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Abstract 

We study the practical decision problem of fresh food production with a long production lead 

time to decide every period (e.g. week) how many items to produce. When a batch is ready 

for use, its items have a fixed shelf life, after which the items become waste in the sense that 

they cannot be sold anymore. The demand for (fresh) food products is uncertain and highly 

fluctuating, mainly caused by price promotions of retail organisations. We focus on cases 

where a so-called cycle fill rate service level requirement applies. We investigate the 

generation of a production plan that fixes the timing and quantity of the production for a finite 

time horizon. To minimise waste, one issues the oldest items first, i.e. a FIFO issuing policy. 

In case of out-of-stock, sales are lost.  

We model this decision problem as a Stochastic Programming (SP) model. The objective of 

our study is to find order quantities for the SP model, that approximately meet cycle fill rate 

service level requirements while keeping outdating low. To find approximate solutions for the 

SP model, an MILP model is developed. The MILP model is a deterministic approximation 

that generates feasible replenishment quantities in less than a second. With a scenario-based 

MINLP approach, optimal solutions are generated for a large sample of demand paths as a 

benchmark for the MILP solutions. We show that the MILP model is suitable for practical use 

if the setup cost is such that the replenishment cycles in the production plan are close to or of 

the same length as the maximum shelf life. In those cases, the expected total costs are close to 

the costs of the optimal solution and the average fill rate is close to the required one. 
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1. Introduction 

A producer of a fresh food product with a long lead time has to decide every period (e.g. 

week) how many items to produce. Multiple batches of the same product of different ages are 

in production, so there are multiple outstanding orders. When a batch is ready for use, the 

items get a ‘best before’ or a ‘use by’ date, resulting in a fixed shelf life for the product. 

Generally, producers have a contract with retail organisations about the minimum remaining 

shelf life of the items delivered. The time between ‘ready for use’ and the minimum 

remaining shelf life is the maximum internal shelf life the producer can use to organise 

production efficiently. After the maximum internal shelf life of several periods, the product 

becomes waste in the sense that it cannot be sold anymore with the aimed remaining shelf life. 

It still may be used for other purposes, so it may have a salvage value. These production 

characteristics can be found in e.g. the maturation of cheese, meat from breeding to 

slaughtering and crops from seed to harvesting. In the remainder of this paper we will use the 

shorter term ‘maximum shelf life’ to denote the maximum internal shelf life.   

The demand for (fresh) food products is uncertain, so the production quantity is determined 

based on forecasts. A complicating factor is that demand is highly fluctuating, mainly due to 

price promotions of the retail organisations, i.e. demand is non-stationary. Competition in 

retail is very strong, so retail organisations are reluctant to share information about their 

promotional activities. Because of the long lead time, planned promotions sometimes become 

only known to the food producer after production of the items. However, retail organisations 

continuously work on improving their demand forecasts. Highly fluctuating demand is not 

necessarily highly uncertain. It is likely that the food producer has a contract with the retail 

organisation about the delivery of the product, with respect to remaining shelf life and fill 

rate. The fill rate indicates that a predefined percentage of the demand per replenishment 

cycle has to be fulfilled from stock, a so-called cycle fill rate. According to the food producer, 

demand that cannot be fulfilled from stock is lost. The food producer has control over the 

issuing of the items. In order to minimise waste due to outdating, the oldest items are issued 

first, so there is a first in – first out (FIFO) issuing policy. The food producer wants to make a 
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production plan minimising the expected total costs, indicating when to produce and how 

much, for a fixed time horizon of T weeks.  

 

Having a long lead time, the inventory levels at the time of delivery are unknown at the time 

the replenishment quantity has to be determined. So the replenishment quantity should be 

decided on beforehand, independently of the inventory level I. Therefore, we consider a  

so-called static uncertainty policy denoted by (Yt, Qt), where Yt denotes in which periods to 

deliver, and Qt the corresponding replenishment quantities to deliver at the beginning of 

period t. The research question is whether it is possible to generate a production plan for T 

periods using existing solvers and for which instances the solution might be close to the 

optimal solution. 

The rest of the paper is organised as follows. In Section 2, we explain how the paper 

contributes to literature by discussing the main characteristics of the problem. In Section 3, 

the problem is formulated as a Stochastic Programming (SP) model. Section 4 describes the 

steps towards a production plan that we use to formulate a deterministic MILP model that 

generates feasible production plans. The model determines the timing of deliveries, the 

replenishment cycle length and the replenishment or delivery quantity, in order to make a 

production plan for lead time L periods before t. This model is presented in Section 5. Section 

6 investigates the applicability of the MILP model compared to ‘optimal’ solutions generated 

by a scenario-based MINLP approach. Section 7 concludes and provides topics for future 

research. 

      

2. Literature 

The lost sales inventory problem studied in this paper is to fix a production plan (and 

consequently replenishment plan) for a single perishable product with a long lead time, non-

stationary demand and a fill rate constraint. The paper builds upon previous studies by 

Bookbinder and Tan (1988), Tarim and Kingsman (2004) and Pauls-Worm et al. (2014), 

which we will describe in more detail below. This paper contributes to these studies by 

moving from a zero lead time problem, where the current inventory levels can be taken into 

account, to a problem with long lead time. Moreover, motivated by a practical case, the 

problem includes a fill rate or β-service level constraint instead of an α-service level 

constraint. Consequently, also a different order policy is studied. In Pauls-Worm et al. (2014), 

the derived order policy is of the type (Yt, St), that is, in period t, if Yt = 1 the manager orders 

up to a level St. Due to the long lead time, in the present paper we consider an (Yt, Qt) policy;  
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if Yt = 1 in period t, a fixed quantity Qt will be delivered and consequently produced the lead 

time L periods before t.  

 

Bookbinder and Tan (1988) formulated an SP model for a single-item inventory problem for a 

finite horizon, with a non-stationary demand, under an α-service level constraint. They 

distinguish two decision rules, a static uncertainty and a dynamic uncertainty strategy. In the 

static uncertainty strategy the timing and order sizes (Yt, Qt) are determined at the beginning 

of the time horizon, before demand is known. A dynamic uncertainty strategy bases decisions 

on new available information. Bookbinder and Tan (1988) combine the two strategies into a 

third static-dynamic uncertainty (Yt, St) policy. Tarim and Kingsman (2004) formulated for a 

non-perishable product an MILP model for the static-dynamic uncertainty strategy resulting in 

an optimal (Yt, St) policy. Rossi (2013) assessed the quality of a Constraint Programming 

solution procedure on a static-dynamic (Yt, St) policy for perishable items.  Pauls-Worm et al. 

(2014) extended the model of Tarim and Kingsman (2004) to perishable items, resulting in an 

approximate solution for the SP model for lead time zero and an α-service level. 

For the static uncertainty (Yt, Qt) policy and non-perishable items with a non-stationary 

demand, Tempelmeier and Herpers (2011) formulated a Stochastic Single Item Uncapacitated 

Lot-Sizing Problem with a fill rate constraint. They assume that excess demand is backlogged 

and they found an optimal (Yt, Qt) solution with a modification of Dijkstra’s shortest-path 

algorithm, as well as several heuristic approaches to solve the model.  

Key characteristics of the lost sales inventory problem under study are perishability, non-

stationary demand, fill rate constraints, and long lead time. In the remainder of this section, 

we discuss how these aspects are addressed in literature. 

 

Perishability and non-stationary demand 

Regarding perishability, we focus on products with a fixed shelf life. A recent review about 

perishable inventory, including products with a fixed life time, is due to Karaesmen et al. 

(2011). From their review, it becomes clear that inventory problems with a fixed shelf life, 

non-stationary demand, and a (long) lead time are relevant but challenging and understudied. 

Most studies on ordering products with a fixed shelf life, focus on stationary demand. Bijvank 

and Vis (2011) reviewed lost-sales inventory theory. For non-perishables, they conclude more 

research should focus on non-stationary demand. Tunc et al. (2011) discuss the use of 

stationary inventory policies when demand is non-stationary for non-perishable products. 

They conclude that in case of high demand variability, using a stationary policy can be very 
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expensive. In case of high uncertainty, high setup cost and low penalty cost, using a stationary 

policy might be efficient. The above papers motivate the interest in policies for non-stationary 

demand.  

A few articles have been published that deal with perishability and non-stationary demand. 

An exact method to solve the non-stationary problem is Stochastic Dynamic Programming 

(SDP). For a lead time of one period and a fixed shelf life of up to 7 periods, Haijema et al. 

(2007) and Haijema et al. (2009) solve the non-stationary ordering problem by SDP and 

discuss the near optimality of a periodic review order-up-to St policy. Their problem, 

however, lacks a service level constraint. Instead they apply a cost structure that includes a 

penalty for lost sales. In these studies, fixed setup cost can be included and order periods may 

be prefixed instead of being part of the optimisation. Some heuristic approaches are 

published, like the one of Broekmeulen and van Donselaar (2009). They develop a heuristic 

for a single store to determine a replenishment policy based on the estimated withdrawal and 

aging of the items in stock. Similar to Haijema et al. (2007), the weekly demand is stationary 

with a non-stationary demand pattern during the week. They do not consider fixed setup cost 

and use a lost sales cost to influence the fill rate.  

 

Service levels 

The inclusion of α-service level or fill rate constraints in an optimisation model such as SDP 

is complicated and subtle. Chen and Krass (2001) define the difference between mean service 

level constraints and minimal service level constraints. A mean service level constraint 

measures the service level over the time horizon, while a minimal service level constraint 

measures the service level in every period. We use a minimal service level criterion, a 

minimal fill rate per replenishment cycle. Food production companies often have service 

contracts with their retail customers requiring a certain fill rate service level. According to 

Chen and Krass (2001) a minimal service level criterion is preferred when the service level 

constraint is due to a contractual obligation or a company policy. Minner and Transchel 

(2010) determine a replenishment policy for perishable products in retail assuming a weekly 

demand pattern, negligible fixed cost, and positive but relatively short lead times. They apply 

an SDP model with marginal α-service-level and fill rate constraints. What they call marginal 

service levels are in terms of Chen and Krass (2001) minimal service levels as they should 

hold per (sub)period. Hendrix et al. (2012) also apply a minimal α-service level in an SDP 

approach for perishable products. Note that such an approach generates a Q(I) policy (a 

dynamic uncertainty rule), which is not suitable in cases of long lead time. Pauls-Worm and 



  

6 
 

Hendrix (2015) show when considering service level constraints, SDP generates order 

policies that are not necessarily optimal. SDP meets a service level requirement that is 

conditional to each possible starting inventory level, no matter how small the chance of 

occurrence. This results in an overachievement of the service level constraint.   

 

Lost sales and long lead time 

Base stock policies are commonly studied policies for having appropriate structural properties 

and being close to optimal in many settings, especially in cases of backlogging and short lead 

times. Morton (1969) showed for non-perishables with a stationary demand that an order-up-

to policy is not optimal for a lost-sales inventory model in case of a positive lead time. Van 

Donselaar et al. (1996) show for non-perishables, that compared to a replenishment policy 

with static order-up-to levels, it may be more efficient in a lost sales system to use dynamic 

order-up-to levels that dynamically meet fill rate constraints. Under dynamic order-up-to 

levels, the pattern of successive order sizes is smoother. The need for smoother order patterns 

is even stronger in case of long lead times, as shown in Goldberg et al. (2014). They show that 

as the lead time grows for non-perishables with a stationary demand, the constant-order policy 

is asymptotically optimal. The intuition of their approach is to select the constant-order policy 

that considers the inventory in the pipeline best. In case of non-stationary demand, the 

expected pipeline inventory is highly fluctuating per period because of the fluctuating 

demand. The accuracy of approximated pipeline inventory will be low. In our paper we deal 

with non-stationary demand of perishable items, meaning that at the end of the shelf life items 

will become waste. This results in an even less accurate approximation of the pipeline 

inventory. In the model for long lead times, presented in the next section, we thus study a 

policy with fixed replenishment quantities Qt that are independent of the inventory available 

at the beginning of each replenishment period t. 

 

3. Stochastic Programming Model 

To determine a production plan for a perishable product with a long lead time under a fill rate 

constraint, we consider a single-product − single-echelon SP model, minimizing expected 

total costs. We focus on an (Yt, Qt) policy. Periods are of equal lengths and can be hours, days, 

weeks or months, whatever is applicable in the practical situation. The product has a fixed 

maximum integer (internal) shelf life M ≥ 2 periods. Due to the findings of Goldberg et al. 

(2014), we leave lead time out of the model. The model solution is concerned with the 

delivery time t of a production batch, i.e. production or ordering should be done L periods 
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before delivery. Demand is non-stationary independently distributed with a Normal 

distribution dt ~ N(μt, (CV∙µt)
2
) in period t. We use a Normal distribution to keep fill rate 

calculations simple. Demand is never negative, food cannot be returned due to safety 

regulations. There are fixed and variable production costs, holding cost and cost of waste. 

Table 1 shows the list of symbols. Fill rate is defined as the proportion of demand per 

replenishment cycle that can be fulfilled directly from stock, being a cycle fill rate. The 

(maximum) available inventory is determined by the replenishment quantity, which should be 

such that the predetermined fill rate constraint can be met. Issuing is according to a FIFO 

policy in which the first delivered items are issued first. The age of the items is indexed by b 

= 1,..,M. The inventory level of age b at the end of period t is denoted by Ibt. Items delivered 

at the beginning of period t, have age b = 1 at the end of period t. Items of age M at the end of 

the period are considered waste and cannot be used in the next period. If demand in period t 

exceeds the available inventory of period t − 1 plus the delivered quantity Qt at the beginning 

of t, demand is lost and there is a shortage of Xt. Replenishments can aim to cover demand 

from 1 up to M periods, so replenishment cycles have a varying length j.   

 

Table 1  List of symbols  

T length of finite time horizon 

t period index , t = 1,..,T 

M fixed maximum (internal) shelf life 

b age index, b = 1,..,M  

j index denoting the length of the replenishment cycle 

k fixed setup cost for every replenishment  

c variable unit production cost  

h unit holding cost, for items that are carried over from one period to the next 

w unit disposal cost (w > 0) or salvage value (w < 0) for items becoming waste 

 target cycle fill rate  

dt stochastic demand during period t, non-stationary for t = 1,..,T 

Yt binary variable takes the value of 1 if there is a replenishment in period t, and 0 otherwise 

Qt replenishment quantity for delivery at the beginning of period t   

Ibt inventory level of items with age b at the end of period t 

IMt inventory  of age M  at the end of period t is considered waste 

Xt number of items short at the end of period t 

E(TC) expected total costs over the time horizon 

 

This problem is formulated as a stochastic programming model.  
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The model minimises the expected total costs (Eq. 1), consisting of fixed setup cost for every 

replenishment, production cost and the expected cost of holding inventory and of waste. Eqs. 

(3), (4) and (5) model the inventory levels of all ages and shortage in period t, under a FIFO 

issuing policy. To meet the fill rate requirement, the fraction of expected shortage over 

expected demand of a replenishment cycle should be less than or equal to (1 − β). Index j 

denotes the length of the replenishment cycle, which has a length of j = 1 to M periods. The 

first period after the replenishment cycle, i.e. period t + j, should have a delivery, and during 

the replenishment cycle no other delivery takes place. Eq. (6) models the fill rate requirement 

related to the length of the replenishment cycle, where Yt = Yt+j = 1, and Yi = 0 with t < i < t + 

j. Eqs (7) to (10) are definition constraints. The model assumes that at the end of the time 

horizon T, also the last replenishment cycle ends, so in T + 1 a new replenishment arrives (Eq. 

7). In the evaluations, the starting inventory level is zero (Eq. 8). 

  

4. Towards a production plan 
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Eq. (6) describes the fill rate requirement  
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is the so-called loss function, expressing the expected shortage as a function of the delivered 

quantity Qt.  Let φ be the density function (pdf) and Φ the cumulative distribution function 

(cdf) of d. Then the loss function is 




 
Q
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It is known that the loss function is convex in quantity Qt and for the normal distribution can 

be expressed by (Chopra and Meindl, 2010) 
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The minimum replenishment quantity Qt fulfilling the fill rate requirement can be found by 

solving  )1()( tQL , i.e. 
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We solved Eq. (13) using a standard solver “fzero” of MATLAB. As shown in Alcoba et al. 

(2015), for a replenishment cycle of j = 1 period and the defined distribution, it is sufficient to 

solve Eq. (13) for all periods t. A replenishment cycle can have a length of j = 1, 2,.., M 

periods. An M x T table called LevelQ can be generated with all possible replenishment 

quantity levels LevelQjt for period t and replenishment cycle length j when the inventory is 

zero, i.e. 




 
1

1

1, 0
M

b

tbI . Table 2 shows an example of the expected demand per period, and the 

corresponding LevelQjt values.  

 

Table 2   Expected demand µt and corresponding LevelQ values for CV = σ/µ = 0.25 and fill rate β = 95%. 

 t 1 2 3 4 5 6 7 8 9 10 11 12 

µt 800 950 200 900 800 150 650 800 900 300 150 600 

LevelQ1t 899 1068 225 1011 899 169 731 899 1011 337 169 674 

LevelQ2t  1832 1243 1187 1779 1030 863 1518 1779 1280 475 807 0 
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LevelQ3t  2011 2114 1958 1913 1652 1652 2390 2051 1414 1085 0 0 

 

In the next section, we will show how the LevelQjt values can be used to find an (Yt, Qt) policy 

with an MILP model. 

    

5. MILP model 

In Section 5.1, we formulate an MILP model to generate approximate solutions for the SP 

model. In Section 5.2, a numerical illustration of the MILP model is presented.  

 

5.1  MILP model formulation  

Besides the policy variables Yt and Qt, the other variables of the MILP model are denoted by 

their expected value variant, i.e. EI and EX, in contrast to the SP model. The objective 

function is given by 

 




 








T

t

M

b

Mtbttt wEIEIhcQkYTCE
1

1

1

)(Min  (14) 

and minimises the setup cost, the inventory holding cost over the on-hand inventory at the end 

of the period, the variable production cost and the cost of waste. 
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Eqs. (15) – (19) are logical constraints to describe the order timing, thus linearising Eq. (6) of 

the SP model. Variable Yt = 1 if there is a delivery in period t, and variable Zjt = 1 denotes the 

replenishment cycle length j in period t aimed at fulfilling demand for j periods: for period t 

and the next j  1 periods. In case of a delivery, eqs. (15) and (16) require a delivery for 1 or 2 

or,.. up to M periods. Eq. (16) is valid at the end of the horizon. If there is no delivery in 

period t, then Zjt
 
= 0 for all j. On the other hand, a delivery in period t implies the choice of 

exactly one replenishment cycle length j, i.e. Zjt has to be 1 for one value of j. For 
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replenishment cycle length j (covering t to t + j − 1), a new replenishment takes place in 

period t + j (Yt = 1 and Yt+j = 1) and in between there is no order (equations (17) – (19)) . 

11 Y    (20) 

1
1

1 




M

j

jtY  MTt  ,..,1  (21) 

Eqs. (20) and (21) are constraints to ensure that at least in the first period and every M periods 

an order is delivered.  





M

j

jtjtt LevelQZQ
1

)(  1,..,1  Tt  (22) 

Eq. (22) selects replenishment quantity Qt for j periods from the table LevelQjt (Section 4). 

The model ignores the pipeline inventory. When the replenishment cycle is of length M, the 

pipeline inventory is zero. In other cases the replenishment is greater than strictly necessary to 

meet the cycle fill rate requirement, causing an approximate solution of the formulated SP 

model. The size of the pipeline inventory when replenishment cycles are of length < M 

depends on the distribution of demand in successive periods and is therefore hard to 

approximate.     

tMMtttM EAEIEdEI ,11,1     Tt ,..,1  (23) 

bttbtbtb EAEIEAEI   ,1,11,  2,..,1;,..,1  MbTt  (24) 

tttt EXEIEAQ  11  Tt ,..,1  (25) 

Eq. (23), (24) and (25) keep track of the age-distribution of the items in stock, under a FIFO-

issuing policy. Let auxiliary variable EAbt  denote the shortage of inventory of age b with 

1,..,1  Mb  in period t to fulfil the demand of period t. If EAbt  has a positive value, then 

fresher inventory is used to fulfil demand. Eq. (23) imposes the oldest inventory to be used 

first to fulfil demand. What is left over has the maximum shelf life and will become waste, or 

shortage of the oldest inventory occurs. In the latter case, Eq. (24) is appropriate. The shortage 

has to be fulfilled by items of intermediate ages, until demand is fulfilled by the freshest items 

that have been delivered in the current period, according to Eq. (25). The FIFO constraints 

linearise constraints (3) – (5) of the SP model, causing an over- and underestimation of the 

different inventory levels as shown in (Pauls-Worm et al., 2014). That paper also shows that 

the FIFO constraints are necessary to meet FIFO issuing in the context of an MILP model.   

btbt EABA tM  1,..,1;,..,1  MbTt  (26) 

tbbt EIBA ,1)1( tM  1,..,1;,..,1  MbTt  (27) 
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tt EXBX tM  Tt ,..,1  (28) 

tt EIBX 1)1( tM  Tt ,..,1  (29) 

At most one variable at the right-hand-sides of equations (23), (24) and (25) can have a 

positive value. The other variable needs to have a value of 0. Equations (26)  (29) take care 

of that, using the binary variables BAbt and BXt. Mt
 is a sufficiently large number, for instance

MtLevelQtM . 

00 bEI
 

Mb ,..,1  (30) 

The starting inventory is zero (Eq.(30)). 

0, tbt QEI
 

MbTt ,..,1;,..,1    (31) 

0btEA
 

1,..,1;,..,1  MbTt  (32) 

0tEX  Tt ,..,1  (33) 

 1,0, jtt ZY  MjTt ,..,1;,..,1   (34) 

 1,0, tbt BXBA
 

1,..,1;,..,1  MbTt  (35) 

Eqs. (31) to (35) are definition constraints.  

 

5.2  Numerical illustration of the MILP model  

We consider a base case for the MILP model with a fixed setup cost k = 500, inventory 

holding cost h = 0.5 over the on-hand inventory at the end of the period, variable production 

cost c = 2, cost of waste w = 0, CV = σ/µ = 0.25 and required fill rate β = 95%. The maximum 

shelf life is M = 3. Cost of waste w = 0 implies that for wasted items, there is no extra cost of 

disposal, nor a salvage value. However, the production cost and holding cost during M − 1 

periods are still imposed on these items. Expected demand (repeated in the first row of Table 

3) and LevelQjt is given in Table 2. The solution of this model is given in Table 3. The shaded 

row shows the replenishment quantities with Yt = 1 if Qt > 0. The production plan prescribes 

deliveries in periods 1, 4, 7, 9 and 12, resulting in 5 replenishment cycles of respectively 

length 3, 3, 2, 3 and 1. The replenishment quantities are equal to the corresponding values of 

LevelQjt in Table 2. The expected inventory levels of all ages of period 9 in the table 

showcase well that the available older inventory is used before the fresh items. The MILP 

solution is evaluated in a simulation based on 10,000 samples to measure the expected total 

costs and the fill rate. The expected total costs of the simulation are 8.4% higher than the costs 

of the MILP solution. The final row of Table 3 contains the simulated fill rate sim. In period 
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11 the fill rate is higher than required, because the replenishment cycle starting in period 9 has 

on-hand inventory at the start of the period. The levels of LevelQ are based on no on-hand 

inventory at the beginning of the period. The fill rate of other replenishment cycles is close to 

the required value. These observations fit with the design of the MILP model and the 

definition of LevelQjt.   

  

Table 3  Numerical illustration of the base case: E(TC)MILP = 19846; E(TC)Sim = 20013; Avg sim 95.44% 

        t 1 2 3 4 5 6 7 8 9 10 11 12 

µt 800 950 200 900 800 150 650 800 900 300 150 600 

Yt 1 0 0 1 0 0 1 0 1 0 0 1 

Qt 2011 0 0 1913 0 0 1518 0 1414 0 0 674 

EI1t 1211 0 0 1013 0 0 868 0 582 0 0 74 

EI2t 0 261 0 0 213 0 0 68 0 282 0 0 

EI3t 0 0 61 0 0 63 0 0 0 0 132 0 

EXt 0 0 0 0 0 0 0 0 0 0 0 0 

βsim 0 0 95.07 0 0 95.01 0 95.06 0 0 97.02 95.04 

 

 

6. Results of the MILP model 

To investigate the sensitivity and applicability of the MILP model for different parameter 

values, a design of experiments is set up, reported in Section 6.1. Section 6.2 describes the 

benchmark with the scenario-based MINLP approach we use. In Section 6.3 a comparison of 

the MILP solutions is made with solutions of a MINLP scenario-based approach.  

 

6.1 Design of Experiments 

The experimental design is similar to the one in Pauls-Worm et al. (2014). For the setup cost k 

we consider values 0, 500, and 1000. The time horizon is T = 12 periods. The inventory 

holding cost is h = 0.5 over the on-hand inventory at the end of the period, variable 

production cost is c = 2, and the maximum shelf life is M = 2, 3 or 4. This setting is based on 

values used in practice. We learned from Pauls-Worm et al. (2014) that M = 3 is the most 

interesting case to study. Table 4 shows the design of experiments. The design varies the 

parameter values systematically for setup cost k, cost of waste w, fill rate  and Coefficient of 

Variation CV. Negative waste cost represents a salvage value for the wasted items, whereas 

positive waste cost implies disposal cost. This results in 83 experiments using the same erratic 

demand pattern due to promotion activities of the customer of the producer, the retail 

organisation. In variation of the base case, the MILP model is also tested with three other 
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demand patterns, being an erratic variant, a highly erratic demand pattern  and a stationary 

demand (Pauls-Worm et al., 2014) as depicted in Figure 1. The total expected demand of all 

patterns is 7200. 

  

Table 4  Design of Experiments 

Experiment Demand k   w Fill rate  (%) CV M 

Base Erratic 500   0 95 0.25 3 

1 – 9 Erratic 0 -0.5, 0, 0.5 90, 95, 98 0.10 3 

10 – 18 Erratic 0 -0.5, 0, 0.5 90, 95, 98 0.25 3 

19 – 27 Erratic 0 -0.5, 0, 0.5 90, 95, 98 0.33 3 

28 – 36 Erratic 500 -0.5, 0, 0.5 90, 95, 98 0.10 3 

*37 – 45 Erratic 500 -0.5, 0, 0.5 90, 95, 98 0.25 3 

46 – 54 Erratic 500 -0.5, 0, 0.5 90, 95, 98 0.33 3 

55 – 63 Erratic 1000 -0.5, 0, 0.5 90, 95, 98 0.10 3 

64 – 72 Erratic 1000 -0.5, 0, 0.5 90, 95, 98 0.25 3 

73 – 81 Erratic 1000 -0.5, 0, 0.5 90, 95, 98 0.33 3 

82 – 83 Erratic 500   0 95 0.25 2, 4 

84 Err Variant 500   0 95 0.25 3 

85 Highly Err  500   0 95 0.25 3 

86 Stationary 500   0 95 0.25 3 

* including the base case 

 

 

Fig. 1  Demand patterns  

 

6.2  Benchmark with a scenario-based approach 

The MILP model is a deterministic approach that generates feasible production plans in less 

than a second for the performed experiments. The question is whether the approach is suitable 

to use in practice. To investigate this question, an alternative MINLP approach was 
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implemented similar to the approach discussed by Alcoba et al. (2015). For each (integer) 

feasible timing Y = (Y1,.., YT) the best (continuous) replenishment quantities Qt are generated 

by nonlinear programming for scenarios consisting of 50,000 sample demand paths. The 

objective function and fill rate of a quantity vector Q are approximated simulating the 

inventory development using the 50,000 demand runs. The quantity vector with the lowest 

average total costs fulfilling the required fill rate is considered to be the optimal (Yt, Qt) policy 

for the given scenarios. In contrast to the MILP approach, it may be clear that due to the 

enumeration of delivery timings this approach is not tractable as the number of timing vectors 

grows exponentially in the number of periods. Although that is not a problem for the executed 

experiments, it may be a problem when the same model described here is applied to other 

practical cases. 

 

6.3  Experiments 

Table 5 shows the results of the experiments. For each experiment of Table 4, the expected 

total costs of the MILP model (E(TC)MILP), the simulated expected total costs (E(TC)sim) of the 

MILP policy, the number of orders of the MILP policy (NrO MILP) and the average fill rate 

of the MILP policy in the simulation (Avg sim) are given. These are compared with the 

expected total costs of the MINLP approach (E(TC)MINLP), the number of orders (NrO 

MINLP) and the average fill rate (Avg βMINLP) of the MINLP policy. The last column shows 

E(TC)sim relative to E(TC)MINLP (x100%), to show the cost increase if an MILP policy is used 

instead of the MINLP policy. The average fill rate is the average over the fill rates per 

replenishment cycle. The base case has a grey shade.  

 

Table 5  Overview of the results  

Exp k CV β w E(TC)MILP E(TC)sim 

NrO 

MILP 

Avg 

sim E(TC)MINLP 

NrO 

MINLP 

Avg 

βMINLP 

E(TC)sim  

E(TC)MINLP 

  1 0 0.10 90 -0.5   13124 13195 12 91.29 13050 12 90.17 101.11 

  2 

  

90  0   13124 13195 12 91.29 13050 12 90.17 101.11 

  3 

  

90  0.5   13124 13195 12 91.29 13050 12 90.17 101.11 

  4 

  

95 -0.5   14142 14553 12 97.27 13980 12 95.10 104.10 

  5 

  

95  0   14142 14553 12 97.27 13980 12 95.10 104.10 

  6 

  

95  0.5   14142 14553 12 97.27 13980 12 95.10 104.10 

  7 

  

98 -0.5   16042.5 16112   8 98.78 14934 12 98.05 107.89 

  8 

  

98  0   16104.5 16238 10 99.16 14935 12 98.05 108.72 

  9 

  

98  0.5   16165.5 16319 10 99.16 14936 12 98.05 109.26 

10 

 

0.25 90 -0.5   14400 15758 12 95.59 13912 12 90.07 113.27 

11 

  

90  0   14400 15807 12 95.59 13923 12 90.07 113.53 

12 

  

90  0.5   14400 15855 12 95.59 13934 12 90.07 113.79 

13 

  

95 -0.5   17154.5 17326   7 96.56 15572 12 95.09 111.26 

14 

  

95  0   17344.5 17497   6 95.95 15613 12 95.09 112.07 
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Exp k CV β w E(TC)MILP E(TC)sim 

NrO 

MILP 

Avg 

sim E(TC)MINLP 

NrO 

MINLP 

Avg 

βMINLP 

E(TC)sim  

E(TC)MINLP 

15 

  

95  0.5   17474 17792   5 95.44 15654 12 95.09 113.66 

16 

  

98 -0.5   19185 19171   6 98.34 17334 11 98.07 110.60 

17 

  

98  0   19630 19669   6 98.34 17474 12 98.08 112.56 

18 

  

98  0.5   20075 20167   6 98.34 17585 12 98.08 114.68 

19 

 

0.33 90 -0.5   15923 16479   8 93.85 14604 12 90.07 112.84 

20 

  

90  0   15923 16670   8 93.85 14648 12 90.07 113.80 

21 

  

90  0.5   15923 16861   8 93.85 14691 12 90.07 114.77 

22 

  

95 -0.5   18356.5 18375   5 95.53 16546 12 95.10 111.05 

23 

  

95  0   18666 18832   5 95.53 16657 12 95.10 113.06 

24 

  

95  0.5   18975.5 19289   5 95.53 16768 12 95.10 115.03 

25 

  

98 -0.5   20734 20724   6 98.37 18595 11 98.09 111.45 

26 

  

98  0   21430.5 21472   6 98.37 18835 11 98.09 114.00 

27 

  

98  0.5   22054 22141   5 98.24 19069 12 98.08 116.11 

28 500 0.10 90 -0.5   16875.5 16933   5 90.11 16925   5 90.07 100.05 

29 

  

90  0   16875.5 16939   5 90.11 16930   5 90.07 100.05 

30 

  

90  0.5   16875.5 16945   5 90.11 16936   5 90.07 100.05 

31 

  

95 -0.5   18088 18109   5 95.17 18062   6 95.03 100.26 

32 

  

95  0   18088 18145   5 95.17 18088   6 95.03 100.32 

33 

  

95  0.5   18088 18181   5 95.17 18114   6 95.03 100.37 

34 

  

98 -0.5   19188 19180   5 98.19 19043   6 98.03 100.72 

35 

  

98  0   19240 19292   5 98.19 19123   6 98.03 100.88 

36 

  

98  0.5   19292 19404   5 98.19 19203   6 98.03 101.05 

37 

 

0.25 90 -0.5   17734.5 17860   5 90.44 17736   5 90.04 100.70 

38 

  

90  0   17734.5 17988   5 90.44 17853   5 90.04 100.76 

39 

  

90  0.5   17734.5 18116   5 90.44 17970   5 90.04 100.81 

40 

  

95 -0.5   19718 19735   5 95.44 19505   6 95.05 101.18 

41 

  

95  0   19846 20013   5 95.44 19704   6 95.05 101.57 

42 

  

95  0.5   19974 20292   5 95.44 19903   6 95.05 101.95 

43 

  

98 -0.5   21691 21693   5 98.30 21299   6 98.05 101.85 

44 

  

98  0   22144 22203   5 98.30 21664   6 98.05 102.49 

45 

  

98  0.5   22597 22712   5 98.30 21926   7 98.07 103.58 

46 

 

0.33 90 -0.5   18528 18636   5 90.60 18419   5 90.04 101.18 

47 

  

90  0    18528 18878   5 90.60 18640   6 90.06 101.28 

48 

  

90  0.5   18528 19120   5 90.60 18813   6 90.06 101.63 

49 

  

95 -0.5   20856.5 20875   5 95.53 20511   6 95.06 101.77 

50 

  

95  0   21166 21332   5 95.53 20837   6 95.06 102.38 

51 

  

95  0.5   21475.5 21789   5 95.53 21036   7 95.10 103.58 

52 

  

98 -0.5   23052.5 22995   4 98.04 22626   6 98.06 101.63 

53 

  

98  0   23743 23757   4 98.04 23040   7 98.09 103.11 

54 

  

98  0.5   24433.5 24519   4 98.04 23398   8 98.07 104.79 

55 1000 0.10 90 -0.5   19375.5 19433   5 90.11 19425   5 90.07 100.04 

56 

  

90  0   19375.5 19439   5 90.11 19430   5 90.07 100.05 

57 

  

90  0.5   19375.5 19445   5 90.11 19436   5 90.07 100.05 

58 

  

95 -0.5   20588 20609   5 95.17 20568   5 95.03 100.20 

59 

  

95  0   20588 20645   5 95.17 20601   5 95.03 100.21 

60 

  

95  0.5   20588 20681   5 95.17 20634   5 95.03 100.23 

61 

  

98 -0.5   21688 21680   5 98.19 21585   5 98.02 100.44 

62 

  

98  0   21740 21792   5 98.19 21684   5 98.02 100.50 

63 

  

98  0.5   21792 21904   5 98.19 21784   5 98.02 100.55 

64 

 

0.25 90 -0.5   20223 20186   4 90.03 20186   4 90.02 100.00 

65 

  

90  0   20223 20317   4 90.03 20317   4 90.02 100.00 

66 

  

90  0.5   20223 20448   4 90.03 20448   4 90.02 100.00 
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Exp k CV β w E(TC)MILP E(TC)sim 

NrO 

MILP 

Avg 

sim E(TC)MINLP 

NrO 

MINLP 

Avg 

βMINLP 

E(TC)sim  

E(TC)MINLP 

67 

  

95 -0.5   22097.5 21955   4 95.02 21955   4 95.02 100.00 

68 

  

95  0   22197 22235   4 95.02 22235   4 95.02 100.00 

69 

  

95  0.5   22296.5 22515   4 95.02 22515   4 95.02 100.00 

70 

  

98 -0.5   23780 23719   4 98.03 23719   4 98.03 100.00 

71 

  

98  0   24216 24227   4 98.03 24227   4 98.03 100.00 

72 

  

98  0.5   24652 24735   4 98.03 24735   4 98.03 100.00 

73 

 

0.33 90 -0.5   20910 20771   4 90.03 20771   4 90.02 100.00 

74 

  

90  0   20910 21016   4 90.03 21016   4 90.02 100.00 

75 

  

90  0.5   20910 21261   4 90.03 21261   4 90.02 100.00 

76 

  

95 -0.5   22990 22855   4 95.03 22855   4 95.03 100.00 

77 

  

95  0   23268 23313   4 95.03 23313   4 95.03 100.00 

78 

  

95  0.5   23546 23771   4 95.03 23771   4 95.03 100.00 

79 

  

98 -0.5   25052.5 24995   4 98.04 24995   4 98.04 100.00 

80 

  

98  0   25743 25757   4 98.04 25757   4 98.04 100.00 

81 

  

98  0.5   26433.5 26519   4 98.04 26519   4 98.04 100.00 

82
1
 500 0.25 95  0   20385 20395  6 95.05 20120   7 95.05 101.37 

83
2
   95  0   20282 20535  4 95.48 19626   5 95.10 104.63 

84 

  

95  0   20037 20277   5 96.19 19495   5 95.06 104.01 

85 

  

95  0   19909.5 20137   5 95.67 19486   6 95.07 103.34 

86 

  

95  0   20348 20346   4 95.00 19728   6 95.05 103.13 
1
 M = 2;  

2
 M = 4. 

 

The MILP model is considered to be suitable for use in practise if the expected total costs are 

close to the costs of the optimal solution, and the average fill rate is close to the requirement. 

The perception of ‘close’ has to be determined by the producer in practise. Table 5 shows that 

the MILP model performs best with setup cost k = 500 or 1000, when the number of 

deliveries is limited to 4 or 5 times during the 12 period time horizon. In those cases the 

expected total costs are less than 5% higher than those of the optimal policy. Interesting is that 

for setup cost k = 0, the MILP policy prescribes for more than half of the experiments not to 

deliver in each period.  Due to aggregation and the fill rate requirement, the total 

replenishment quantity can be lower when delivering for more periods. If the holding cost is 

lower than the cost of production of extra items, one delivers for multiple periods. In all 

experiments but one, the MINLP approach prescribes to deliver in every period. The MINLP 

approach has lower expected total costs, because it takes the pipeline inventory into account 

that, apart from period 1, is nonzero, in determining the replenishment quantity. The MILP 

model determines the replenishment quantity ignoring the availability of pipeline inventory. 

The evaluated MILP approach goes for certain as the level of the pipeline inventory is highly 

uncertain due to the long production time. By less replenishments, MILP lowers the total 

replenishment quantity during the time horizon. With setup cost k = 1000 and CV = 0.25 or 
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0.33, the MILP policy prescribes to deliver every 3 periods. In these cases there is no pipeline 

inventory and the MILP policy coincides with the optimal policy.  

A higher coefficient of variation leads to fewer or the same number of deliveries. The same 

holds for a higher fill rate. The effect of varying the cost of waste is less clear. The MILP 

solution is insensitive to varying the tested values of w when k > 0. When k = 0, varying w 

leads to an increase, a decrease or no change in the number of deliveries. For the MINLP 

solution, varying w leads to an increase or no change in the number of deliveries. Varying the 

maximum shelf life M confirms the earlier findings with less orders in the MILP solution than 

optimal and slightly higher costs. The other tested erratic demand patterns have the same 

number of deliveries than the base demand pattern, while the highly erratic demand pattern 

performs better on the expected total costs than the erratic variant. The stationary demand 

requires only four deliveries.  

The MILP approach appears especially suitable if the cost structure is such that one does not 

deliver every period. In that case the pipeline inventory is relatively small and consequently 

the approach performs well with respect to costs. In case the replenishment cycle is equal to 

the maximum shelf life, the pipeline inventory is zero, so the MILP approach gives the 

optimal solution. This analysis is also true for other values of the maximum shelf life.  

 

7  Conclusions 

We studied the practical problem to determine a production plan for a perishable product with 

a long lead time and a fixed time horizon under a cycle fill rate constraint. Demand is non-

stationary. In case of out-of-stock, demand is lost. Issuing is according to a FIFO policy. We 

focus on an (Yt, Qt) policy, where Yt denotes in which periods to deliver, and Qt the 

corresponding replenishment quantities to deliver. We investigated whether it is possible to 

construct practical solutions using existing solvers. We considered a single-product – single-

echelon SP model, minimizing the expected total costs. To find approximate solutions for the 

SP model, an MILP model has been formulated. The MILP model is a deterministic approach 

that generates feasible production plans in less than a second for the performed 86 

experiments. With a scenario-based MINLP approach, optimal solutions with respect to a 

large sample of demand paths are generated as a benchmark for the MILP solutions. The 

results are data-dependent, but from the performed experiments can be concluded that if the 

setup cost is low, the MILP model solutions have fill rates higher than required and expected 

total costs higher than in the optimal solution. Finding a reasonably good approximation for 

the pipeline inventory in case of non-stationary demand could solve this problem. If the setup 
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cost is higher, such that the replenishment cycle lengths are equal or close to the length of the 

internal shelf life, the influence of the starting inventory is less. The MILP model generates 

production plans with fill rates close to the required values and expected total costs are close 

to optimal. Given the results and the short solver time, the MILP model is suitable for use in 

practise.  

 

Acknowledgement 

This research has been supported and partly funded by (1) TI Food and Nutrition (project 

RE002), The Netherlands, and (2) The Spanish state (project TIN2012-37483-C03-01) and 

Junta de Andalucía (P11-TIC-7176), in part financed by the European Regional Development 

Fund (ERDF). 

 

References  

Alcoba, A.G., Hendrix, E.M.T., García, I., Ortega, G., Pauls-Worm, K.G.J., Haijema, R., 

2015. On Computing Order Quantities for Perishable Inventory Control with Non-

stationary Demand, in: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, 

A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (Eds.), Computational Science and Its 

Applications -- ICCSA 2015. Springer International Publishing, pp. 429-444. 

Bijvank, M., Vis, I.F.A., 2011. Lost-sales inventory theory: A review. Eur. J. Oper. Res. 215, 

1-13. 

Bookbinder, J.H., Tan, J.Y., 1988. Strategies for the probabilistic lot-sizing problem with 

service-level constraints. Manage. Sci. 34, 1096-1108. 

Broekmeulen, R., van Donselaar, K.H., 2009. A heuristic to manage perishable inventory with 

batch ordering, positive lead-times, and time-varying demand. Comput. Oper. Res. 36, 

3013-3018. 

Chen, F.Y., Krass, D., 2001. Inventory models with minimal service level constraints. Eur. J. 

Oper. Res. 134, 120-140. 

Chopra, S., Meindl, P., 2010. Supply Chain Management: Strategy, Planning, and Operation, 

Fourth Edition ed. Pearson Education, Inc., New Yersey. 

Goldberg, D.A., Katz, D.A., Lu, Y., Sharma, M., Squillante, M.S., 2014. Asymptotic 

Optimality of Constant-Order Policies for Lost Sales Inventory Models with Large Lead 

Times. arXiv preprint arXiv:1211.4063v2 (2014). 

Haijema, R., van der Wal, J., van Dijk, N.M., 2007. Blood platelet production: Optimization 

by dynamic programming and simulation. Comput. Oper. Res. 34, 760-779. 

Haijema, R., van Dijk, N., van der Wal, J., Sibinga, C.S., 2009. Blood platelet production with 

breaks: optimization by SDP and simulation. Int. J. Prod. Econ. 121, 464-473. 

Hendrix, E.M.T., Haijema, R., Rossi, R., Pauls-Worm, K.G.J., 2012. On Solving a Stochastic 

Programming Model for Perishable Inventory Control, in: Murgante, B., Gervasi, O., 

Misra, S., Nedjah, N., Rocha, A.C., Taniar, D., Apduhan, B. (Eds.), Computational Science 

and Its Applications – ICCSA 2012. Springer Berlin Heidelberg, pp. 45-56. 

Karaesmen, I.Z., Scheller-Wolf, A., Deniz, B., 2011. Managing Perishable and Aging 

Inventories: Review and Future Research Directions, in: Kempf, K.G., Keskinocak, P., 

Uzsoy, R. (Eds.), Planning Production and Inventories in the Extended Enterprise 

Springer, pp. 393-436. 



  

20 
 

Minner, S., Transchel, S., 2010. Periodic review inventory-control for perishable products 

under service-level constraints. OR Spectrum 32, 979-996. 

Morton, T.E., 1969. Bounds on the Solution of the Lagged Optimal Inventory Equation with 

no Demand Backlogging and Proportional Costs. SIAM Review 11, 572-596. 

Pauls-Worm, Karin G.J., Hendrix, E.M.T., 2015. SDP in Inventory Control: Non-stationary 

Demand and Service Level Constraints, in: Gervasi, O., Murgante, B., Misra, S., 

Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (Eds.), 

Computational Science and Its Applications -- ICCSA 2015. Springer International 

Publishing, pp. 397-412. 

Pauls-Worm, K.G.J., Hendrix, E.M.T., Haijema, R., van der Vorst, J.G.A.J., 2014. An MILP 

approximation for ordering perishable products with non-stationary demand and service 

level constraints. Int. J. Prod. Econ. 157, 133-146. 

Rossi, R., 2013. Periodic review for a perishable item under non stationary stochastic demand, 

pp. 2021-2026. 

Tarim, S.A., Kingsman, B.G., 2004. The stochastic dynamic production/inventory lot-sizing 

problem with service-level constraints. Int. J. Prod. Econ. 88, 105-119. 

Tempelmeier, H., Herpers, S., 2011. Dynamic uncapacitated lot sizing with random demand 

under a fillrate constraint. Eur. J. Oper. Res. 212, 497-507. 

Tunc, H., Kilic, O.A., Tarim, S.A., Eksioglu, B., 2011. The cost of using stationary inventory 

policies when demand is non-stationary. Omega 39, 410-415. 

Van Donselaar, K., de Kok, T., Rutten, W., 1996. Two replenishment strategies for the lost 

sales inventory model: A comparison. Int. J. Prod. Econ. 46–47, 285-295. 

 

 

Highlights 

 

 Practical inventory control for a perishable product with non-stationary demand and 

long lead time 

 

 An MILP model is constructed with a fill rate constraint per replenishment cycle and a 

FIFO issuing policy  

 

 MILP uses standard software to specify when to deliver an how much, while meeting 

the cycle fill rate requirement  

 

 The MILP model is suitable for practical use in case of significant setup cost  
 
 
 

 

 
 

 




