonal plane. 

Figure 6 part (a) presents a slice of the initial 3D MRI image with    weighting. The 

uniform local binary pattern algorithm is applied to three orthogonal planes on the entire image. 

Parts (b), (c), and, (d) are slices of output images considering neighborhood in planes XY, XY, 

YT, respectively. The feature vector is obtained by concatenating these values together. As we 

can see, the local binary pattern algorithm has been successful in recognizing edges, flat regions, 

and the texture structure. 
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Fig. 6. (a) MRI-T1, (b) LBP-XY plane, (c) LBP-XT plane, (d) LBP-YT plane. 

 

 

 HOG (Histogram Orientation Gradient)-TOP 



Histogram of oriented gradients is a method in computer vision and image processing that is 

used to detect the object [45]. In this method, the image is divided into small areas that are joined 

together, they are called cells. The histogram of oriented gradients is extracted from the cells. 

First, the image is filtered by Sobel kernel [45] (figure 7) to achieve the image gradient along 

the   and   directions. 
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Fig. 7. Sobel mask. 

 

       are referred to the image gradient along the   and   directions. Magnitude and angle 

of the image gradient is calculated at each pixel according to equations 7 and 8. In these 

equations, |G| is magnitude of gradient,    is angle of gradient,  , and j represent the rows and 

columns of the image, respectively.To calculate the gradient histogram, angle is divided into   

equal distances where   indicates the number of gradient directions or histogram bins. To 

calculate the histogram, each pixel inside a cell votes to one of the histogram bins based on its 

gradient angle (Figure 8). These votes are weighed in this pixel based on the gradient size.  
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After calculating the gradient histogram in each cell, this histogram is allocated to the cell 

central pixel. Therefore for each pixel an   dimensional vector, which represents its surrounding 

gradient histogram, is calculated. Dalal and Triggs [46] used     in their research thus for 

each pixel a vector of length 9 is obtained.  

 



 
Fig. 8. A cell and histogram orientation gradiant. 

 

The HOG method of feature extraction was proposed for 2D images but in this paper by 

considering the location of each voxel in the intersection of three orthogonal planes we extend 

the method to 3D images. 

Since 3D images are used in this research we use the idea presented in LBP-TOP [44] in 

order to extend HOG to 3D images. As it is illustrated in figure 9, for each cell we extract the 

gradient histogram in XY ,YZ and, XZ planes; therefore we have a vector with the length of 9 × 

3 for each voxel or cell. Feature extraction step is performed on all MRI modalities. 

 

 

 

Fig. 9. Cells in three orthogonal plane. 

 

2.4 . Classification  

Random Forest [47] are an ensemble learning algorithm for classification, regression, and 

other tasks that operate by constructing a multitude of decision trees at training time and 

outputting the class that is the mode of the classes or mean prediction of the individual trees.  

Random Forest combines Bagging [48] idea and the random selection of features.  

 In this paper we use Random Forest for classification phase. High accuracy in classification 

is one of the advantages of this method as it can operate properly with a lot of different inputs. 



3. Results 

Dataset (Brats2013)
1
 including   ,   ,        , and    with contrast (   ), all were 

interpolated to 1 mm isotropic resolution. The dataset includes 30 real glioma patients (20 high 

grade (HG) and 10 low grade (LG)), and 50 simulated glioma patients (25 of each grade). A 

manual segmentation was also provided distinguishing different labels including: 1) necrosis, 2) 

edema, 3) non-enhancing tumor, and 4) enhancing tumor, 0) everything else.  

Three different categories such as complete tumor, tumor core, and enhanced tumor are 

considered for the evaluation. The details on these three categories are as follows: Complete 

Tumor: 1) necrosis, 2) Edema, 3) non-enhancing tumor, 4) enhance tumor; Tumor Core: 3) non-

enhance tumor, 4) enhance tumor; and Enhance tumor: 4) enhance tumor). 

The region of interest is nearly 20 percent of the entire image which reduces the time. Our 

proposed method’s speed up is related to the feature extraction phase. Since we cluster the input 

image before training, our method gets speed up. Performing feature extraction on the whole 

image takes 1516 seconds on average for each image. On the other hand, by performing 

clustering before feature extraction and getting rid of the unwanted areas in the image, our 

method takes only 374 seconds on average for feature extraction. Programming language is 

MATLAB on a computer with an eight core processor (4.0 GHz), and 32 GB of RAM. 

As in this paper the feature vector length for each image is 31 (besides the intensity, 3 for 

local binary pattern and 9 3 for histogram of oriented gradients). The number of base classifiers, 

decision trees, in Random Forest is set to forty.  
 We use Dice [49] and Jaccard [50] for evaluation phase and perform ten-fold cross 

validation for real high grade glioma, leave-one-out scheme for real low grade glioma and two-

fold cross validation for synthetic data.  

In figure 10, 11 horizontal and vertical axes display patient samples and evaluation criterion 

respectively. Utilized evaluation criteria are the best evaluation methods for investigation of 

segmentation accuracy, which their definition is presented in equations 8 and 9. In these 

equations,   and   indicate grand truth and segmentation result respectively. 
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Dice Coefficient indicates the overlap between manual segmentation and automatic 

segmentation. Jaccard Coefficient indicates the similarity of two sets. These values are between 

0 and 1 and the higher value indicates more accurate segmentation. 

                                                           
1
 http://vsddemo.bfh.ch/WebSite/BRATS/Start2013 



Three categories are evaluated for each sample. Therefore, three columns are extracted from 

each patient in figure 10. For low-grade figure, enhance tumor column is presented only for 

samples 1, 2, and 8, because data of these samples didn't include enhance tumor class.  

In tables 1-4, mean and standard deviation values are calculated. Low standard deviation 

indicates that the proposed method offers consistent results. 

We compared our results with three different researches in [51]. Meier et al. [52] use 

generative-discriminative hybrid model which generates initial tissue probabilities that are used 

subsequently for enhancing the classification and spatial regularization. Cordier et al. [53] use 

Patch-based Segmentation. This segmentation approach is based on similarities between multi-

channel patches . Festa et al. [54] use features include MR sequence intensities, neighborhood 

information, and context information for segmentation.  

 

 BraTumIA software 

The result of the proposed method is compared with BraTumIA (Brain Tumor Image 

Analysis) application. This software can analyze 3D images and analyzing automatic brain tumor 

images [55]. Oncologists use this software to scrutinize the images accurately. It can segment the 

tumor including its sub-compartments from MRI of glioma patients. For this, it inputs four 

different MRI sequences (  ,    ,   , and        ) and outputs volumetric information about the 

tumor and its sub-compartments (necrotic tissue, active enhancing tumor tissue, non-enhancing 

tumor tissue, and edema). Also, the software can segment healthy subcortical structures 

surrounding the tumor. Label maps of the segmented tissues and structures are available as an 

overlay on the original images. 

4. Discussion 

In table 1 through 3, our results are compared with the algorithms which used Brats2013 

dataset. The results indicate that the proposed method has achieved better results in all cases.  

In table 4 the results of our proposed method are compared with the acquired results of 

BraTumIA software. Figure 10, 11 indicate the results of real and synthetic data. One example of 

each case in real HG and real LG shown in figure 12. Figure 13 indicate 3D representation of 

data label.  

According to the results, in high grade glioma, our proposed method indicates better results 

in comparison with the results of BraTumIA software. In low grade images this software fails in 

segmentation. 

LBP feature provides the texture information of an image and HOG feature describes local 

information with gradient histogram.  Simply said, the proposed algorithm extracts texture and 

local information together. The HOG method of feature extraction was proposed for 2D images 

and in this paper by considering the location of each voxel in the intersection of three orthogonal 

planes we extend the method to 3D images. Consequently, more neighborhood voxels are 

considered for each regarding voxel.  The shorter length of the feature vector will speed up the 



program to run. Using LBP and HOG features together with Random Forest classification 

algorithm yields significantly better overall results. 

 

 

  

  
 

Fig. 10. Evaluation of the two real BraTS data sets (HG, LG) which indicates the results for three regions: complete 

tumor, tumor core, and reported Dice and Jaccard. 
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Table 1.  Comparison results in real HG. 

 

Approach 

 

Dice 

Complete 

tumor 

 

Dice 

Tumor 

core 

 

Dice 

Enhancing 

tumor 

 

Jaccard 

Complete 

tumor 

 

Jaccard 

Tumor 

core 

 

Jaccard 

Enhancing 

tumor 

Proposed 

method 

 

0.8377±0.105 

 

0.759±0.15 

 

0.761±0.19 

 

0.733±0.14 

 

0.635±0.19 

 

0.647±0.21 

Meier et al.  

0.802±0.124 

 

0.691±0.220 

 

0.698±0.247 

 

0.684±0.153 

 

0.561±0.212 

 

0.578±0.232 

Cordier    

et al. 

  

0.79±0.17 

 

0.60±0.26 

 

0.59±0.25 

- - - 

Festa et al.  

0.83±0.08 

 

0.7±0.24 

 

0.75±0.16 

 

0.72±0.12 

0.58±0.25 0.63±0.18 

 

 

 

Table 2.  Comparison results in real LG. 

 

Approach 

Dice 

Complete 

tumor 

Dice 

Tumor 

core 

Dice 

Enhancing 

tumor 

Jaccard 

Complete 

tumor 

Jaccard 

Tumor 

core 

Jaccard 

Enhancing 

tumor 

Proposed 

method 

0.792±0.11 0.652±0.08 0.44±0.26 0.66±0.14 0.503±0.12  0.33±0.24 

Meier      

et al. 

0.764±0.105 0.585±0.229 0.201±0.326 0.628±0.121 0.446±0.228 0.152±0.150 

Nicolas    

et al. 

0.76±0.18 0.64±0.21 0.44±0.4 - - - 

Festa et al. 0.72±0.17 0.47±0.23 0.21±0.35 0.58±0.19 0.33±0.19 0.17±0.28 

 

 

 

 

 

 

 

 

Fig. 11. Evaluation for the two synthetic BraTS data sets (HG, LG) which indicates the results for complete tumor. 



 

 

  

  

 

 

 

 

Fig. 12. Segmented tissues with corresponding input and ground-truth images. Each row represents example set of 

multimodality MRI slices(first row is HG and second row is LG). ; Input: (a) T1, (b) T2,     (c) T1contrast (d) Flair. 

(e) ground-truth (f) Segmented image. Labels in the ground-truth: red-necrosis, blue- edema, green-non-enhancing 

tumor, magenta- enhancing tumor, black-everything else. 
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Table 3.  Comparison results in synthetic data sets of HG and LG. 

 

Approach 

Dice 

Complete 

Tumor(HG) 

Jaccard 

Complete 

Tumor(HG) 

Dice 

Complete 

Tumor(LG) 

Jaccard 

Complete 

Tumor(LG) 

Proposed method 0.93±0.04 0.87±0.06 0.90±0.02 0.82±0.04 

Cordier et al. 0.84±0.08 - 0.83±0.4 - 

 

 

 

 

 

 

 

 

Table 4.  Comparison results with BraTumIA software in real HG. 

 

Approach 

 

Dice 

Complete 

tumor 

 

Dice 

Tumor 

core 

 

Dice 

Enhancing 

tumor 

 

Jaccard 

Complete 

tumor 

 

Jaccard 

Tumor 

core 

 

Jaccard 

Enhancing 

tumor 

Proposed method  

0.8377±0.105 

 

0.759±0.15 

 

0.761±0.19 

 

0.733±0.14 

 

0.635±0.19 

 

0.647±0.21 

BraTumIA 

software   

 

0.8178±0.068 

 

0.692±0.195 

 

0.709±0.21 

 

0.696±0.094 

 

0.554±0.18 

 

0.58±0.20 

 

 



 

Fig. 13. Three dimensional presentation of result, blue-necrosis, green- edema, red-non-enhancing tumor, orange- 

enhancing tumor, black-everything else.   

5. Conclusion  and Future Work 

In this paper we proposed a framework to segment tumorous MRI images. In the first step 

bias field correction is used to increase the contrast of the input image. Then histogram matching 

is used. In the second step, in order to reduce the time and space complexity especially in the 

feature extraction phase of the algorithm, the multi-level Otsu thresholding algorithm is used. 

Given to the large number of data in 3D imaging, using multi-level Otsu algorithm reduces the 

volume of the data. These images are imbalanced; applying this clustering algorithm selects 

more balanced distribution of data for training.  

The third step, the feature extraction step, the local binary patterns (LBP-TOP) in three 

orthogonal planes and extended histogram of orientation gradients for 3D images (HOG-TOP) 

are used. The advantage of these features besides their simplicity is that they have a great 

discrimination capability for tissue images.  



Finally, the random forest, which has a high accuracy in segmentation and can function 

perfectly with large inputs, is used as a classifier to distinguish tumorous regions. Our 

experimental evaluations indicate significantly better improvements in segmenting tumor images 

and reduction in time complexity.  In our future work, we plan to study the performance of our 

algorithm on BRATS 2014 dataset.   
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