
Algebraic Coding Theory

Michael Toymil
University of Puget Sound

Math 434, Spring 2010

This work is licensed under the Creative Commons Attribution License
http://creativecommons.org/licenses/by/3.0/

1



1 Introduction

Passing Notes
Suppose you are sitting in your British Literature 223 class (suppose real hard...) and you
are handed a note which reads ‘THIS CLPSS IS BORING’. You immediately notice the error
in the note, and in addition to wondering how the author of the note ever got into college,
you wonder what the actual intended message was. Very quickly you replace ‘CLPSS’ with
‘CLASS’ and the meaning becomes clear. You’ve just applied some coding theory in your
English class by detecting and correcting an error, but how did you do it? In order to detect
and correct the error so quickly, you made three assumptions:

1. That a correct word will be an English word.

2. That the correct word contains five letters.

3. That it is more likely that only one letter was incorrect as opposed to two or more.

For now, we will ignore the assumption that the correct word should make sense in the con-
text of entire message. Assumption 2 allowed us to make sense of the errant message, but it
does have a weakness. In the above example ‘CLASS’ was the only English word we could
make by changing one letter in ‘CLPSS’, but what if the received word was ‘CLASK’? Now
by changing one letter we can make words like ‘FLASK’ and ‘CLASP’ as well as ’CLASS’.
Using only our assumptions (1 and 2) we cannot justify choosing one word over another,
that is, in this case we cannot correct the error. In some cases our two assumptions may
not even let us catch errors, for example if the received word was an English word, but the
wrong one, say ‘GLASS’.

The above situation can be thought of as a simple example of interpreting a message with
a decoding algorithm. This is an absolutely crucial process in fields like telecommunication,
electrical engineering, and computing where data is sent over a noisy “channel” where it may
be altered before it is received. The main aims of Coding Theory are to detect and correct
transmission errors as thoroughly and rapidly, and thus as efficiently as possible. Note that
Coding Theory is NOT cryptography, that is it doesn’t protect data from malicious eyes.
The typical model of this system is as follows:

Sender (Message) −→ Encoder −→ Channel (Noise) −→ Decoder −→ Receiver (User)

And now with our note-passing example:

Note in thought form −→ ‘CLASS’ −→ ‘CLPSS’ −→ ’CLASS’ −→ Comprehended note

We will now begin a mathematical treatment of Coding Theory in order to understand the
development of this fascinating (and useful!) field of study.

1



2 Preliminaries

2.1 Terms

Coding Theory requires some terminology and definitions. Assume the familiar notions of
groups, rings, fields, and Galois Fields with their standard notation. As in linear algebra,
let V (n, q) be the vector space of dimension n over GF (q) containing sequences of length n
over GF (q). For simplicity denote GF (2) by B (for binary).

Let Bn, for n ∈ N be the set of ordered n-tuples with entries in B. Define the sum in
Bn component-wise, and note that Bn is an Abelian group over this operation with the the
identity as the zero sequence and each element as its own inverse. Now for some coding
theory language.

Definition 1. Define z as the binary n-tuple of all zeroes, and o as the n-tuple of all ones.

Definition 2. A binary block (m,n)-code consists of an encoding function E : Bm →
Bn and a decoding function D : Bn → Bm. The elements of Im(E) are called code
words.

An example of a code similar to a binary block is the ASCII character set. Each character
is mapped to an element of B8 in a text file before it is decoded and presented to the user.

Definition 3. If a, b ∈ Bn, we define the distance d(a, b) between a and b to be:

d(a, b) =
n∑

i=1

xi

{
xi = 0 if ai = bi
xi = 1 if ai 6= bi

where a = a1a2...an and b = b1b2...bn.

For example, if a = 1001 and b = 1100 then d(a, b) = 2. Note d(a, b) = d(b, a) for all a, b ∈
Bn

Definition 4. If a ∈ Bn, define the weight wt(a) of a as the number of non-zero components
of a.

For example, if a = 11001 then wt(a) = 5.

Lemma 1. If a, b ∈ Bn, then d(a, b) = wt(a+ b).

Proof. This is a consequence of addition in B. Let a = a1...an and b = b1...bn. Note for 1 ≤
i ≤ n, ai+bi = 1 if and only if ai 6= bi. Hence, (ai, bi) contributes 1 to wt(a+b) if and only if
it contributes 1 to d(a, b).

With the following definition we can understand our note-passing decoding function in
mathematical terms.

Definition 5. The nearest-neighbor decoding principle states that if a word r ∈ Bn

is received and it is a code word, then D(r) = r. If r is not a code word, then we take the
distance of r from all of the code words and find the least distance, call it d. There exists a
code word a, such that d(a, r) = d. If a is the only code word with d(a, r) = d, then D(r) = a.
If there is another code word, say b, such that d(b, r) = d, then there is a decoding failure.

2



When a word of length n is transmitted and k components of this word are incorrect,
we say that k transmission errors have occured. We build an n-tuple by taking a 1 at each
of these k positions and zeros everywhere else, and call an error vector/word, e. Note
wt(e) = k.

Definition 6. An error word e is detected by a code if a + e is not a code word for any
code word a. If a+ e is a code word, then e is undetected.

Definition 7. An error word e is corrected by a code if the decoding function D gives
D(b+ e) = b for every code word b.

2.2 Elementary Codes

Definition 8. For a given code, let q be the number of individual detectable error words, r
be the number of correctable error words, and s be the total number of error words. Define
the performance proportions to be Pd = q

s
and Pc = r

q
.

The proportions defined above will serve as measurements of a code’s error-detecting
and error-correcting performance as we examine different types of codes. High performance
proportions are desirable.

Example - The Parity Check
One of the first ways devised to detect an error in a received word was the parity check. A
(m,m+1) parity check is a binary block(m,m+1)-code. The encoding function simply adds
up the components of the input word (an m-tuple) (mod 2) and appends the result to create
a code word (an m+ 1-tuple). Thus the codewords are always of even weight. The decoding
function can detect all error words of odd weight, since the addition of such a vector to a
code word, would not be a valid code word. An example is shown below

1001001 7→ a = 10010011, e = 10100001, a+ e = 00110010
but a+ e is not a codeword since wt(a+ e) is odd.

Now let us dig a little deeper. Consider the (2, 3) parity check code. E encodes the message
words as follows:

00 7→ 000, 01 7→ 011, 10 7→ 101, 11 7→ 110

The set of code words, C is {000, 011, 101, 110} (isomorphic to a subgroup of Z2XZ2XZ2,
in case you were dying for some group theory.)

Let us notice some things. Note that the distance between any two code words in C is
2. There are 3 possible error vectors of weight 1: 001, 010, 100. Any of these error vectors
added to a code word will not produce a code word and are thus all detected. However, any
error vector of weight 2 is a code word, and will thus go undetected. Our decoding function
cannot correct any errors, however, since for a ∈ C and e an error vector of weight 1, a + e
will be equidistant from 3 code words, and so we have a decoding failure.

It is clear that the parity check is not a very good code:

Pd =
1

2
and Pc = 0

3



However, this example still has some importance. It turns out that it is not a coincidence
that the weight of the detectable errors was less than the minimum distance of C. Error-
correcting capabilities also depend upon the minimum distance between code words. This
is generalized and solidified by the following theorem.

Theorem 1. A code can detect all errors of weight k or less if and only if the minimum
distance between any two code words is k + 1 or more.

Proof. Let C be the set of all code words of length n of a given code.
(⇐) First suppose that for all a, b ∈ C, d(a, b) ≥ k + 1. Let c ∈ C be the transmitted code
word and suppose that the channel introduces the error word e with

wt(e) ≤ k

Then the received word is c+ e and

d(c+ e, c) = wt(c+ e+ c) (Lemma 1)

= wt(e+ (c+ c)) = wt(e) ≤ k

Thus c+ e is not in C and therefore e is detected.
(⇒) Suppose that the code can detect all error words of weight k or less. That is, for all e
with wt(e) ≤ k and a given c ∈ C, c+ e is not a code word. Now suppose a, b ∈ C and that
d(a, b) ≤ k. Let e = a+ b. Then wt(e) = wt(a+ b) = d(a, b) ≤ k. Note a+ e = a+ a+ b = b
which is a code word. This proves that e goes undetected, a contradiction. Therefore

d(a, b) ≥ k + 1 for all a, b ∈ C

Theorem 2. A code can correct all error words of weight k or less, if and only if the
minimum distance between code words is at least 2k + 1 (given that the nearest neighbor
decoding principle holds).

We will omit the proof for the sake of space.

Example - The Binary Repetition Code
Naturally, we want to detect and correct more errors. With the previous theorems in mind
we know we need to increase the minimum distance between code words. One solution is to
simply repeat bits n times. The binary repetition code of length n or BRC(n) is defined
by the encoding function E

0 7→ z, 1 7→ o

Lemma 2. For a given BRC(n), Pd = 1 and Pc = 1
2

(for odd n).

Proof. The set of code words is Im(E) = {z,o}. The minimum distance is simply the
distance between these two elements, given by:

d(z,o) = wt(z + o) = wt(o) = n

4



Theorem 1 ensures that the code can detect error words of weight n− 1 or less. That is all
of Bn except z and o. Consequently, the BRC(n) will detect every error word. Thus

Pd = 1

Now, Theorem 2 gives that BRC(n) can correct errors of weight n−1
2

or less. The total
number of correctable error words, r, can be derived combinatorially by the following:

for i ∈ Z such that 1 ≤ i ≤ (n− 1)/2, r =

(n−1)/2∑
i=1

M(i),

where M(i) =
n!

i!(n− i)!
is the number of ways to place i ones in an n-tuple with the rest of

the components zero. Some messy work is omitted to show that

r = 2n−1 − 1

Finally, since the total number of detectable errors is 2n − 2, we have

Pc = 2n−1−1
2n−2

= 1
2

for odd n. An interesting result.

It appears error detection and correction performance remains constant as we increase n for
a BRC(n). This seems counter-intuitive, however, as one would expect some compensation
for inflating the size of our code words. Indeed, there is a piece of the puzzle missing. It
turns out that as we increase n, the probability of encountering error words with high enough
weights to go uncorrected is very low. We will not address these probabilities here as we are
more concerned by the theory of coding, not the implementation.

Also, there is an optimization problem at hand as we attempt to balance code word length
(and thus transmission time) and correction/detection performance. The optimal code for
a situation depends on many factors including time constraints, algorithm complexity, and
desired “robustness” of the code. As we continue our treatment of codes, it will be helpful
collect characterizing information of a code in one place so that we may more easily compare
them.

2.3 Measuring and Comparing the Efficiency of Codes

Definition 9. An (n, M, d)-code is a code of length n, containing M codewords, and having
minimum distance d.

In coding theory, a good (n, M, d)-code has small n for fast transmissions, large M
to enable a variety of messages, and a large d to correct many errors. The trick is to
optimize these values for each transmission situation. Looking back at our previous examples
note that the BRC(n) is an (n, 2, n)-code and that the (m,m + 1) parity check code is
an (m + 1, 2m, 2)code. Moving forward we will use this characterization as well as the
performance proportions to analyze codes.

5



3 Algebraic Coding Theory

3.1 Linear Codes

Definition 10. A subspace L of V (n, q) is called a linear code of length n over F = GF (q).

Lemma 3. The minimum distance d of a linear code L equals the minimum among with
weights of non-zero code words.

This is a result from group codes, which I have chosen to omit the details of.

Let L be a linear code of length n over F . Let k ≤ n be the dimension of L over F
and choose a basis

X1, X2, ..., Xk

of L over F . Then any element in L is of the form

a1X
1 + a2X + ...+ akX

k

that is, a linear combination of the basis elements. A message vector a = (a1a2...ak) is thus
encoded. A [n, k, d] linear code has length n, dimension k, and minimum distance d.

Example - A linear Code
Examine the linear code L of length over B with basis

B = {


1
1
0
0

 ,


0
1
1
1

 ,


1
0
1
0

}
then the encoding function maps the message words using linear combinations of elements
of B as follows:

000 7→ 0000, 001 7→ 1010, 010 7→ 0111, 100 7→ 1100, 110 7→ 1011, 101 7→ 0110, 011 7→ 1101, 111 7→ 0001

Notice that the set of code words is thus generated by B. Note the minimum distance is 1
since wt(0001) = 1. Thus L is a (4, 8, 1)-code and a [4, 3, 1] linear code.

Pd = Pc = 0

Lemma 4. If L is a [n, k, d] linear code over F , then d ≤ n− k + 1.

Assuming that linear codes exist such that d = n− k + 1, let L be such a [n, k, d] linear
code over B. Then L is an (n, 2k, n− k + 1)code that can thus detect error words of weight
n− k or less and correct error words of weight n−k−1

2
or less.

6



3.2 Cyclic Codes

Cyclic codes are special sub-class of Linear Codes. They offer a rich algebraic structure as well
as practical advantages in efficiency. Unfortunately their performance will not be analyzed
in general here, as finding lower bounds on the minimum distance is a lengthy process.
Instead, we will explore a nice connection between cyclic codes and ideals of polynomial
rings to illustrate the potential for algebra in coding theory.

Definition 11. A linear code L of length n over B is called cyclic if any cyclic shift of a
code word is again a code word, i.e, if (a0, a1, ..., an−1) ∈ L then (an−1, a0, ..., an−2) ∈ L

An Algebraic Description of Cyclic Codes
Define a map

θ : V (n, 2)→ B[x]/〈xn − 1〉

where 〈xn − 1〉 denotes the ideal of the polynomial ring B[x] generated by xn − 1,by

θ(a0, a1, ..., an−1) = a0 + a1x+ ...+ an−1x
n−1 + 〈xn − 1〉

Observe that B[x]/〈xn − 1〉 is also a vector space over B (a subspace of vector space of
polynomials over B). It is easy to show θ is a vector space isomorphism. Let L be a linear
code of length n over B, i.e. L is a subspace of V (n, q). Then, because θ is an isomorphism
Im(L) is a subspace of B[x]/〈xn−1〉. Let (a0, a1, ..., an−1) ∈ L. Then (an−1, a0, ..., an−2) ∈ L
if and only if

an−1 + a0x+ ...+ an−2x
n−1 + 〈xn − 1〉 = x(a0 + a1x+ ...+ an−1x

n−1) + 〈xn − 1〉

is in Im(L). Denote a0 + a1x + ... + an−1x
n−1 = f(x). Then if both f(x) and xf(x) are in

Im(L), x2f(x) is in Im(L) and for 0 ≤ i ≤ n − 1, xif(x) is in Im(L). Since Im(L) is a
vector space, any linear combination of the vectors f(x), xf(x), ..., xn−1f(x) is also in Im(L).
Therefore, for every polynomial p(x) = b0 + b1x+ ...+ bn−1x

n−1 in B[x],

p(x)f(x) = (b0 + b1x+ ...+ bn−1x
n−1)f(x) = b0f(x) + b1xf(x) + ...+ bn−1x

n−1f(x)

which is a sum of elements of Im(L) and is thus in Im(L).

Hence, Im(L) is an ideal in B[x]/〈xn − 1〉

And we can thus regard L as an ideal of B[x]/〈xn − 1〉.

This generalizes easily to the ring of polynomials over any finite field.

3.3 CRC32 - A real-world example

If I may break from strict mathematical rigor for a moment, I’d like to point out the kind of
coding performance that is possible using a real-world example, the cyclic redundancy check
or CRC, which is used to encode messages over a wireless ethernet.

7



Cyclic Codes in Terms of Polynomials
We can offer a second definition a cyclic code in terms of a generator polynomial P (x) of
degree n− k, by stating that a polynomial of degree less than n is a code polynomial if and
only if it is divisible by P (x), with xn− 1 evenly divisible by P (x). Note that this is a group
code since the sum of two code polynomials will be divisible by P (x).

With this definition we could form code polynomials simply by multiplying our message
polynomials by a suitable P (x). However, in a real transmission situation, this would convo-
lute our data thus making decoding computationally expensive. The following clever method
of encoding is implemented by the CRC.

A CRC code forms code polynomials in which high-order coefficients are the message
symbols and low-order coefficients are “check” symbols, which behave much like the parity
check bits do. To encode a message polynomial M(x) of degree k, we divide xn−kM(x) by a
generator polynomial P (x) of degree n− k, and then add the remainder R(x) to xn−kM(x).
The result

F (x) = xn−kM(x) +R(x) = Q(x)P (x)

is a code polynomial since it is divisible by P (x).
To check for errors, all we need to do is divide the code polynomial by P (x) and check

to see that the remainder is zero. If so, we assume the message is error-free and we pull off
the k high-order coefficients that represent the original message.

The standard CRC-32 code uses the generator polynomial

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x+ 1

This code has remarkable error-detection properties. For only adding 32 bits onto the
message word, the following are gained:

1. All errors of weight 1 are detected.

2. All burst errors of length 31 or less are detected.

3. All errors of odd weight are detected.

4. Will detect a fraction of 1− 2−32 of ALL longer error bursts.

4 Conclusion

In this paper we developed a broad sense of the purpose and practice of Coding Theory.
The general feel of things is that you cannot get all of the best performance traits out of a
single code. Developing codes is a balancing act of redundancy and efficiency. With the aid
of Abstract and Linear Algebra, the search for the optimal code is made much more precise.
You’ll never think about that phone call or text message the same way again!

8



References

1. Peterson, W. W. and Brown, D. T. (January 1961). “Cyclic Codes for Error Detec-
tion”. Proceedings of the IRE 49: 228.

2. “CRC-32” on http://www.wikipedia.com/

3. Hill, R. A First Course in Coding Theory, Oxford, New York, 1986.

4. Judson, Abstract Algebra: Theory and Applications, 1997.

5. Vermani, L. R. Elements of Algebraic Coding Theory, Chapman and Hall, London,
UK, 1996.

6. C.J.Salwach, Codes That Detect and Correct Errors, The College Mathematics Journal,
Vol. 19, No. 5 (Nov., 1988), pp. 402-416


