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Abstract—We construct polar codes for the specific purpose
of incremental redundancy hybrid automatic repeat request
(IR-HARQ) schemes. The rate compatibility of our scheme is
ensured by both puncturing and extending of the code. A new
puncturing algorithm for polar codes is proposed, and we develop
an algorithm for finding good extending sequences for polar codes
from any arbitrary punctured rate, with the goal of improving the
throughput as much as possible. Simulation results for different
types of puncturing and extending algorithms are presented.
We show how the proposed extending algorithm, when properly
operated with a good puncturing algorithm and a well-chosen
puncturing rate, yields IR-HARQ coding schemes which can
operate within 1 dB of Shannon capacity over a very wide range
of signal-to-noise ratios.

Index Terms—Incremental redundancy hybrid ARQ, rate-
compatible polar codes, channel polarization.

I. Introduction

TRANSMISSION schemes for wireless communication
should provide flexible transmission rates to compensate

for channel state variations. One approach is to have several
pairs of encoders and decoders with different fixed rates
to adapt to the channel state. However, this requires extra
hardware complexity. As an alternative, rate compatible (RC)
codes have been proposed that can be implemented with a
single encoder/decoder pair, and have become an important
tool to address the rate flexibility requirement in communi-
cation systems. RC codes are also well-suited for a specific
type of hybrid automatic repeat request (ARQ) scheme called
incremental redundancy hybrid ARQ (IR-HARQ). In an IR-
HARQ scheme, the transmitter keeps sending additional code
bits of a mother code to the receiver until a decoding success
is announced. There has been a lot of research on code
construction for IR-HARQ. In particular RC convolutional and
turbo codes were among the first codes proposed for use with
IR-HARQ [1]-[3], where puncturing is used to ensure the rate-
compatibility. Later, low density parity check (LDPC) codes
were studied for IR-HARQ schemes. In particular both asymp-
totic and finite length puncturing schemes were proposed to
produce RC-LDPC codes [4],[5]. However, puncturing by
itself is not sufficient to realize rate-compatible codes that are
effective over a wide range of rates. In response the authors in
[6] proposed that LDPC codes can be extended by extending
their parity check matrices, and puncturing and extending
became useful tools to design RC-LDPC codes for IR-HARQ
[7].

Recently proposed by Arikan [8], polar codes are the first
class of structured channel codes which can provably achieve
the capacity of binary input memoryless output symmetric
(BIMOS) channels under successive cancellation (SC) de-
coding. Although the capacity achieving property of polar

codes is an asymptotic attribute, their performance and code
design for finite lengths have been studied as well (e.g.
[9], [10]). Motivated by the theoretical fixed-rate capacity-
achieving property, it is natural to apply polar codes to IR-
HARQ. Puncturing schemes to produce RC polar codes are
proposed in [11], [12]. The authors in [13] used these methods
and designed a IR-HARQ scheme based on polar codes. Their
proposed scheme uses puncturing and a selective repetition of
the message bits. The reported results suggest that despite the
non-promising fixed rate performance of finite-length polar
codes, the throughput performance can remain close to the
Shannon capacity, when used with IR-HARQ.

In this paper we focus on designing polar codes for IR-
HARQ schemes. Our proposed scheme uses both puncturing
and extending. We propose a novel puncturing algorithm and
we develop an algorithm to extend the polar codes in such
a way that its goal is to maximize the throughput of the
system. We extend the polar code by selecting code bits chosen
from a finite set of linear combinations of message bits; each
combination corresponds to each node in the PC graph (to
be defined shortly), while [13] allows only a subset of this
set, i.e. the message bits. We also show how the proposed
extending can be applied to a polar code which is punctured
to an arbitrary rate.

The rest of the paper is organized as follows. In Section
II we present preliminaries of polar codes, their encoding
and decoding, and code design. We present our heuristic
algorithm for puncturing polar codes in Section III. In Section
IV we present an algorithm for extending polar codes for IR-
HARQ schemes. Section V presents the simulation results for
different types of puncturing and extending methods. It also
compares the best IR-HARQ code with the previous IR-HARQ
schemes based on polar codes. Conclusions and topics for
future research are provided in Section VI.

II. Polar codes

A polar code with length N = 2n is a linear block code

whose generator matrix is GN = F⊗n, where F =

[
1 0
1 1

]
and ⊗ denotes the Kronecker product.1 For example, when
N = 8,

1In [8] the generator matrix of the polar code is defined as GN = BNF⊗n,
where BN is a permutation matrix known as the bit reversal permutation
matrix. However BN is just a permutation matrix, and thus, for simplicity we
can assume that the message vector is already permutated and the generator
matrix can be considered as GN = F⊗n. This representation of the generator
matrix is also useful in developing the extending algorithms using the PC
graph.
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G8 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


. (1)

Let A be a set of cardinality K containing a subset of the row
indices of GN . We refer to this set as the information set. The
complementary set Ac is referred to as the frozen set. Let u =

[u1, . . . , uN] be a binary vector of size 1×N. The K information
bits are placed in those elements of u corresponding to the
set A, and deterministic values (typically zeros) are placed in
the other N − K elements. The codeword corresponding to an
information vector uA is then calculated as

c = uGN . (2)

We consider a BIMOS channelW with binary input alphabet,
output alphabet Y and the transition probabilities fW (y|0) and
fW (y|1) for y ∈ Y. The codeword c is transmitted over W
and the channel output vector y = [y1, . . . , yN] is received.
Note that the term “polar code” refers to a specific instance of
the set A, chosen according to the polar rule which chooses
the indices of the bit-channels (suitably defined in [8]) with
the largest capacities (for more details see [8]). A polar code
is completely described by (N,K,A). After describing the
encoding and decoding algorithms for polar codes in Section
II.A, a method for determining A is presented in Section II.B.

A. Encoding and Decoding
Encoding and decoding of polar codes is most usefully de-

scribed in terms of a graphical representation of the generator
matrix, using what we refer to as the polar code (PC) graph.
Fig. 1 depicts the PC graph for the polar code of length N = 8,
corresponding to G8 given in (1). We represent each node
in the PC graph of polar code of length N = 2n by (i, j),
where i ∈ {1, . . . ,N} and j ∈ {0, . . . , n} are the row and column
indices of the node in the graph. The rows are numbered from
top to bottom, and the columns are numbered from left to
right. Numbering of the columns starts with zero rather than
one for simplicity in describing the extending algorithm in
Section IV. Starting with labeling the nodes in column 0 by
the message bits u1, . . . , uN , and the nodes in column n by
the code bits c1, . . . , cN , each node in the graph corresponds
to a linear combination of the message bits. Let vi, j denote
the value of this combination at node (i, j), with vi,0 = ui and
vi,n = ci.

Encoding is carried out on the PC graph by applying the
message bits to the nodes in the leftmost column, so vi,0 = ui.
These bits are then sent to the next column. Calculation of the
bit values are calculated according to the butterfly shapes in
the graph. In each butterfly the right-hand top node is equal
to the summation of the bits in the two nodes on the left-hand
side, and the right-hand bottom node is equal to the left-hand
bottom node. The bit values are propagated to the right until

Fig. 1. The PC graph of a polar code with length N = 8.

the code bits ci = vi,n are calculated. Note that during the
encoding process no values are passed along the edges that
slope down to the right on the PC graph (indicated by dashed
lines in Fig. 1).

Arikan proposed a SC decoding algorithm for polar codes
[8] that can be described by the PC graph. The channel log-
likelihood ratios (LLRs), λ(yi) = ln fW (yi |0)

fW (yi |1) for code bit ci, i =

1, . . . ,N, are calculated and applied to the rightmost column,
so λi,n = λ(yi). These LLRs propagate leftwards through the
graph. We say that a node (i, j), j < n, is of type I if it is in
the upper-left corner of a butterfly, and type II if it is in the
lower-left corner. Thus

type(i, j) =

I if
⌊

i−1
2 j

⌋
≡ 0 mod 2

II if
⌊

i−1
2 j

⌋
≡ 1 mod 2

(3)

where bxc is the largest integer not greater than x. The LLR
of the type-I node (i, j) is calculated according to

λi, j = ln
eλi, j+1 eλi′ , j+1 + 1
eλi, j+1 + eλi′ , j+1

= 2tanh−1
(
tanh

(
λi, j+1

2

)
tanh

(
λi′, j+1

2

))
(4)

where i′ is the row at the lower edge of the butterfly containing
(i, j) and (i, j+1) as the upper edge, and the LLR of the type-II
node (i′, j) is given by

λi′, j = λi′, j+1 + (1 − 2v̂i, j)λi, j+1 (5)

where v̂i, j is a hard estimate of vi, j. To calculate v̂i, j it is
necessary to process nodes in a specific order when decoding.
In particular, LLRs are only passed upward to the left at first,
until λ1,0 is calculated, and a hard decision for v̂1,0 = û1 is
made using λ1,0 (v̂1,0 is 0 if λ1,0 > 0 and 1 otherwise). Only
then can λ2,0 be calculated by using (5) along with v̂1,0. Then
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v̂1,0 and v̂2,0 can be passed back through the graph so that v̂1,1
and v̂2,1 can be determined using the same procedure as the
encoder. With v̂1,1 and v̂2,1 known, the decoder can use (5) to
calculate λ3,1 and λ4,1, allowing v̂3,0 and v̂4,0 to be eventually
calculated. By continuing this procedure the message bits can
be successfully decoded in the order of û1, û2, . . ., and, under
the assumption that correct decisions are made, their effects
can be cancelled, enabling reliable estimation of as-of-yet
undecoded message bits. Note that since the values of the
frozen bits, ui i ∈ Ac, are deterministic and known to the
receiver, the decoder simply chooses v̂i,0 = ûi = ui for i ∈ Ac.

B. Code Design

To design the (N,K,A) polar code it is necessary to find
the set of indices for the information bits, A. This can be
done using the algorithm presented in [10], which is based
on density evolution, assuming that the all-zero codeword
is transmitted. Every node (i, j) in the graph is assigned a
probability density denoted by fi, j(λ) which is the density of
λi, j, the LLR calculated at that node. All nodes in the rightmost
column are assigned the channel LLR density f (0)

W (λ), i.e.
fi,n(λ) = f (0)

W (λ) for i = 1, . . . ,N. The density f (0)
W (λ) is defined

as follows. For a channel with transition probabilities fW (y|0)
and fW (y|1), define λ(y) = ln fW (y|0)

fW (y|1) . The channel LLR density,
f (0)
W (λ), is defined as the probability density function of λ(y),

when y has the density fW (y|0). For a binary input AWGN
channel with antipodal signaling {±1} and noise variance σ2,
we have λ(y) = 2y/σ2 and

f (0)
W (λ) =

1√
8π/σ2

exp
(
−

(λ − 2/σ2)2

8/σ2

)
. (6)

The algorithm calculates the densities at all the other nodes,
from right to left, according to

fi, j(λ) =

 fi, j+1(λ) i fi′, j+1(λ) if type(i, j) = I
fi, j+1(λ) ~ fi′, j+1(λ) if type(i, j) = II

(7)

where (i, j + 1) and (i′, j + 1) are the two right neighbor
nodes of (i, j), ~ denotes the convolution of the two densities,
and i denotes the operator for calculation of the density at
the output of a check node [10]. In particular, if X and Y
are two random variables with densities fX(x) and fY (y), and
Z = 2tanh−1

(
tanh X

2 tanh Y
2

)
, then the density of Z is written as

fZ(z) = fX(x) i fY (y). Each density calculated in the leftmost
column, fi,0(λ) is the density of the LLR of bit ui, λi,0, under
the assumption that the all-zero codeword was transmitted and
that u1, . . . , ui−1 were decoded correctly.

The first-error event probability, which is the probability
that ui is the first bit to be incorrectly decoded given that all
previously decoded bits are correct, is defined as

Pe(i) := Pr(ûi , ui|û1 = u1, . . . , ûi−1 = ui−1)

=

∫ 0−

−∞

fi,0(λ)dλ +
1
2

∫ 0+

0−
fi,0(λ)dλ (8)

These error probabilities can be sorted in ascending order, and
the indices of the K bits with the smallest error probabilities
can be used for A.

As an aside, it is worth noting that a rate-compatible polar
code can be found by fixing N and varying K, with AK the
information set for rate K/N, chosen as above. In this case AK

will contain all elements of AK−1 plus one additional index.
The transmitter and receiver only need to know the order of
the indices as determined above to produce codes with any
rate that is an integer multiple of 1/N. However, this type of
RC polar code is not useful for IR-HARQ schemes, where K
is normally fixed and N varied. In this case puncturing and
extending can be used to produce RC polar codes.

III. Puncturing algorithms

By transmitting only a subset of the code bits of a rate
K/N mother code, puncturing allows for the creation of
higher-rate codes. Decoding of punctured polar codes can be
accomplished by applying LLR values of zero to the nodes
in the rightmost column of the PC graph that correspond
to the punctured code bits. The more difficult challenge
is determining which bits to puncture to least degrade the
performance of the code.

In [11] the authors proposed a stopping tree puncturing
algorithm to determine which code bits to puncture to achieve
a desired rate. Code bits which depend on the least number of
message bits are punctured first. This algorithm is designed
for use with a belief propagation (BP) decoder [14], so
may not be applicable to SC decoding. The authors in [12]
proposed a quasi-uniform puncturing (QUP) algorithm which
punctures the code bits in such a way that it tries to keep
the distance between any two adjacent punctured code bits as
uniform as possible. QUP is shown to possess good properties
reflecting the minimum Hamming distance of the punctured
code. Neither of these heuristic schemes are necessarily useful
for SC decoding in IR-HARQ systems.

In the context of IR-HARQ, puncturing is better framed as
determining in which order to transmit the code bits, with the
idea that more “important” code bits should be transmitted
first, to increase the likelihood of early successful decoding.
However, there are no precise metrics for ranking the relative
importance of the code bits that are computationally feasible,
so instead we propose another heuristic algorithm. We note
that since the generator matrices of the polar codes are
involutory, the code bits and message bits are calculated from
each other with the same type of linear combination. For
example c1 is the summation of all message bits while u1
is the summation of all code bits, c2 = u2 + u4 + u6 + u8
while u2 = c2 + c4 + c6 + c8, and so on. So it seems that
there could be a similarity between the reliability of any
message bit ui and the importance of the corresponding code
bit with the same index ci. We therefore conjecture without
proof that, just as more reliable message bits are those with
indices with smallest first-error probabilities, more important
code bits might be those with the same indices. As a result
we propose to transmit the code bits in the same order in
which the message bit first-error probabilities increase. So if
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ui has smaller first-error probability than u j then code bit ci

is transmitted before code bit c j. Note that the problem of
designing an optimal puncturing algorithm for finite length
polar codes still remains open. The proposed method, as we
see in Section V, is nonetheless effective when combined with
the extending algorithm, regardless of whether or not the above
conjecture could be proved, or is even relevant.

Implementation of this algorithm is straightforward since, as
part of the code design process for constructing polar codes
using density evolution [10], the first-error event probability
of each message bit has already been calculated according to
(8). Whereas for code construction we were only interested in
selecting the K bits with the lowest probabilities, here we are
interested in the order of all N bits, ordered from lowest to
highest probability. Let Pe(i) be the first-error probability of
the message bit ui. We make an ordered set Ω = {ω1, . . . , ωN}

from {1, 2, . . . ,N} in such a way that

Pe(ωi) ≤ Pe(ωi+1). (9)

The code bits are then transmitted in the order of cω1 , cω2 , cω3 ,
. . ..2 As an example, suppose we have a polar code of length
N = 8 and we wish to only transmit four code bits. Our
algorithm would transmit code bits c8, c7, c6 and c4, as
their corresponding message bits have the smallest first-error
probabilities, whereas QUP would transmit c8, c4, c6 and c2,
and stopping tree puncturing would transmit c1, c2, c3 and c5.

IV. Extending algorithms
Whereas puncturing is a useful tool for constructing higher-

rate codes from a lower-rate mother code, extending allows us
to generate lower-rate codes from a higher-rate mother code.
For linear block codes this is typically achieved by either
retransmitting previously transmitted code bits or by adding
additional columns to the generator matrix to allow for the
creation of new code bits with different parity check equations.
Generally speaking, generation of new parity bits gives a
more powerful extended code than relying on retransmissions,
but comes at the expense of higher decoding complexity. In
particular, adding arbitrary columns to the generator matrix
would require adding additional nodes and edges to the PC
graph. With an increase to the number of edges connected
to a node would come an increase of the complexity of the
operations that need to be carried out at the nodes over the
relative simplicity of (4) and (5). Furthermore, the repetitive
symmetry of the butterfly shapes in the PC graph would also
be lost, leading to higher decoding and scheduling complexity.

In [13] the authors proposed a simple extending scheme
for polar codes that involves selective transmission and re-
transmission of the code bits along with the transmission
of the uncoded message bits. This simple scheme does not
require any significant decoding complexity since decoding is
performed on the unaltered PC graph of the mother polar code.

2It is important to note that, if we were designing a fixed-rate code, it would
be prudent to re-select the information set, A, once the puncturing pattern has
been determined, but that is not possible if rate-compatibility is required, so
is not done here. The originally selected information set of the mother code
remains fixed.

The LLR for a retransmitted code bit is added to the LLRs
from previous transmissions of that code bit prior to decoding,
and the LLR for a transmitted message bit is added to the
corresponding LLR produced by the decoder immediately
prior to making a hard decision on that bit. This simple scheme
is quite effective at high code rates, but performance suffers
with low rate extended codes.

In this section we propose a new extending algorithm for
polar codes that, like the method in [13], allows for decoding
on the unaltered PC graph, while also providing good codes
over a wide range of rates. Motivating this technique is the
observation that every node in the PC graph corresponds to a
linear combination of the message bits and could therefore be
considered as a code bit for a linear block code. We therefore
propose to extend the polar codes by transmitting the bit values
(vi, j) associated with an appropriately selected subset of all
of the nodes in the graph, not just those associated with the
message bits or the code bits of the polar code. By sending
only these bits (as opposed to arbitrary linear combinations
of the message bits), SC decoding is still straightforward.
Each node (i, j) in the graph must be modified to accept a
channel LLR corresponding to transmission of vi, j, and this
LLR should be added to the LLR computed according to (4)
or (5) before passing it to the neighbors to the left. If vi, j has
not been transmitted then a channel LLR of 0 should be used.
With this technique it is possible to produce extended polar
codes with nearly any rate from K/N down to K/(K + Nlog2N)
without having to resort to retransmitting bits.

The problem of designing a good extended polar code of
rate K/N′ that can still be decoded with the low-complexity
SC decoder, then, becomes one of choosing which N′ out
of the N(1 + log2N) potential “code bits” corresponding to
all of the nodes in the graph, to transmit to achieve the best
performance. For an IR-HARQ scheme, the problem is better
formulated as deciding which order to transmit these code bits
in so that the throughput is maximized. We refer to this order
as the extending sequence.

A. Proposed Algorithm

Suppose we have a mother code of rate RM = K/NM ,
NM = 2n, that has been punctured to rate RI = K/NI ≥ RM .
Equivalently, suppose we have a mother code of length NM

and we have transmitted a subset of NI of its code bits. We
then wish to transmit additional bits until decoding succeeds.
The additional bits may be, but are not necessarily, code
bits of the mother code, but must correspond to nodes of
the PC graph (from any column). The extending sequence
C = {(ω1, d1), (ω2, d2), (ω3, d3), . . .} defines the order in which
the additional bits should be transmitted. That is vω1,d1 should
be transmitted first, followed by vω2,d2 , and so on.

As our goal is to produce codes suitable for incremental re-
dundancy schemes, we want to choose the extending sequence
that maximizes the throughput. The throughput, T , is defined
as T = K

N
, where K is the length of the message word and N

is the average number of code bit transmissions for successful
decoding. If we let Ei denote the event that the decoding fails
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after i code bits (from any column of the PC graph) have been
transmitted, then

N =

∞∑
m=K

m Pr


m−1⋂

i=K

Ei

 ∩ Ec
m


=

∞∑
m=K

m
[

Pr
( m−1⋂

i=K

Ei

)
− Pr

( m⋂
i=K

Ei

)]
. (10)

To increase throughput, we need to decrease N. Defining
αm = Pr

(⋂m−1
i=K Ei

)
− Pr

(⋂m
i=K Ei

)
, we would like to choose

the extending nodes so that
∑∞

m=K mαm is minimized. How-
ever, for an extending sequence of length NE there are(
K + NMlog2NM

)NE possible different ways to choose the ex-
tending sequence and this grows exponentially with its length,
so this optimization problem is hard to solve. Furthermore,
even if we could find the optimized extending sequence that
maximized the throughput at one signal-to-noise ratio (SNR),
it may not be rate compatible with the optimized sequence at
another SNR.

We therefore propose a greedy algorithm for extending the
code by one bit at a time. Suppose that we have transmitted
exactly m − 1 code bits corresponding to m − 1 nodes in the
PC graph. We want to know which one node to transmit next
to help the throughput the most. Given all previous m − 1
transmitted bits, all αi i = K, . . . ,m − 1 are determined. We
would like to choose the next extending node in such a way
that it minimizes N =

∑∞
i=K iαi. Since αi are fixed for i < m,

this is equivalent to minimizing
∑∞

i=m iαi subject to
∑∞

i=m αi =

1 −
∑m−1

i=K αi. Observing that
∞∑

i=m

iαi ≥

∞∑
i=m

mαi

= m
∞∑

i=m

αi = m(1 −
m−1∑
i=K

αi), (11)

this lower bound can be reached by choosing αi = 0 ∀i > m,
and αm = 1 −

∑m−1
i=K αi. Since

1 −
m−1∑
i=K

αi = Pr

m−1⋂
i=K

Ei

 (12)

and

αm = Pr

m−1⋂
i=K

Ei

 − Pr

 m⋂
i=K

Ei

 , (13)

this implies the next node should be chosen in such a way that
it makes Pr

(⋂m
i=K Ei

)
zero. Since we cannot make this prob-

ability zero in practice, we try to minimize it by minimizing
Pr

(⋂m
i=K Ei

)
.

For a general linear block code there is no relationship
between the events Ei and Ei−1. In other words, mathematically
it is possible that decoding the code of length i − 1 succeeds
and that of length i does not, and vice versa. However, in
an IR-HARQ scheme, where the decoder decodes after it has
received each code bit, the decoder does not start decoding
the code of length i, unless it has already attempted decoding

the code of length i − 1 and has failed. So for the decoder of
an IR-HARQ scheme, we have Ei ⊂ Ei−1, which implies

Pr

 m⋂
i=K

Ei

 = Pr (Em) . (14)

Therefore, minimizing Pr
(⋂m

i=K Ei
)

can be done by minimizing
Pr (Em), which is simply the block error rate (BLER) after m
code bit transmissions.3 So we propose to find the extending
node in such a way that it reduces the BLER of the extended
polar code as much as possible. The BLER of a polar code
can be estimated by 1−

∏
i(1− Pe(i)), where Pe(i) is the first-

error probability of bit ui, corresponding to the LLR calculated
at the node (i, 0), and is given by (8). This implies that we
should choose the extending node such that it will minimize
1 −

∏
i(1 − Pe(i)).

Density evolution is used to evaluate the first-error prob-
abilities, using a technique similar to the approach used for
polar code design as described in Section II. Associated with
each node (i, j) in the PC graph are two densities: the channel
LLR density, f (0)

i, j (λ), and the calculated LLR density, fi, j(λ).
The channel LLR densities are

f (0)
i, j (λ) =

 f (0)
W (λ) if bit vi, j has been transmitted
δ(λ) otherwise

(15)

where f (0)
W (λ) is given by (6). The calculated LLR densities in

the rightmost column are initialized with fi,n(λ) = f (0)
i,n (λ), and

then the other densities are calculated from right to left using
(7), except that fi, j(λ) is also convolved with f (0)

i, j (λ). Once
fi,0(λ) has been calculated, Pe(i) can be calculated according
to (8), except for frozen message bits, where Pe(i) = 0 ∀i ∈ Ac.

To find the best extending node we could perform an
exhaustive search. Each node in the graph can be considered as
candidate for the best node, so we consider each node one at a
time. For each candidate node we calculate the LLR densities
of the message bits, fi,0(λ), the first-error probabilities, and the
metric 1−

∏
i(1− Pe(i)) which is used to represent the BLER

under the hypothesis that the candidate node is transmitted
next. The candidate node with the smallest metric is chosen
as the next extending node.

Because the complexity of this extending search is quite
high, it is necessary to reduce the complexity. To this end,
we define the depth-l left-neighborhood graph of node (i, j),
denoted by N

←−
l

i, j, as the subgraph of the PC graph consisting
of all nodes and edges that can be reached from (i, j) by
walking at most l edges only to the left. A similar defi-
nition holds for the depth-l right-neighborhood graph of a
node, denoted by N

−→
l

i, j. For example N
−→
0

1,0 = {(1, 0)}, N
−→
2

1,0 =

{(1, 0), (1, 1), (2, 1), (1, 2), (2, 2), (3, 2), (4, 2)}, N
←−
0

3,3 = {(3, 3)},
and
N
←−
2

3,3 = {(3, 3), (3, 2), (7, 2), (1, 1), (3, 1), (5, 1), (7, 1)}.

3It is noteworthy that if we did not have an IR-HARQ decoding scheme,
(14) would not hold mathematically. But we could still make use of it as
Pr

(⋂m
i=K Ei

)
≤ Pr (Em), and minimizing Pr

(⋂m
i=K Ei

)
can be turned into

minimizing its upper bound, Pr (Em).
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It is possible to reduce the complexity of calculating the
metrics. Once the densities of the current extending sequence
have been determined, to update the densities under the
hypothesis that candidate node (ω, d) is transmitted next
only requires updates to the densities in the depth-d left
neighborhood graph of (ω, d). Thus instead of calculating all
N(1 + log2N) densities for each hypothesis, we only need to
calculate 2d+1 − 1.

Algorithm 1: The proposed extending algorithm.

Input : Current densities: fi, j(λ) and f (0)
i, j (λ)

∀1 ≤ i ≤ NM , 0 ≤ j ≤ n
Output: The extending node (ω∗, d∗), updated densities

fi, j(λ), f (0)
i, j (λ)

1. Calculate error probabilities for message nodes
for i ∈ {1, . . . ,NM} do

Pe(i)←
∫ 0−

−∞
fi,0(λ)dλ + 1

2

∫ 0+

0− fi,0(λ)dλ

2. Choose the target node to improve: ĩ = argmaxiPe(i)
3. Calculate the possible metrics for all nodes in N

−→
L

ĩ,0
.

for (ω, d) ∈ N
−→
L

ĩ,0
do

Calculate the possible metric, αω,d, if the node
(ω, d) is extending:

αω,d ← next metric
({

fi, j(λ), f (0)
i, j (λ)|1 ≤ i ≤ NM , 0 ≤ j ≤ n

}
, (ω, d)

)
(16)

4. Find the node with the minimum metric:
(ω∗, d∗)← argminω,dαω,d

5. Update the densities in N
←−
d∗
ω∗,d∗ :

fω∗,d∗ (λ)← fω∗,d∗ (λ) ~ f (0)
W (λ)

f (0)
ω∗,d∗ (λ)← f (0)

ω∗,d∗ (λ) ~ f (0)
W (λ)

for l ∈ {1, . . . , d∗} do
for (i, j) ∈ N

←−
l
ω∗,d∗\N

←−−
l−1
ω∗,d∗ do

Let (i, j + 1) and (i′, j + 1) be the two right
neighbors of (i, j)

fi, j(λ)←

 fi, j+1(λ) i fi′, j+1(λ) if type(i, j) = I
fi, j+1(λ) ~ fi′, j+1(λ) if type(i, j) = II

fi, j(λ)← fi, j(λ) ~ f (0)
i, j (λ)

Even with this modification, however, the complexity of the
exhaustive search remains prohibitively large because of the
size of the search space, particularly for large N. We therefore
propose a suboptimal yet effective search algorithm. The
algorithm starts by calculating the first-error probability, Pe(i),
for each message node (i, 0) based on the current densities,
and selects the node with the largest probability. This node,
referred to as the target node (ĩ, 0), contributes the most to the
BLER of code. To reduce the search space, the algorithm only
searches for the best extending node from within the depth-L
right neighborhood graph of the target node ( i.e. N

−→
L

ĩ,0
), where

L is a parameter that limits the scope of the search. Since
choosing the extending node from outside of N

−→
L

ĩ,0
will not

Algorithm 2: The function next metric.
Input : Current densities:

fi, j(λ), f (0)
i, j (λ), 1 ≤ i ≤ NM , 0 ≤ j ≤ n,

the extending node (ω, d)
Output: The resultant metric:1 −

∏
i(1 − Pe(i))

1. Update the densities in N
←−
d
ω,d

fω,d(λ)← fω,d(λ) ~ f (0)
W (λ)

for l ∈ {1, . . . , d} do
for (i, j) ∈ N

←−
l
ω,d\N

←−−
l−1
ω,d do

Let (i, j + 1) and (i′, j + 1) be the two right
neighbors of (i, j)

fi, j(λ)←

 fi, j+1(λ) i fi′, j+1(λ) if type(i, j) = I
fi, j+1(λ) ~ fi′, j+1(λ) if type(i, j) = II

fi, j(λ)← fi, j(λ) ~ f (0)
i, j (λ)

2. Calculate first-error probabilities for message nodes
for i ∈ {1, . . . ,NM} do

Pe(i)←
∫ 0−

−∞
fi,0(λ)dλ + 1

2

∫ 0+

0− fi,0(λ)dλ
3. Return 1 −

∏
i(1 − Pe(i))

have any significant effect on Pe(ĩ), we can reduce the search
space to 2L+1 nodes instead of K + Nlog2N.

In summary, the extending sequence is created one node at
a time, by searching for the node that would most reduce the
BLER of the code. Given an extending sequence of length
m− 1, and the LLR densities f (0)

i, j (λ) and fi, j(λ) corresponding
to that sequence, algorithm 1 finds the best node to transmit
next, yielding an extending sequence of length m along with
the associated updated LLR densities.

The function next metric, takes the current densities at the
nodes of the graph (corresponding to the as-of-yet constructed
extended code) and a node to be considered as the extending
node and returns the metric representing the BLER of the
extended code for this extending node was used to extend
the code. To calculate the resultant metric, it needs to find
the updated densities the transmission of the extending node
would result in. It updates the densities in the same way
as the algorithm does when it chooses the extending node
using successive use of (7), taking into accounts all the
extending nodes in the left neighborhood graph of the chosen
node. When the densities are updated, the function returns
1 −

∏
i(1 − Pe(i)) as the metric representing the BLER of the

extended code.

B. A Less Greedy Extending Algorithm

Algorithm 1 is greedy in the sense that at each step of
the algorithm when it makes a decision on the next extend-
ing node, it chooses the best one, according to the metric.
However, this greediness may not result in the best final
extending sequence. It may be interesting to see how a less
greedy algorithm performs. We propose to introduce a small
perturbation in the algorithm: at each step, when it decides
on the extending node, it allows a small compromise so as to
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make it possible to choose nodes other than the best one. To
make this work, we choose the extending node randomly from
all possible extending nodes with a probability reflecting their
possible contribution to improve the next metric. In particular,
the next possible metrics for all nodes in the depth-L right
neighborhood graph of the target message node are calculated.
Then a probability is assigned to each of these nodes such
that it is proportional to the inverse of its corresponding next
metric. That is, after the algorithm calculates the next metric
αω,d for each node (ω, d) in N

−→
L

ĩ,0
, the node is assigned a

selecting probability ρω,d =
α−1
ω,d∑

j,l α
−1
j,l

. The algorithm chooses
the extending node to be (ω, d) with the probability ρω,d.
Obviously, the node which Algorithm 1 would choose, i.e.
that of the best metric, will have the largest chance of being
chosen.

C. The proposed IR-HARQ scheme

In this section we describe how an IR-HARQ scheme can be
implemented based on the proposed puncturing and extending
algorithms. The proposed IR-HARQ scheme transmits the
code bits, each corresponding to one node in the PC graph of
the mother polar code. The choice of the code bits to transmit
is made in two successive phases. In the first phase, which
is the puncturing phase, the code bits are transmitted in the
transmission order given by the proposed puncturing pattern
in Section III. In the second phase, which is the extending
phase, the code bits are transmitted according to the extending
sequence given by the extending algorithm in this section. The
transition time between the puncturing phase and the extending
one is determined by the intermediate rate RI .

For a given mother code of rate RM = K/NM , a puncturing
algorithm is used to determine the transmission order of the
NM code bits. Transmission begins with the transmission of
the first K code bits (in the specified order), and decoding is
attempted at the receiver. If decoding fails, additional code bits
are transmitted, one at a time, with decoding attempted after
each bit, until decoding is successful.4 After NI of the code bits
of the polar code have been transmitted, for some NI ≤ NM , the
transmitter begins transmitting bits according to the extending
sequence. Let RI = K/NI ≥ RM be the intermediate rate after
which code bits are selected from the extending sequence
instead of according to the puncturing pattern. The transmitter
continues to send code bits over the channel until decoding
succeeds at the receiver and an acknowledgement is received
at the transmitter.5 The extending algorithm is run to give
a long enough extending sequence to consider the case that
the SNR is low and a lot of redundancy code bits may be
required for successful decoding. As we will show in the next

4A more practical method is to send additional code bits in small clusters,
with decoding attempted after each cluster. The resulting degradation in
throughput arising from this increased granularity will be negligible if the
cluster size is sufficiently small relative to K.

5Note that unlike LDPC codes, the SC decoder of the polar codes will
always produce a valid codeword. In order for it to know if a decoding failure
has occurred, one could use an error-detecting code like a CRC code to declare
the decoding failure. This would lead to a certain rate loss in the throughput
performance, but the rate loss is negligible as the length of the message word
increases.

Es/N0
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Fig. 2. The BLERs of punctured polar codes with different puncturing
algorithms.

section, the throughput of the system depends on the chosen
mother code rate RM , and the intermediate rate RI ≥ RM , to
a significant amount. In the following section we present the
simulation results for the proposed IR-HARQ scheme and find
good intermediate rate RI for a given mother code rate RM .

V. Simulation Results

In this section we present Monte-Carlo simulation results
to evaluate IR-HARQ schemes which use the different com-
binations of puncturing and extending methods presented in
Sections III and IV. We assume a BIAWGN channel with
antipodal signaling {±1}. SNR is defined as 10log (1/N0),
where N0 is the one-sided power spectral density of the
Gaussian noise. Let K be the length of the message word.
All mother codes are designed according to [10].

We begin with an investigation into the effects of the
puncturing algorithms. Figure 2 shows the BLER performance
of a polar code of length NM = 2048 and rate 0.5 that has been
punctured to rate 0.7 using each of the three puncturing al-
gorithms described in Section III. While the proposed method
outperforms the stopping tree algorithm, the QUP algorithm is
even better. In fact, the code produced with QUP is almost as
good as a directly generated rate 0.7 Arikan polar code with
NM = 2048 (also shown in Figure 2), despite having a shorter
codeword length (1462 vs 2048 code bits). Codes produced
with QUP also have the advantage over Arikan’s codes in
that the codeword length is not limited to a power of two.
Unfortunately, with QUP the set of frozen bits is determined
after the puncturing pattern has been identified. As a result,
codes generated with different puncturing lengths are not rate-
compatible, and so QUP is not applicable to our system where
a mother code with a fixed frozen set is to be punctured and
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Fig. 3. Throughput of the proposed IR-HARQ scheme with the proposed
puncturing algorithm for different RM , all with RI = RM .
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Fig. 4. Throughput of the proposed IR-HARQ scheme with the proposed
puncturing and extending algorithm with different RIs, with RM = 0.5.

extended to different rates without changing the frozen set. In
an attempt to find a good puncturing scheme for our system,
we considered a modified QUP scheme where the transmission
order of the punctured bits is determined according to QUP,
but the frozen set is fixed and determined prior to puncturing.
Unfortunately, as can be seen in Figure 2, the performance
of the modified QUP is not satisfactory, so we employ our
proposed puncturing algorithm in our system.

From Fig. 3 we can see the impact of the choice of the
mother code rate on the throughput of the IR-HARQ system.
Using a high-rate mother code gives superior performance

at high SNRs but inferior performance at low SNRs while
the converse is true for low-rate codes. To realize reasonable
throughput over a wide range of SNRs it therefore seems
advisable to choose RM to be a moderate value, such as
RM = 0.5.

It is possible to start extending before all the code bits of
the mother code have been transmitted, i.e. RI > RM . Fig. 4
shows the effect of rate RI for a mother code rate of RM = 0.5.
As illustrated, increasing RI (i.e. reducing the number of
transmitted code bits before commencing extending) leads to
a significant gain in throughput at high SNRs, while leading
to only a very slight reduction at low SNRs. We therefore
recommend using RI = 1, as arguably this gives the best
overall performance. In this case the puncturing phase involves
transmitting only NI = K code bits, and those K code bits have
the same indices as the K information bits, A. Once these
K code bits have been transmitted, the extending algorithm
is used to determine the extending sequence. In theory one
could start the extending phase even earlier (i.e. RI > 1), but
this was found to be ineffective, because the code was not
rate-1 decodable (which limits the throughput at very high
SNRs), or degrades the performance at low SNRs because of
the greedy nature of the algorithm.

Fig. 5 compares the throughput of the proposed IR-HARQ
scheme with parameters (RM ,RI) = (0.5, 1) to the throughput
of IR-HARQ schemes based on Raptor and LDPC codes. As
can be seen the scheme based on Raptor codes can perform
very close to the capacity at low SNRs, while leading to
significant throughput drop-off at high SNRs due to non-zero
overhead of the mother code. The scheme based on LDPC
code, uses both puncturing and extending of an LDPC mother
code of rate 8/13, similar to [7]. The mother code is punctured
using the algorithm in [5] to get higher-rate codes, and is
extended by adding a number of columns to the right corner
of the parity check matrix of the mother code and an equal
number of rows to its bottom (for more details see [7]), to get
lower-rate codes. It can be seen that this scheme can get close
to the capacity at intermediate SNRs. However throughput
degradation occurs at both high and low SNRs. In comparison
to these schemes, the proposed method can remain close to the
capacity for a wider range of SNR.

We also simulated the less greedy version of the extending
algorithm. Because this algorithm is random, to measure the
performance of IR-HARQ schemes constructed with this algo-
rithm, we took 20 different realizations of the algorithm output.
The average of the 20 curves was a bit worse than the proposed
greedy algorithm and is not shown here. The performance of
the best realization provided by the less greedy algorithm is
shown in Fig. 5. It shows slightly lower throughput compared
to the greedy algorithm at high SNRs, and a small improve-
ment at low SNRs. Because the greedy algorithm tries to
maximize the throughput with each transmitted code bit, it is
very effective at high SNRs, but those decisions made early in
constructing the extending sequence can lead to weaker low-
rate codes. The less greedy algorithm sacrifices the high-rate
performance for better low-rate performance. Which algorithm
is preferable depends on the application.

Fig. 5 also provides a comparison of the proposed scheme
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Fig. 5. Throughput comparison of the proposed IR-HARQ scheme with other
alternatives.

to the scheme proposed in [13]. In the approach proposed
therein, the transmitted code bits are either the code bits or the
message bits. In other word, they are chosen to be either from
column 0 or n, which makes it a special case of our proposed
scheme where the code bits can be possibly chosen from all
columns of the graph. As can be seen, allowing the extending
nodes to be chosen from any nodes of the graph, if chosen
appropriately, can result in improvements in the throughput.
However, because of the differences in the choice of some
system parameters between our scheme and the results in [13],
a more detailed comparison is needed.

In [13], transmission is carried out in clusters of S bits at
a time, with decoding attempted after each cluster has been
received, whereas the results for our scheme use a cluster
size of S = 1. Furthermore, in [13] the maximum number
of transmitted code bits is limited to some value, Nmax, and
if the message is not recovered after receiving Nmax code
bits, a transmission failure is declared and the message is
retransmitted from the beginning. In our scheme no such limit
is necessary, but can be implemented. The effect of S and
Nmax on the throughput are shown in Fig. 6. As can be seen,
increasing S from 1 to 32, while keeping Nmax unlimited,
causes a degradation in the throughput at high SNRs. This
degradation is caused by the increased granularity between
decoding attempts, whereby a whole cluster is transmitted even
through only a few additional bits may have been needed. At
low SNRs the cluster size is less important, but limiting Nmax

does have an effect. As shown in Fig. 6 decreasing Nmax leads
to a decrease in throughput. In general, it is better to continue
transmitting additional code bits than to drop a packet and
restart, although practical system-level considerations gener-
ally impose some limit on Nmax eventually.

It is also worth seeing the effects of increasing the length
of the mother code on the performance of the extending
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Fig. 6. Throughput of the proposed system for different number of decodings
with a cluster size of S = 32.
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Fig. 7. Throughput of the proposed IR-HARQ scheme for different lengths
of the mother polar code, with RM = 0.5 and RI = 1.

algorithms since polar codes are theoretically optimum only
in the asymptotic sense. Using the technique in [10], we
have designed mother polar codes of three different length:
NM = 1024, 2048, and 65536. Fig. 7 depicts the throughput
of the three different codes where used with the proposed
puncturing and extending algorithms. As can be seen the
NM = 2048 code is up to 0.3 dB better than NM = 1024 at
intermediate SNRs, while this gain becomes smaller at lower
SNRs. This improvement in the throughput brought by the
increase in length seems to be limited as a length of 65536
does not yield significant gain over the length NM = 2048.
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VI. Conclusion

We have introduced the concept of polar code extending
as an effective method to construct polar codes for IR-HARQ
schemes. The framework of polar code extending is quite gen-
eral and includes the schemes which retransmit the code bits or
the message bits and perform maximum ratio combining as a
special case. It allows a possibly repeated transmission of code
bits from a set of code bits of size NMlog2NM +K, for a mother
polar code of length NM with message size K. We proposed a
throughput-specific extending algorithm to extend a possibly
punctured polar code. The proposed extending method, in
conjunction with the proposed puncturing method can result
in a universal capacity-approaching IR-HARQ scheme that
can be implemented with the same encoding and decoding
complexity as the original polar mother code.

For future work, we note that finding the best next NE ex-
tending nodes from the set of code bits of size NMlog2NM + K
can be computationally infeasible for large values of NM as the
size of the search space is (NMlog2NM + K)NE which grows
exponentially with NE . The proposed method is one search
method to find these extending nodes by selecting them one
at a time from within a certain subset of all nodes in the
PC graph. One could think of other search methods which
can search for the best extending node from within the entire
graph, as opposed to from within a subset of the graph, while
maintaining an acceptable search complexity. Also as another
attempt to reduce the greediness, finding the best D extending
nodes at a time can be considered in conjunction with an
efficient search algorithm.
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