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Abstract

In human facial behavioral analysis, Action Unit (AU)
coding is a powerful instrument to cope with the diversity
of facial expressions. Almost all of the work in the liter-
ature for facial action recognition is based on 2D camera
images. Given the performance limitations in AU detection
with 2D data, 3D facial surface information appears as a
viable alternative. 3D systems capture true facial surface
data and are less disturbed by illumination and head pose.
In this paper we extensively compare the use of 3D modality
vis-à-vis 2D imaging modality for AU recognition. Surface
data is converted into curvature data and mapped into 2D
so that both modalities can be compared on a fair ground.
Since the approach is totally data-driven, possible bias due
to the design is avoided. Our experiments cover 25 AUs and
is based on the comparison of Receiver Operating Charac-
teristic (ROC) curves. We demonstrate that in general 3D
data performs better, especially for lower face AUs. Fur-
thermore it is more robust in detecting low intensity AUs.
Also, we show that generative and discriminative classifiers
perform on a par with 3D data. Finally, we evaluate fu-
sion of the two modalities. The highest detection rate was
achieved by fusion, which is 97.1 area under the ROC curve.
This score was 95.4 for 3D and 93.5 for 2D modality.

1. Introduction

Mental processes like emotions, social interactions as in
winking and physiological effects like pain or fatigue do
all generate expressions on human faces, consciously or un-
consciously. From behavioral scientists to human-computer
interaction analysts there is a need for objective facial mea-
surements. Facial Action Coding System (FACS) seems to

provide the right medium [2, 11]. The downside of FACS
is that due to the countless rules defined in FACS and sub-
tleties of AUs, encoding is a difficult and time consuming
process, and requires certification. Also, due to the human
factor in coding, analysis can be subjective by nature. These
are the reasons that started vision based automated AU cod-
ing research. The potential of an automatic AU encoder is
obvious in the design of human-computer interfaces or in
psychological studies, to infer social communication facial
signals, mental and physiological activities.

An approach for AU detection is to develop specific
models and to identify relevant image features. For in-
stance, Tian et al. [16] fits geometric models of facial fea-
tures in the form of ellipses and curves, and applies wrinkle
detectors. Pantic and Rothcrantz [8] extract geometric fea-
tures from fiducial points, and they use profile as well as
frontal views to benefit from depth information. Statistical
face models, like active shape models (ASM) and active ap-
pearance models (AAM) are proven techniques for model
based facial analysis. Lucey et al. [5] apply both 2D and
3D AAM tracking to classify four upper face AUs.

The performance of model-based techniques can criti-
cally depend upon the success of intermediate steps like
landmark detection and localization. In contrast, data-
driven techniques, i.e., direct image-based analysis has the
double advantage of avoiding the weakest-link-in-the-chain
issue of the intermediate steps, and also their training phase
is relatively simpler. Bartlett et al. [1] proposed a successful
image-based technique which works in a totally data-driven
fashion. Their method performs local analyses by Gabor
wavelets whose coefficients are chosen automatically with
AdaBoost algorithm.

Despite considerable progress on the automatic detec-
tion of AUs using 2D image data, several challenges re-
main, for example, detection performance with subtle AUs
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or when several AUs co-occur in combinations. It is conjec-
tured that 3D face data can alleviate difficulties inherent in
2D modality since 3D enables true facial surface measure-
ments. The advantages of 3D measurements have already
been demonstrated in the context of face recognition, as 3D
is immune to illumination and to some extent to pose vari-
ations. The potential of AU detection with 3D observations
has not been sufficiently explored, though there has been
some work done on 3D emotions (the six universal ones
[3], happiness, surprise, fear, anger, sadness, disgust). For
instance, using 64 manually marked points, Wang et al. [18]
divide 3D faces into regions and extract regional histograms
of surface curvatures. Other 3D methods proposed for emo-
tion identification have the handicap of depending on an ex-
cessive number of feature points [12, 6, 7, 13, 14].

Use of simultaneous 2D and 3D video acquired by struc-
tured light based system has been proposed for AU recog-
nition by Tsalakanidou and Malassiotis [17]. They em-
ploy ASM based tracker, and also utilize detectors of eye-
brows and mouth for a more robust ASM fitting; and then
apply rule-based classification on features related to fa-
cial point distances, gray-level appearance and surface cur-
vatures. However, their experimentation is limited to 11
singly occurring posed AUs and the performance results
seem lower than current 2D AU detection. In our previ-
ous study we [10] we used solely 3D data and introduced a
non-rigid registration-based approach for surface curvature
images. The resulting ROC analysis revealed 96.2% Area
under the Curve (AuC) score over 22 singly occurring AUs.

A relevant problem to be explored is whether 2D imag-
ing modality or 3D modality capturing surface data is better
and whether they can be complementary. With this goal in
mind we extensively compare 3D and 2D modalities for 25
AUs over very comprehensive 3D FACS dataset [9]. The
2D camera images were analyzed with the state-of-the-art
method of Bartlett et al. [1]. It is also important to remark
that for the sake of a fair comparison, the 3D face data was
converted into surface curvature data, and then mapped into
2D. This is to minimize any confounding factors so that
identical experimental conditions are created for the 2D to
3D comparison. Therefore in the experiments only the data
modalities differ, but not the methods.

The paper is organized as follows. Detection from 2D
images, involving generative in addition to discriminative
classification, is described in Section 2. Section 3 explains
use of 3D data. In section 4 we give our 3D-2D modality
comparison results by discussing their differences on per
AU basis, examine the case of low intensity AUs and evalu-
ate fusion of the two modalities. Conclusion are drawn and
hints for future work are given in Section 5.

2. Action Unit Detection from 2D Images
In order to detect AUs from 2D images the method pro-

posed by Bartlett et al. [1] is employed. This is the state-of-
art-method for automatic AU recognition in 2D. Since the
method is data-driven, hence in a sense free from biases of
model-driven methods, it is a natural platform to compare
the performances of the 2D and the 3D modalities. More ex-
plicitly, the outcome of the comparison does not depend on
the performance of intermediate steps like model fitting or
facial landmark detection. In this method, facial features are
analyzed by Gabor wavelets. Since Gabor basis effectively
support only limited part of the input images, especially
more compact regions for higher frequencies, the analysis
is local in contrast to holistic methods like PCA where ba-
sis cover all the image pixels. In the training phase, Ad-
aBoost feature selection is applied on the Gabor magnitude
responses for each AU separately. Although the resulting
AdaBoost classifiers could have been used as detectors, it
is shown that linear Support Vector Machine (SVM) classi-
fiers on the selected features improve the performance.

Several other works in the literature consider discrimi-
native classifiers like AdaBoost, SVMs or neural networks.
Despite certain success achieved by discriminative classi-
fiers they have some weaknesses. Their generalization ca-
pability may be poor when training samples do not ade-
quately represent all possible variations. Also, inaccura-
cies of the ground-truth labeling may have more severe im-
pact on the discriminative models. Both issues are of real
concern in AU detection since not all AUs are richly rep-
resented in the present databases, and more importantly,
FACS coding is sometimes subjective, with acceptance of
approximately 75% reported agreement between annotators
[2, 11]. Therefore, we opt for generative classifiers. Actu-
ally, since classification is carried out on the most discrim-
inative features selected by AdaBoost, both discriminative
and generative characteristics exist. Four types of Bayes
classifiers are tested for this purpose, where features are as-
sumed to be Gaussian:

• G-1: Quadratic Normal classifier with diagonal co-
variance, where the covariance matrices are estimated
for positive and negative samples separately;

• G-2: Simplest Quadratic classifier, where single
global variance is estimated for each class.

• G-3: Linear Normal classifier with diagonal covari-
ance (Naı̈f Bayes).

• G-4: Simplest Linear Classifier (Nearest Mean class.).

In order to eliminate any confounding effect due to au-
tomatic normalization, images have been normalized using
manually determined eye centers. Normalization involves



(a) 2D camera image
(b) Raw 3D face (c) Filtered 3D face

(d) Curvature image

Figure 1: Illustration of pre-processing steps of 3D surface data to produce surface curvature images. Input data (b) is
filtered (c) and its surface curvature is computed. The curvature information is projected onto 2D domain and extrapolation
is performed (d). The FACS code for this particular expression is R1C+L2D+4B+R6B+G7E+10E+19B+25C+26C+43B,
which includes many lower and upper facial AUs, and also some asymmetry is involved.

translation, rotation and scaling to align eye centers and re-
sampling of images at 96× 96 pixels resolution. For Gabor
transform analysis of faces, eight directions are used and
the Gabor wavelengths are chosen in the range of 2-32 pix-
els, which vary with half octave intervals, and result in nine
scale levels. The feature vector has 9×8×96×96 = 663552
components; however, not all of them are informative and in
fact for any one AU, 200 Gabor features selected by means
of AdaBoost, seem to suffice.

3. From 3D Surface Measurements to 2D Cur-
vature Field

Even though our measurements are in 3D, we map them
and proceed to analyze them in 2D. The conjecture is that
3D capture of face surface data contains richer information,
while the 2D capture of the face images would have sacri-
ficed this additional information in the first place. Notice
that previous recognizers of prototypical expressions oper-
ate entirely in 3D [18, 12, 6, 7, 13, 14]. However, these
methods depend on a large number of facial points, and are
therefore in a different category and would not allow a fair
2D-to-3D comparison. There are several benefits of captur-
ing facial data in 3D and then process them in 2D: Proven
2D AU methods can be applied directly, the higher compu-
tational load of 3D is reduced, and we have opportunity to
compare the performance of 2D and 3D modalities under
the same set of algorithms. To have adequate mapping of
3D facial surface geometry on the 2D image domain, sur-
face curvatures are used. They provide faithful information
about the geometry of the surface in a compact form, and
thus can be very useful in facial deformation analysis, as
has already been shown in [10].

Before curvature estimation, the 3D face data is sub-
jected to certain pre-processing steps. First, 3D facial sur-

face is reconstructed in terms of piecewise planar surfaces
of a wireframe structure from 3D coordinate data (Fig-
ure 1b). Since 3D sensing devices produce noisy data and
curvature estimation is noise sensitive, several noise filter-
ing steps are run to remove spikes, to smooth data, and to
fill in the holes (Figure 1c). Then, curvatures are estimated
on the wire-frame surface and mean curvature values are
resampled in the image domain via orthogonal projection.
The final curvature image is obtained by applying image
extrapolation for the out of domain areas [15] (Figure 1d).
The resolution is the same with of the 2D camera image
data, i.e., 96× 96 pixels.

4. Experimental Results and Discussions

In order to evaluate 3D modality for facial expression
analysis, we prepared an extensive database (Bosphorus
Database [9]) where 3D faces were acquired with a struc-
tured light system. This database contains 105 subjects
acting a large repertoire of expressions, and show vari-
ous head poses and occlusions (beard, moustache, glasses,
etc.). There are up to 54 face images per subject. The fa-
cial expressions were instructed by the experimenter and
the ground-truth FACS codes were obtained by a certified
FACS coder. The acquisitions were done under good illumi-
nation conditions. The color images have 1600× 1200 res-
olution and the number of points on 3D faces varies roughly
between 30K and 50K. Some sample 3D faces are shown in
Figure 2.

In addition to the Bosphorus database, Cohn-Kanade
DFAT-504 [4] database was also employed to evaluate 2D
performances. It is one of the most common AU coded fa-
cial expression databases. It contains digitized video clips
at 640 × 480 pixels resolution. Up to 23 instructed facial
expressions per subject were captured from 100 university



Figure 2: Sample 3D faces from Bosphorus database. The samples are shown with and without texture mapping by artificial
lighting.

student. Each clip starts with neutral and ends with expres-
sion apex frames. 972 images of these neutral and apex
frames has been used to test 19 AUs from this database.

In the Bosphorus database, 25 AUs, split as seven lower
AUs and 18 upper facial AUs, are tested over 2902 sam-
ples in the experiments. Some examples of these lower and
upper facial AUs are shown in Figure 3 and Figure 4 re-
spectively. Each AU is treated separately; in other words,
we develop 25 detectors, one for each AU. Any face im-
age involving the target AU, alone or in combination with
other AUs, is treated as a positive sample of that AU class,
while all other images that do not involve the target AU are
accepted as negative samples. All the experiments are per-
formed using 10-fold subject cross-validation so that sam-
ples from any training subject are never used in testing.
However, this dataset partitioning is not trivial since AUs

are not distributed evenly among the subjects. We solve this
problem by creating different subject partitions for each AU
so that each fold becomes balanced with respect to the pos-
itive samples.

The performance of the detectors is given in terms of
cross validated Receiver Operating Characteristics (ROC)
curves. ROC curves show hit rate versus false alarm rate
under varying thresholds. To have a single figure of merit
that summarizes a ROC curve, Area under the Curve (AuC)
measure is used, since it is equivalent to the theoretical max-
imum achievable correct rate of a binary classification prob-
lem. In the following subsections, we compare the pros and
cons of the 3D and 2D modalities.



(a) 23C (b) 20C+23C+25C (c) 12B+14C+23C

(d) 14C+23C (e) 18D+24D

(f) 9D+17C

(g) V10B+16D+25C (h) 12E+16D+25E (i) 22D+25D+27C

Figure 3: Camera and curvature images are shown for some lower facial action units. The FACS codes are also given.

(a) 1E+7B (b) 6D+7D (c) 4D+7B

(d) 43E
(e) 1E+2E+5C+7A (f) L2C+4C+L5D

Figure 4: Camera and curvature images are shown for some upper facial action units. The FACS codes are also given.

4.1. Conjecture: 3D Expression Data is Better than
2D Data

Every AU in the Bosphorus dataset is annotated with its
intensity level. This enables us to examine the detection
performance as a function of the intensity. The five intensity
levels of FACS range from slightest level (A to strongest
level E). In our experiments we excluded the AU samples
with intensity level A, since even the expert annotators are
not very sure of their scores. The low B level intensity AUs
are tested separately to see the effect of intensity. Thus, we
developed the AU detectors using AUs with intensity levels
C,D, and E for training and AUs with intensity levels B, C,
D and E for testing.

The best results were obtained with linear SVM, out-
performing AdaBoost and Gaussian Bayes classifiers. The
AuC performance was 93.7% for 2D camera data of Cohn-

Kanade dataset, 93.5% for 2D Bosphorus dataset and it was
2% points higher with 3D data, that is, 95.4%. These aver-
ages have been calculated by weighted summations of indi-
vidual AU scores according to number of positive samples
in that AU set. However, evaluations with only the aver-
age results does not show all the interesting information.
To this effect, we show the detection rate of each AU, in
Figure 5 to compare the 2D datasets, and in Figure 6 to
compare 2D and 3D modalities. The AU bars are ordered
according to differences in the performance. The 2D results
of the two databases seem to be very close, but interestingly
differences for some of the AUs are very big. One reason
of this may be difference in the number of available posi-
tive samples. We observe that the advantage of 2D and 3D
modalities differ from AU to AU. To interpret these figures,
consider the first bar that belongs to AU23 and of which
there are 63 realizations in the dataset. The darker part of



Figure 5: The performance comparison between 2D
datasets of Cohn-Kanade and Bosphorus databases. SVM
classifiers are used and AuC values are reported in bars
(light color: Cohn-Kanade, dark color: Bosphorus). Num-
ber of total positive samples is written inside the AU bars, at
the bottom for Cohn-Kanade, and at the top for Bosphorus
dataset.

the bar indicates that 2D data achieves only 62% correct de-
tection while 3D data achieves 87%; conversely, consider
the last AU bar (AU16 with 102 instances in the dataset).
In this case 3D data achieves 86% while 2D is better at
96% correct detection rate. We can conclude that in gen-
eral 3D data considerably improves the detection of lower
facial AUs. For example, the detection of AU23 (Lip Tight-
ener), which was shown to be [1] one of the most difficult
AUs, improves considerably, with a 16% gain. Several in-
stantiations of this AU are shown in Figures 3a, 3b, 3c and
3d. Improvements on AUs 24, 14, 16, 24 and 26 are also
remarkable.

3D is not necessarily always more advantageous. We
can see that some performance degradations occur on up-
per facial AUs with 3D data. This may be explained by two
factors. First, 2D eye texture and especially appearance of
pupils are very informative for AU scoring. Second, eye
region can be quite noisy with structured light based 3D ac-
quisition due to eyelashes and glitters. This may hide nec-
essary surface detail for detection.

Finally, AU11 (Nasolabial Furrow Deepener) deserves
some explanation as this is a case under both modalities.
The reason may be that too few positive samples are avail-
able in the dataset.

4.2. Performance with Action Units at Low Intensity

In real life, facial expressions can often occur at low in-
tensities. Naturally, this makes the already challenging AU
detection problem even more difficult as differences among

Figure 6: The performance comparison between 3D and 2D
data modalities. SVM classifiers are used and AuC values
are reported in bars (light color: 3D data, dark color: 2D
data). Number of total positive samples is written inside the
AU bars.

AUs or between AU and neutral state become more sub-
tle. Bartlett et al. [1] found 21% drop (from 92% to 71%)
on average AuC values when their detectors are tested on
a spontaneous expression database instead of posed expres-
sions.

In order to see detection capabilities of lower intensity
actions, we use only the B level samples as positives. The
same subject cross validation partitions of the experiments
in Section 4.1 are used, training sets are not modified, and
also the negative test samples are the same. Hence, the only
difference in the setup is the positive test samples. Figure 7
shows the results of 3D and 2D data with linear SVMs. We
see a severe performance drop on average AuCs in both
modalities: from 93.5% to 80.1% for 2D, and from 95.4% to
83.7% for 3D. Only AU9 (Nose Wrinkler) keeps its high de-
tection rates under either modality. The improvement with
3D data is higher in case of lower intensity actions, from
1.9% to 3.6%. When we compare the differences between
3D and 2D on AU basis, we can come to conclusions simi-
lar as those given in Section 4.1. However, for AUs 25 (Lips
Part), 22 (Lip Funneler) and 4 (Brow Lowerer) the detection
rates drop considerably with 2D data while 3D detectors are
still performing well. On the other hand, degradation in 3D
detector of AU43 (Eye Closure) is much more than its 2D
opponent, which may be related to eye texture and 3D ac-
quisition noise as mentioned in Section 4.1.

4.3. 2D versus 3D Under Different Classifiers

We compare 2D and 3D modalities under different clas-
sifiers. The average AuC results are given in Table 1, and
Table 2 lists these results for only B intensity level AUs.



Classifier Cohn-Kanade - 2D Bosphorus - 2D Bosphorus - 3D 2D-3D Fusion
AdaBoost 92.1 92.2 94.8 95.5
Linear SVM 93.7 93.5 95.4 97.1
G-1 (Quadratic) 90.9 90.0 93.1 94.9
G-2 (Simple Quadratic) 76.4 63.3 85.4 92.1
G-3 (Naı̈ve Bayes) 93.5 91.4 95.3 96.7
G-4 (Nearest Mean) 87.8 82.6 92.0 96.7

Table 1: Average AuC values of AU detectors for 2D and 3D data under different classifiers. All of the classifiers use 200
Gabor features that are selected by AdaBoost, except the fusion where concatenated 400 length feature vector is employed.

Figure 7: Low intensity detection (B level) performance
comparison between 3D and 2D data modalities. SVM clas-
sifiers are used and AuC values are reported in bars (light
color: 3D data, dark color: 2D data). Number of total posi-
tive samples is written inside the AU bars.

Two immediate observations are that 3D modality is per-
forming better than 2D under any classifier, and that among
the classifiers linear SVM is the winner. However, we ob-
served that for some of the AUs which have less samples,
Naı̈ve Bayes performs better than linear SVMs over the 2D
datasets. Another interesting observation is that while dis-
criminative classification is apparently better for 2D data,
for 3D data generative classification with Naı̈ve Bayes is
better than AdaBoost and almost the same with the SVM.
Naı̈ve Bayes assumes Gaussian distribution of the samples
and linear separation. However, SVMs can potentially han-
dle more complex and nonlinear discrimination boundaries
by performing linear separation on higher dimensions. A
tentative interpretation of this outcome is that facial fea-
tures of 2D data have more complex distributions and not
as well linearly separable as the 3D case. There is inher-
ently nonlinearity in the 2D luminance images since they
are non-linear measurements of facial surface, thus feature
distributions of different classes of facial surface deforma-

Classifier 2D 3D Fusion
AdaBoost 78.6 81.7 82.6
Linear SVM 80.1 83.7 85.6
G-1 (Quadratic) 76.9 79.5 81.8
G-2 (Simple Quadratic) 56.7 69.7 78.0
G-3 (Naı̈ve Bayes) 79.2 81.9 84.8
G-4 (Nearest Mean) 68.7 77.0 84.8

Table 2: Detection performances on lower intensity B level
AUs by average AuC values of AU detectors for 2D and
3D data under different classifiers. All of the classifiers use
200 Gabor features that are selected by AdaBoost, except
the fusion where concatenated 400 length feature vector is
employed.

tions may in turn not be as well linearly separable as the
3D case. We also observe that use of global variance esti-
mates, as in the case of G-4 (Nearest Mean) and G-2 (Sim-
ple Quadratic), is not severely diminishing the performance
with 3D data compared to 2D. This is also an indication for
even simpler distribution of 3D data features.

4.4. Fusion of 2D and 3D Modalities

Finally, we evaluate the fusion of the two modalities,
since 2D camera images and 3D data may contain comple-
mentary information that can be an aid in AU detection. It is
realized by directly concatenating the 2D and 3D data fea-
tures which are selected by AdaBoost. From Tables 1 and
2, we see very remarkable performance rises when the fea-
tures of 2D and 3D modalities are combined. SVM achieves
the best performance score of 97.1%, and for low intensity
AUs, it is 85.6%. The results of Bayes classifiers are also
high, and interestingly, even the worst performing Simple
Quadratic classifier demonstrates high rates with fusion.

5. Conclusion
We investigated the use of 3D data for the facial action

unit detection in lieu of conventional 2D luminance cam-
era images. The two modalities were extensively compared
using ROC analysis of 25 selected AUs. For fairness of



comparison, the 3D data is converted to 2D images of sur-
face curvatures. Once the two competitor modalities are in
the form of 2D images (intensity versus curvature), we do
Gabor analysis and select equal number of features via Ad-
aBoost.

The results show that 3D data offers significant advan-
tages in AU detection. In general, lower face AU detections
benefit more from 3D as compared to 2D. Especially the
detection rate of difficult AU23 improves considerably. 3D
also proves its value for low intensity expressions. In the
case of the next to the lowest intensity level (level B), while
many AUs degrade for 2D, 3D data can maintain high per-
formance for lower face AUs 25 and 22, and for upper face
AU 4. Nevertheless, there are some upper face AUs where
2D outperforms 3D. We may explain the lower performance
of 3D for upper face AUs with the fact that 3D sensing noise
is excessive in the eye region, and misses the eye texture
information. Another conclusion is that for 3D modality
both generative and discriminative classifications have al-
most identical performances; in fact Naı̈ve Bayes and linear
SVM have scores of 95.3% and 95.4% respectively. Since
neither 3D nor 2D is uniformly better, it is natural to think
of their complementary roles. The feature fusion of the two
modalities proves advantageous as the average AU recogni-
tion performance rises from 95.4% to 97.1%.

In a future study, we plan to evaluate other representa-
tions of 3D surfaces. For instance depth or Gaussian curva-
tures can be used as alternative representations of 3D geom-
etry. Also, instead of 2D projection, parameterization tech-
niques that establish bijective mapping can be employed in
order to prevent information loss due to mapping from 3D
to 2D domain.

A relevant future work is to observe the performance
of 3D on spontaneously occurring AUs. However, this re-
search has to await a 3D spontaneous expression database.
Presently most of the existing 3D sensing devices use ac-
tive sensors that project light on the subjects and capture
only static data. However, recent progress in 3D acquisi-
tion, such as use of invisible spectrum and video acquisi-
tions, may permit preparation of spontaneous databases for
future research studies.
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