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The fluctuations of crude oil prices affect the economic growth of importing and exporting countries as well as
regional security and stability. The intrinsic complex features of oil prices and the uncertainty in economic policy
pose challenge on the accurate forecasting of crude oil prices. This paper employs independent component anal-
ysis (ICA) to analyze crude oil prices which are decomposed into several independent components correspond-
ing to different types of influential factors affecting oil price. We also propose a novel ICA-based support vector
regression scheme, namely ICA-SVR2, for forecasting crude oil prices. The ICA-SVR2 starts from the use of ICA
to decompose oil price series into three independent components, which are respectively forecasted by SVR
models. The forecasted independent components are then integrated together by developing a new SVR model
with independent components as inputs for forecasting crude oil prices. Our experimental results show the use-
fulness of ICA in identifying the driving factors behind the fluctuations of crude oil prices. A comparative study
between ICA-SVR2 and other two models shows that ICA-SVR2 is an effective tool in forecasting crude oil prices.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Crude oil is oneof themost actively traded commodities in theworld
(Alvarez-Ramirez et al., 2012). The large fluctuations of crude oil prices
affect the economic growth of importing and exporting countries as
well as regional security and stability (Wu and Zhang, 2014). Recent de-
cades have seen themore frequent fluctuation of crude oil prices, which
attracted the concern from both market participants and governmental
regulators (Zhang, 2013). Undoubtedly, accurate oil price forecasting is
of strategic significance in multiple aspects such as determining the
timing for crude oil importing and ensuring economic security (Zhang
and Wang, 2013).

The intrinsic complex features of oil prices and the uncertainty
in economic policy pose big challenge on the accurate forecasting of
crude oil prices (Bekirosa et al., 2015).Many scholars have thus contrib-
uted to develop novel methods and models for improving the accuracy
of crude oil price forecasting. Fan and Li (2015) provided a relatively
comprehensive review of major crude oil price forecasting models and
found that artificial intelligence models (e.g. neural networks and
support vector machines) had received increased attention. Recent
methodological developments of artificial intelligence-based forecast-
ing models can be found in Zhu and Wei (2013), Yu et al. (2014),
Azadeh et al. (2012; 2015), Barunik and Krehlik (2016), Chen and
Chen (2016), Mostafa and El-Masry (2016), and Oztekin et al. (2016).
A-based support vector regr
echfore.2016.04.027
In crude oil price forecasting, Jammazi and Aloui (2012) combined
wavelet decomposition and artificial neural network to achieve better
forecasting performance. He et al. (2012) showed the effectiveness of
a wavelet decomposed ensemble model. Tang and Zhang (2012) devel-
oped a multiple wavelet recurrent neural network simulation model to
analyze crude oil prices. Guo et al. (2012) proposed an improved sup-
port vector machine (SVM) model by using genetic algorithm to opti-
mize the parameters. Zhang et al. (2015) proposed a hybrid method
by combining SVM with ensemble empirical mode decomposition and
particle swarm optimization models to improve the forecasting perfor-
mance. Wang et al. (2016) recently proposed a Markov switching
multifractal volatility model to forecast crude oil return volatility.

Of the existingmethodological developments in crude oil price fore-
casting, the hybridmodels, e.g. the Divide-and-Conquer (DAC)method-
ology, are found to be particularly useful owing to its potential for
capturing the intrinsic features of oil price series (Fan and Li, 2015).
The DAC methodology initiated by Professor Shouyang from Chinese
Academy of Sciences follows the “decomposition and ensemble” princi-
ple (Lai, 2005), which is usually implemented by integrating several
types of data analysis and forecasting techniques. Examples of some
newly developed DAC models for forecasting crude oil prices are Tang
et al. (2015) and Yu et al. (2014, 2015, 2016) and Tang et al. (2015).
In the DAC models, the first step is to decompose the crude oil price se-
ries into several new data series, whose intrinsic features may be iden-
tifiedmore easily than the original series. In this process, an issue is that
the new data series may not be independent from each other, which
brings difficulty in interpreting their economic implications and identi-
fying the intrinsic features behind the fluctuation in crude oil prices.
ession scheme for forecasting crude oil prices, Technol. Forecast. Soc.
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To resolve the issues, in this paper we propose a novel DAC scheme
for forecasting crude oil prices by integrating independent component
analysis (ICA) with support vector regression (SVR) techniques. ICA, a
relatively new multivariate statistical analysis technique, is used to
extract the key features (or components) embedded in crude oil price
series. An attractive feature of ICA is that it will make the resulting com-
ponents be independent from each other to a certain degree. While ICA
as a feature extraction technique has been successfully applied in other
fields like microarray classification (e.g. Fan et al., 2009, 2010), none of
previous studies ever explored the use of ICA in analyzing crude oil
prices series which should be treated as one main contribution of this
paper. Through ICA, we decompose crude oil prices into three indepen-
dent series whichmay reflect the influences of three types of factors on
crude oil prices. Thenwebuild individual SVRmodels for forecasting the
three components, with which an integrated SVR model is constructed
for forecasting crude oil prices. Our empirical analysis shows not only
the usefulness of the proposed forecasting scheme but also the effec-
tiveness of ICA in identify the driving factors behind the fluctuations
in crude oil prices.

The rest of the paper is organized as follows. Section 2 introduces our
ICA-based support vector regression scheme for forecasting crude oil
prices. In Section 3, we propose a case study based on four datasets on
weekly oil prices. Our modeling results show the effectiveness of ICA
and the proposed scheme in forecasting crude oil prices. Section 4
concludes this study with possible future research directions.

2. Methodology

2.1. Independent component analysis

ICAwas originally proposed for isolating independent source signals
from linearlymixed signal (Jutten andHerault, 1991). Theoretically, it is
a multivariate statistical technique to estimate independent compo-
nents from the observed data by using high-order statistics (Comon,
1994). In the past two decades, many scholars have contributed to ex-
amine both theoretical and application aspects of ICA. In application,
the use of ICA covers different areas such as microarray data classifica-
tion (Fan et al., 2009, 2010), groundwater pumping analysis (Liu et al.,
2015), power system disturbance identification (Ferreira et al., 2015),
financial time series forecasting (Lu et al., 2009) and portfolio selection
(Hitaj et al., 2015). Although ICA has gained popularity in different
areas, its application to analyze and forecast crude oil price are still rare.

The fluctuation of crude oil prices could bedriven by different factors
such as economic situation and extreme events. Since these factors are
likely to generate different influences on the crude oil prices, it is rea-
sonable to separate them from each other to identify the main driving
forces behind oil price fluctuations as well as achieve better forecasting
performance. Since the process is akin to the decomposition of mixed
signal, in this paper we propose to apply ICA to analyze crude oil prices
and derive independent components which are linked to different
categories of influential factors. Technically, the basic ICA model can
be written as

X ¼ AS ð1Þ

where X=(x1,x2,⋯xn)T denotes n by mobservations on mixed signal
(e.g. crude oil prices), S=(s1, s2,⋯sn) denotes independent n by m
unknown independent source signals (or influential factors), and A
denotes a n by n mixing matrix. The purpose of ICA is to obtain the
de-mixing matrix W (or A−1) such that

y ¼ WX ð2Þ

where y denotes the independent components estimated from the
observed data.
Please cite this article as: Fan, L., et al., An ICA-based support vector regr
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The computation process in ICA is implemented through setting
appropriate estimation principles and solving the resulting optimiza-
tionmodels. The estimation principles help to ensure the derived source
signals as independent as possible, and three commonly used ones are
maximumlikelihood, nongaussianitymaximization, andmutual informa-
tionminimization (Hyvärinen et al., 2001). Each principle will generate a
specific objective function whose optimization enables the estimation of
independent components. Various algorithms may be used to solve the
optimization model, among which the FastICA algorithm is a popular
and effective one owing to its theoretic strengths (Hyvärinen and Oja,
2000). In this paper, we follow the mutual information minimum princi-
ple and adopt FastICA algorithm to derive the independent components
from the observations on crude oil prices.

2.2. Support vector regression model

Support vector machine as a novel machine learning technique has
successfully been used to dealwith high-dimensional nonlinear classifi-
cation and regression (Vapnik and Cortes, 1995). When facing linearly
inseparable situation in low dimensional space, support vector machine
can be used to map the original dataset in low dimensional space to a
new dataset in high dimensional space so that they become linearly
separable (Gunn, 1998; Tay and Cao, 2001). In crude oil price forecast-
ing, several scholars ever explored the usefulness of support vector
regression (SVR), e.g. Xie et al. (2006), Khashman and Nwulu (2011)
and Zhao et al. (2015). Theprocess of constructing a SVRmodel is briefly
described below.

Suppose that we have a training dataset T={(x1,y1),⋯(xn,yn)},
where xi and yi are respectively the observations on input and output
variables. In SVR, the goal is to find a f(x) that is as flat as possible
while has most ε deviation from the observed targets yi for all the train-
ing data (Smola and Scholkopf, 2004). To reach the purpose while
ensure the feasibility of the resulting optimization problem, Vapnik
and Cortes (1995) provide the following formulation:

min
1
2

wk k2 þ C
XN
i¼1

ξi þ ζ ið Þ

s:t: wTxi þ b
� �

−yi ≤ ε þ ξi
yi− wTxi þ b

� �
≤ ε þ ζ i

ξi; ζ i ≥ 0; i ¼ 1;2;⋯;N

ð3Þ

where ‖w‖2 in objective function is the confidence range reflecting the
generalization ability, ξi and ζi are slack variables that represent the

upper and lower limits of allowable error,∑
N

i¼1
ðξi þ ζ iÞdenotes the exper-

imental risk reflecting the learning capacity of function, ε N 0 is an insen-
sitive loss coefficient, and parameter CC≥0) is a penalty factor. Eq. (3)
is a convex optimization problem which can be easily solved. More
detailed explanation on the model can be found in Smola and Scholkopf
(2004).

In SVR, the dual problem of Eq. (3) is often derived by using the
Lagrange multiplier method, based on which a linear regression func-
tion can finally be constructed as

f xð Þ ¼ wTxþ b ¼
XN
i¼1

α î−αiÞK xi; xð Þ þ b
� ð4Þ

where αi;α ̂i are Lagrange multipliers. Usually only a portion of the
parametersαi;α î; b are nonzero and their corresponding samples are
called support vectors.

The next step in constructing a satisfactory SVR model is to choose
an appropriate kernel function that determines the algorithm form
used (Gunn, 1998). When seeking the optimal function of the dual
ession scheme for forecasting crude oil prices, Technol. Forecast. Soc.
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Fig. 1. Schematic description of ICA-SVR2 forecasting model.
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problem,we can replace the inner product operation in dual function by
kernel function as follows:

K xi; xð Þ ¼ ϕ xið Þ;ϕ xð Þh i: ð5Þ

The nonlinear regression function can then be translated as follows:

K xix j
� � ¼ exp − xi−xj

� �2��� ���=σ2
n o

ð6Þ

where σ is the width of kernel function. While there are different types
of kernel function, in this paper we choose the radial basis kernel func-
tion as adopted by many earlier studies. The grid searchmethod is then
used to optimize the parameters of the SVR model constructed.
Fig. 2. Four international crude oil price series (unit: US $).

Please cite this article as: Fan, L., et al., An ICA-based support vector regr
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2.3. ICA-based SVR model for forecasting crude oil prices

An integrated forecasting model often combines two or more
different forecasting methods to make use of their strengths and
improve the forecasting performance (Lai, 2005). In view of the
merits of ICA and SVR, in this paper we propose an ICA-based SVR
scheme for analyzing and forecasting crude oil prices. Its key idea
is to use ICA to decompose the original crude oil price series into
several independent components, which are separately predicted
by using SVR technique. The individual forecasting results are final-
ly integrated by building another SVR model. As such, our model is
referred to as ICA-SVR2. Fig. 1 provides a schematic description of
the ICA-SVR2 model.
Fig. 3. Three independent components of international oil price series.
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Fig. 5. The effect of σ on forecasting performance (ε=0.01).

Fig. 4. Root mean square error of SVR forecasting model under different ε.
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Fig. 6. The effect of C on forecasting performance (ε=0.01).
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In detail, the ICA-SVR2 model consists of the following three steps:

Step 1. Use ICA to decompose the crude oil price time series into m
independent component {IC1t}t=1

t=n , {IC2t}t=1
t=n ,⋯{ICmt}t=1

t=n.
Step 2. Develop SVRmodels for each of the independent components

and do the forecasting one by one.

In Step 2, we need to seek the optimal parameters (C,ε,σ) for each
independent component according to its data characteristics, based on
which we can construct the component-dependent SVR models to

forecast the independent components fICiðtþ1Þgt¼nþk; i ¼ ð1;2;⋯;mÞ; k
¼ ð1;2;⋯; lÞ. In the process, the lag order p of oil price series is taken
as an input parameter. Repeat the process until we get the estimate of
the l-period.

Step 3. Build a SVR model to integrate the forecasting results of
independent components.

In this step, we use the estimates of independent components as
inputs to build a SVR model which is used to forecast crude oil prices.
The final estimate xiðnþkÞ can be represented by

xî nþkð Þ ¼ g IC ̂1 iþkð Þ; :IC ̂2 iþkð Þ;⋯; IC ̂m tþkð ÞÞ
�

ð9Þ

where i=(1,2,⋯ ,m) ,k=(1,2,⋯ , l).

3. Crude oil price forecasting results

3.1. Data and model evaluation criteria

Weapply our proposed scheme to four commonly used crude oil price
series, i.e. British Brent crude oil spot, AmericanWest Texas Intermediate
Table 1
Parameter settings of SVR forecasting models by independent components.

C ε σ No. of support vectors

IC1 8 0.01 0.0313 31
IC2 2 0.01 2 162
IC3 128 0.01 0. 5 85

Please cite this article as: Fan, L., et al., An ICA-based support vector regr
Change (2016), http://dx.doi.org/10.1016/j.techfore.2016.04.027
(WTI) crude oil spot, Brent future exchanged in New York mercantile
exchange (NYMEX) and WTI future. The weekly data from July 2, 2004
to June 27, 2014, which consists of 4 × 522 observations, are used in
our study. All the data come from the website of US Energy Information
Administration. Fig. 2 shows the trends of the four oil price series.

To evaluate the forecasting performance of the proposed model,
we adopt the following three criteria, namely root mean square error
(RMSE), mean absolute percentage error (MAPE) and direction change
statistics (DS). RMSE and MAPE are often used to assess the forecasting
accuracy of each model on average. As discussed in Shin et al. (2013),
the direction of oil price is also important for assessing a model's ability
in accurately forecasting the direction of crude oil price fluctuations.
Therefore, in this paperwe follow Shin et al. (2013) to choose the direc-
tion forecasting accuracy indicator DS for use. Their computational
formula are respectively expressed by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
t¼1

Tt−Ptð Þ2

n

vuuut
ð11Þ

MAPE ¼ 1
n

Xn
t¼1

Tt−Pt

Tt

� �				
				 ð12Þ

DS ¼ 100
n

Xn
t¼1

dt ;dt ¼ 1; Pt−Pt−1ð Þ Tt−Tt−1ð Þ≥0
0; Pt−Pt−1ð Þ Tt−Tt−1ð Þ b 0



ð13Þ

where Tt (t=1,2,⋯ ,n) is the actual value of the crude oil price on time
t, Pt (t=1,2,⋯ ,n) is the predicted value, and n denotes the sample size
of prediction values.
Table 2
Forecasting performance of three independent components.

RMSE MAPE DS

IC1 0.0108 0.0275 99.99%
IC2 0.1093 0.2083 87.12%
IC3 0.0229 0.0131 99.99%

ession scheme for forecasting crude oil prices, Technol. Forecast. Soc.
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Fig. 7. The effect of σ on forecasting performance (ε=0.01).
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3.2. Estimation of independent components

One primary task in applying ICA to estimate the independent com-
ponents of crude oil price series is to determine the number of indepen-
dent components. In this paper, we apply the Kaiser method and the
cumulative contribution rate principle to determine it. First, the covari-
ancematrix and the eigenvalues of four international oil price series are
computed. Observing the eigenvalues,we find that they decrease quick-
ly and the last eigenvalue is less than unity. Following the cumulative
contribute rate principle, we find that the cumulative contribution
rate of the first two eigenvalues are 98.8%. However, if the number of
independent components is too small, we may ignore some influential
factors andweaken the advantage of ICA over conventionalmultivariate
statistical techniques. Based on the considerations, we finally determine
the number of independent components as three.
Fig. 8. The effect of C on forecast

Please cite this article as: Fan, L., et al., An ICA-based support vector regr
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Next, we apply the Fast-ICA algorithm to estimate the three inde-
pendent components (ICs) hidden in the original oil price series. The
results obtained are shown in Fig. 3. Clearly, the three independent
components show different volatility characteristics that may be rele-
vant to different influential factors. IC1 shows the characteristics of
low frequency and high fluctuation. It may represent the impact of
extreme events like major economic or political events (Zhang et al.,
2009). The most prominent parts can be observed in 2008–2009
when oil price fluctuate greatly during the economic crisis. IC2 displays
mild but more frequent fluctuation characteristics. It may represent the
impacts of some emergency events like natural disaster and geopolitics
conflicts. Since the influence of this sort of factors on international oil
price is relatively small, we treat it as high-frequency short-term fluctu-
ation. IC3 fluctuates slowly but may reflect the long-term trend of oil
price series.
ing performance (ε=0.01).

ession scheme for forecasting crude oil prices, Technol. Forecast. Soc.
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Fig. 9. Forecasting result of WTI crude oil price by ICA-SVR2 (Dollars/barrel).

Table 3
Forecasting result of ICA-SVR2 when the portion of training dataset varies.

Proportion of training set RMSE MAPE DS(100%)

60% 3.3425 0.0351 81.21%
70% 2.1999 0.0289 83.33%
80% 1.6251 0.0167 88.31%
90% 1.5271 0.0150 92.31%
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3.3. Forecasting independent components

Using the three independent components estimated in Section 3.2,
we construct three SVR forecasting models separately. Note that the
weekly crude oil price data is often relevant the data in previous period,
we set the lag order p=1 in our experiments. That is to say, we use the
actual data for period t as input to forecast the independent components
for period t + 1. Regarding the choice of kernel function, this paper
chooses Gaussian radial basis kernel function kernel.

We use IC1 as an example to show the process of searching for optimal
parameters in model development. The weekly observations from 2 July
2004 to 28 December 2012 are used for training and theweekly observa-
tions from 4 January 2013 to 27 June 2014 are used for testing. When
using grid searching method to determine the parameters, we set the
search ranges of ε and C as {1,0.1,0.01,0.001} and (2‐1,28), respectively.
The range of kernel parameter σ is (2‐5,24), and the step size is set as 1.
Hence there are 4 × 10 × 10 parameters for (C,ε,σ). The training samples
are classified into five equal sections. Four of them are used for training
and the remaining one is used for validation.

We first determine the hyper-parameter ε. Fig. 4 shows the values of
RMSE under different ε. Comparing the four sub-figures in Fig. 4,
we may find that the forecasting performance is not sensitive to ε.
Under different ε, the minimum training errors keep no changes,
i.e., RMSE = 0.0039. Hence, this paper adopts the default setting of
ε=0.01.

Figs. 5 and 6 show the prediction results under different values of C
and σ, respectively. It can be seen from Fig. 5 that under a fixed C the
model does not show good convergence effect with the increase of σ.
Fig. 6 shows that when kernel parameter σ keeps no change, the fore-
casting performance converge gradually and then diverge with the in-
crease of C. By consolidating the results, we finally select C=8 and
σ=0.0313 for building the SVR model for forecasting IC1.

Table 1 provides the settings of parameters in constructing SVR
models for forecasting the three independent components. Using the
SVR models with the parameter values, we forecast the three indepen-
dent components respectively and the results of forecasting perfor-
mance are displayed in Table 2.

It can be seen from Table 2 that the SVRmodel has better forecasting
performance for the items of low-frequency trend and important events
(i.e. IC1 and IC3). However, the forecasting performance for high-
Please cite this article as: Fan, L., et al., An ICA-based support vector regr
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frequency short-term volatility item (i.e. IC2) is not as good as other
two components. This could be explained by the fact that the component
may be linked to speculation activity and some unexpected factors like
weather and strike that are unpredictable.

3.4. Forecasting crude oil prices

We take the three independent components andWTI crude oil price
series for the same period of time to build a SVR model for forecasting
crude oil prices. The training sample is used to construct the model. In
forecasting crude oil prices, the forecasting results of three independent
components are treated as inputs. In selecting model parameters, we
still use the grid search procedure to determine the parameter proce-
dure of determining the best parameter values. Figs. 7 and 8 show the
effects of σ and C on forecasting performance.

Since the forecasting performance of the SVRmodel is insensitive to
ε, we still takes the default value 0.01 for use. As shown in Fig. 7, the
model achieves the best forecasting performance when σ=0.0625 for
a fixed C. Fig. 8 shows that the forecasting performance shows a conver-
gence trendwith the increase of C for a fixedσ. Thefinal optimal param-
eters of the SVR forecastingmodel are then set as C=4,σ=0.0625,ε=
0.01.

Using the ICA-SVR2 forecasting model constructed, we take the
three independent components as predictors to forecast the WTI
crude oil prices for the testing period. Fig. 9 shows the actual and fore-
casted oil price series. It can be found that the forecasting results
match the actual oil price series quite well, which shows that the pro-
posed model performs well in forecasting the trend of crude oil prices.

In order to evaluate the effectiveness and robustness of the ICA-SVR2

model, we change the share of the training dataset in the entire dataset
and compares the forecasting performance under different scenarios.
ession scheme for forecasting crude oil prices, Technol. Forecast. Soc.
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Fig. 10. Crude oil price forecasting results by three methods (Dollars/barrel).
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Table 3 shows the results obtained. Not surprisingly, when more data
are used to build the model, the forecasting performance gradually
improves.When the share of trainingdataset is as small as 60%, the fore-
casting performance is still satisfactory. In particular, the accuracy rate
of direction forecasting results is still above 80%.
3.5. Comparison with other models

In order to further evaluate the forecasting performance of ICA-SVR2

in a more comprehensive way, in this paper we also build a single SVR
model and ICA-ARIMA-SVR model and compare their forecasting per-
formance with the ICA-SVR2 model. The single SVR model is directly
constructed from the WTI crude oil price series. In the ICA-ARIMA-SVR
model, ICA is still used to decompose the oil price series into three inde-
pendent components, which are respectively forecasted by ARIMA
method. Based on the independent components and the WTI crude oil
price series, we construct a SVR model to forecast crude oil prices with
independent components asmodel inputs. Fig. 10 shows the forecasting
results by three differentmodels. The actualWTI oil price series are also
included for comparison purpose. It can be seen that the forecasting
results by ICA-ARIMA-SVR and ICA-SVR2 models match the actual oil
price series quite well. However, the single SVR model seems to have
poor forecasting performance.

Table 4 shows the results of RMSE, MAPE and DS for different
models. Clearly, both ICA-ARIMA-SVR and ICA-SVR2 have better fore-
casting performance than singpaore SVR model. It might be an indica-
tion that the use of ICA can improve the performance of crude oil price
forecasting significantly. Comparing ICA-ARIMA-SVR with ICA-SVR2,
we find that the latter has better forecasting performance.
Table 4
Forecasting deviation comparison of three methods.

RMSE MAPE DS (100%)

SVR 3.9394 0.0537 64.94%
ICA-ARIMA-SVR 1.8855 0.0189 87.01%
ICA-SVR2 1.6251 0.0167 88.31%

Please cite this article as: Fan, L., et al., An ICA-based support vector regr
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4. Conclusions

This paper proposes to use ICA to analyze crude oil prices and de-
velops an ICA-based SVR (ICA-SVR2) scheme for forecasting crude oil
prices. ICA is helpful to identify the hidden factors behind the fluctuations
of international crude oil prices. The proposed ICA-SVR2 model starts
from the use of ICA to decompose four international oil price series into
three independent components. Thenwe build three SVRmodels to fore-
cast the three independent components, respectively. Based on the three
independent components as well as the WTI crude oil price series, we
construct one integrated SVR model to forecast crude oil prices. Our ex-
perimental results show that the integration of ICAwith SVR can improve
the forecasting accuracy of SVR significantly. Another advantage of ICA is
that the independent components obtainedmay shed insights on under-
standing the driving forces behind crude oil prices.

Despite the usefulness of the proposed ICA-SVR2 model, it has inev-
itably some limitations. First, this paper only uses the radial basis kernel
function for use in constructing the SVR models. Other types of kernel
functions may be explored and compared with the radial basis kernel
function in the ICA-SVR2 model. Second, in our experimental study
we only compare the ICA-SVR2 model with ICA-ARIMA and single
SVR models. It is therefore worthwhile including more models and
conducting a more comprehensive comparison between different
models. Third, this paper only explores the usefulness of ICA as a prepro-
cessing procedure for improving the forecasting performance of SVR.
Further researchmay be carried out to investigate the potential for inte-
grating ICAwith other newly developedmodels for forecasting crude oil
prices.
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