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a b s t r a c t

This paper presents a system of modeling advances that can be applied in the computational optimi-
zation of wind plants. These modeling advances include accurate cost and power modeling, partial wake
interaction, and the effects of varying atmospheric stability. To validate the use of this advanced
modeling system, it is employed within an Extended Pattern Search (EPS)-Multi-Agent System (MAS)
optimization approach for multiple wind scenarios. The wind farm layout optimization problem involves
optimizing the position and size of wind turbines such that the aerodynamic effects of upstream turbines
are reduced, which increases the effective wind speed and resultant power at each turbine. The EPS-MAS
optimization algorithm employs a profit objective, and an overarching search determines individual
turbine positions, with a concurrent EPS-MAS determining the optimal hub height and rotor diameter for
each turbine. Two wind cases are considered: (1) constant, unidirectional wind, and (2) three discrete
wind speeds and varying wind directions, each of which have a probability of occurrence. Results show
the advantages of applying the series of advanced models compared to previous application of an EPS
with less advanced models to wind farm layout optimization, and imply best practices for computational
optimization of wind farms with improved accuracy.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

As the population of the world grows and fossil fuel-derived
electricity continues to be a significant cause of greenhouse gas
emissions, it is imperative that clean alternative energy such as
wind power is thoroughly explored. Increasing the incorporation of
wind power into the national power development schemewill help
to fulfill the substantial growth in power the United States is pro-
jected to require e a 39% increase during the next 20 years [1].
Additionally, the U.S. Department of Energy has presented the
challenge to meet 20% of the U.S. total electricity demand using
wind power by the year 2030 [1]. To meet this challenge, it will be
increasingly important that newly developed wind farms are per-
forming optimally; that is, they develop as much power as possible,
(B. DuPont), cagan@cmu.edu
while doing so at a reasonable cost. Other factors, such as local
weather and topographical variation, must be considered to accu-
rately predict wind farm performance prior to development, which
can further break down barriers to establishing new wind farms.
This challenge creates an opportunity to apply computational
optimization algorithms that incorporate state-of-the-art modeling
of power and cost to the design of prospective U.S. wind farms.

Though there has been significant research to date in the field of
computational optimization as applied to wind farms (particularly
to wind farm layout, or micrositing), research has only begun to
approach the problem with the goal of developing real-world
applicable results. To approach this real-world applicability, this
work proposes an advancedmodeling system that is designed to be
employed within wind farm optimization algorithms; these ad-
vances are a significant step forward from research described in
previous wind farm optimization literature in terms of model fi-
delity and inclusion. To utilize and validate the proposed advanced
modeling system, it is employed within an improved Extended
Pattern Search (EPS) algorithm, as the EPS has been successfully
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applied to wind farm micrositing optimization [2]. The advanced
modeling system presented in this work includes:

a. A more accurate means of modeling cost, based on the National
Renewable Energy Laboratory (NREL) Wind Cost and Scaling
Model [3] [4], which estimates cost based on the parameters of
turbine rotor radius and hub height.

b. The inclusion of wind shear (the variation of wind velocity with
respect to height from the ground) in the calculation of effective
wind speed and wake propagation.

c. The effects of atmospheric stability, considered in two ways:
first, by accounting for the change in wind shear profile shape
based on time of day and season, and second, by allowing
variation in the wake decay constant based on atmospheric
stability conditions, which is partially responsible for deter-
mining wake shape and wind speed deficit.

d. The consideration of partial wake interaction, which unlike
many previous wind farm optimizations that treat turbine ro-
tors as points, better represents overlapping wakes across the
rotor-swept area.

These models, employed collaboratively as part of the objective
used in the Extended Pattern SearcheMulti-Agent System, help
advance the state-of-the-art of analytical modeling for wind farm
optimization. Each of these models is considered to be more ac-
curate and representative of real-world conditions than previous
models used for wind farm optimization [2]. Therefore, it is
assumed that the results developed through the application of the
advanced modeling system (and layouts subsequently optimized
using the EPS-MAS) presented in this work will better predict wind
farm performance prior to wind farm installation.

Employing the advanced modeling system, the EPS within a
multi-agent system (MAS) algorithm accounts for each turbine's
design activities. The agent approach is advantageous given that it
facilitates multiple objectives and its architecture is highly adapt-
able, such that agents can be removed, added, or manipulated
easily without altering other facets of the code [5]. This approach
will be particularly beneficial considering proposed EPS-MASwork,
which will account for the dynamic nature of the wind farm layout
problem as new technologies, turbine designs, and local environ-
mental factors are considered.

Previous approaches to solving the wind farm optimization
problemdspecifically those that include modeling variation from
traditional test casesdare presented, along with a discussion of
both the traditional EPS and the MAS approach utilized as a case
study algorithm in this work. Next, the series of advanced models
are presented e cost modeling, wake modeling, atmospheric
stability, and power modeling. Then, the numerical procedure
and formal methodology are shown, followed by results and
discussion for both wind test cases.

2. Previous approaches

Previous literature in wind farm layout optimization generally
focuses on maximizing the power development of the farm while
minimizing cost. The first computational optimization approach to
the wind farm layout optimization problem was performed by
Mosetti et al., in 1994 [6], who established the framework upon
which many subsequent optimization schemes were based. Within
a genetic algorithm (GA) approach, Mosetti et al. used chromo-
somal strings that represented turbine position to create a dis-
cretized grid solution space. Grady et al. [7] improved upon this
work by exploiting greater computational resources, allowing their
GA to give superior results. Both of these optimization methods
utilized the 2-D PARKmodel developed by Jensen [8] andminimize
the objective of total cost of the farm while simultaneously maxi-
mizing power development.

As the most commonly utilized algorithm for the wind farm
layout optimization problem, more advanced GA approaches have
been widely applied, using a variety of objective functions and
modeling approaches. A DGA (Distributed Genetic Algorithm)
approach was developed by Huang [9]; while using the same dis-
cretized space and modeling as Mosetti et al. [6], the DGA was able
to create layouts that develop more power, utilizing an objective
function that maximized an estimate of wind farm profit. Huang
then improved on the DGA by creating a Hybrid-DGA approach [10]
that used both global and local objective functions. Wang et al. [11]
developed a GA that improved on the discretization of previous
work by allowing for varying shapes and coarseness of the solution
space. Similar approaches were developed by Sisbot et al. [12] and
Emami et al. [13], which expanded the use of GAs to solve the wind
farm layout optimization problem by separating total farm cost and
power development into distinct objectives, creating multi-
objective optimizations that allow for focus on initial farm costs.
Serrano-Gonzalez et al. [14] and Kusiak et al. [15] developed multi-
objective evolutionary algorithm approaches (similar to a GA) that
maximized the annual energy production of the farm; the latter
created a more accurate measure of farm cost than cost modeling
used in previous work. One shortcoming of these GAmethods is the
use of a discretized solution space, which limits the placement of
turbines to defined cells, such that precise local placement is
infeasible. Other researchers employing an evolutionary approach
used heat-map style continuous space to enable more precise local
placement [16].

In addition to genetic algorithms, multiple other methods have
been used to solve the wind farm layout optimization problem.
Particle swarm optimization algorithms are related to both bio-
logical swarming behaviors and evolutionary computation, and
were used by Wan et al. [17,18] and Chowdhury et al. [19] to solve
the wind farm optimization problem. Ozturk et al. [20] developed a
different approach, a heuristic method, that utilized a weighted
multi-objective function. These algorithms have a significant
advantage over traditional GAs in their use of a continuous solution
space, which the EPS-MAS also employs. Other algorithms applied
to wind farm layout optimization include the simulated annealing
work presented by Bilbao et al. [21], and the mixed-integer
nonlinear discrete combinatorial optimization algorithm devel-
oped by Mustakerov et al. [22]. The EPS algorithm has also been
successfully applied to wind farm layout optimization and has
incorporated multiple advances in modeling that enable the
development of more real-world applicable wind farm layouts, as
introduced in this work and published in Refs. [2,23].

There are several recent works that seek to expand on the
capability of various algorithms such that state-of-the-art modeling
of cost, wake interaction, and power are incorporated into the
optimization. Zhang et al. [24] created a cost surface to more
accurately estimate the costs associated with wind farm develop-
ment. Chowdhury et al. [25] established a framework for the se-
lection of turbines with varying rotor radii, and DuPont and Cagan
[23] expanded that capability by enabling an EPS algorithm to
select both turbine hub heights and rotor radii. Benatiallah et al.
[26] used actual long-term wind data as an input to their genetic
algorithm for wind farm layout. Chen et al. [27] explored the im-
plications of landowner decisions on resulting farm layouts. Kusiak
et al. [15] used preliminary data mining in conjunctionwith a GA to
determine the optimal control settings for a proposed farm. Kwong
et al. explored wind farm layout optimization that considers noise
propagation and limiting [28]. More recent work by Chowdhury
et al. [29] used a Kernel Density Estimation to better model multi-
modal wind data. A large research collaborative (including Riso
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National Laboratory in Denmark and multiple industry partners)
have recently explored wind farm optimization while considering
both optimal power development and the interrelated effects of
turbine loading characteristics [30]. These advances suggest that it
is not only the choice and development of the optimization algo-
rithm itself, but also the advances in how we model wind farm
optimization that will lead to robust and thoroughly tested pro-
posed layouts that perform as predicted.

The current work builds on previous EPS research that has been
applied to the wind farm layout optimization problemwith success
by DuPont and Cagan [2]. The previous application of EPS indicated
that the combination of deterministic search and stochastic ele-
ments characteristic of the EPS were particularly well-suited to the
multi-modal wind farm layout problem, allowing for the develop-
ment of superior layouts than were found using previous algo-
rithms, including comparable genetic algorithms.

As the efficacy of the EPS as applied to wind farm layout opti-
mization has been proven, focus has shifted toward incorporating
advanced modeling into the optimization, which will be discussed
in the following sections. Advancing the modeling used in wind
farm optimization will enable the EPS to develop layouts whose
performance is representative of actual onshore wind farms.
3. Multi-level extended pattern search

The proposed advancedmodeling system is employed within an
improved version of the established EPS algorithm for wind farm
layout optimization developed by DuPont and Cagan [2]. A pattern
search is a purely deterministic search algorithm [31] that traverses
potential solutions using a defined series of pattern directions. The
search only allows each turbine agent to accept solutions for which
there is a benefit to the objective evaluation. The extensions that
give the EPS its name are attributes that infuse stochasticity into the
search, which aid in escaping local minima. Multiple stochastic
extensions are used throughout the EPS. First, a randomized initial
layout of turbines is used to establish a broad range of turbine lo-
cations while not explicitly assigning starting locations. Second, the
search order is randomized such that no turbine's individual
movement is favored over another. Third, a popping algorithm is
employed that will select the weakest turbines (based on power
development) and attempt to assign them to a new random loca-
tion, until a certain number of attempts are made or the turbine is
relocated with a superior global evaluation. It has been shown that
the EPS is well-suited to complex layout problems [32], particularly
the wind farm layout optimization problem where it performs
better than comparable genetic algorithms [2].

In order to accommodate advances in modeling and to enhance
algorithm capability, this work explores a multi-level EPSdthe
primary EPS searches through turbine locations on a defined
continuous solution space, while two secondary concurrent EPS
algorithms search through varying hub heights and rotor diameters
to select optimal individual turbine geometries. This allows the
benefits of the EPS to be extended to both the wind farm micro-
siting problem and turbine sizing optimization. A flowchart
depicting the basics of the multi-level EPS is included in Fig. 1.

A set of four pattern search directions is followed for each in-
dividual EPS. For the location search, the pattern directions are
(þx,þy,�x,�y) in the xey solution space. For each of the sub-level
searches, the pattern directions are (þL, �L, þL/2, �L/2), where L
represents a length inmeters, either changing the height of the hub
of the turbine in the z-direction or the radius of the rotor. At the
start of each search, the pattern directions are traversed at a given
step size, which is halved after no further movements are selected
for that step size. The search exits after a minimum step size is
reached, allowing the turbine agents to select both precise co-
ordinates and geometries.
4. Multi-agent system methodology

A multi-agent system (MAS) is a collaboration of semi-
autonomous software agents, loosely simulating the function of a
human design team. Each agent represents a single purpose or
specialty just as a single design engineer would have unique
training or experience. Individually, agents work internally to meet
their own particular goals and job function. However, if given the
means to communicate effectively within a group, a MAS can
interconnect and collectively work towards a balance between
the global optimum and their individual objectives. The agents in
the current system, which are both autonomous and capable of
collaboration, are called collaborative agents [33]. The solutions
acquired by collaborative agents may be superior to the sum of the
capabilities of the individual agents involved [34]. The cooperation
of agents representing strategies and capabilities grouped together
in multi-agent systems has been shown to be very successful in
solving engineering design problems in previous systems, such as
in A-Teams [35], A-Design [36], and blackboard systems [37].

In the current work, an individual agent represents a single
turbine. The agent is equipped with memory capability for its cur-
rent location, previous location, current and most recent previous
geometric parameters, and current upstream and downstream
turbines. An initial number of agents are created, with additional
individual turbine agents are added to determine layouts with the
optimal number of turbines. The EPS performs on one agent at a
time, with each agent concurrently selecting its new potential lo-
cations, potential new hub height, and rotor radius. Then, each
agent calculates the global objective, and determines whether to
take a potential move or to take on new sizing. Once an agent has
completed a single round of the EPS-MAS, a new agent begins. The
order in which the agents perform the EPS-MAS is randomized,
which is one of the beneficial extensions of the EPS-MAS.

The benefit of using MAS architecture is that it facilitates future
alterations in coding, which is imperative for applying the EPS-MAS
to wind farm optimization, because advances in modeling and
methodology are currently being undertaken by many researchers
and are being updated rapidly. Additionally, the use of the MAS
increases algorithm efficiency by restricting the size of the opti-
mization search tree, because each turbine agent retains and up-
dates information about neighboring turbines, as opposed to re-
evaluating the entire field at every iteration.
5. Advanced modeling

5.1. Cost modeling

Accurately estimating the cost of installation of an onshorewind
farm is a complex task that requires the consideration of a large
number of variables, including the material and manufacturing
costs for each turbine, land lease costs, infrastructure and electrical
connectivity costs, and many others. The National Renewable En-
ergy Laboratory (NREL) developed a tool to estimate the costs
associated with installation and operation and maintenance of
wind farms; this tool has projection capability for turbines of
varying sizes and future installations [4]. This cost model is
embedded in a spreadsheet as part of the Jobs and Economic
Development Impact (JEDI) model for wind power that predicts the
cost of turbines based on a series of user-configurable parameters
[3]. Though the JEDI tool is not intended to predict the actual price
of turbines (as the market is highly variable), we use this work as a



Fig. 1. Flowchart for multi-level eps algorithm.
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means to estimate the cost of the individual turbines on the farm
such that the global objective function can minimize overall costs.

Using the coupled input data of rotor radii (between 19 m and
56 m) and the effective wind speed compensated for hub height
using the power law of Eq. (9) (between 38 m and 138 m), power is
estimated using Eq. (11). These resulting calculated power evalua-
tions are then used as input into the JEDI model for an individual
turbine. The project cost results are used to create a 2nd-order
polynomial surface [23] that is dependent on rotor radius and hub
height, as shown in Fig. 2.

The cost surface (as a function of radius and hub height)
depicted in Fig. 2 is estimated by Eq. (1):

Cðr;hÞ ¼ ð2:454eþ 06Þ � ð2:161eþ 05Þr � ð1:203eþ 04Þh
þ 6039rr2 þ 2455rh� 161:2h2 (1)

Compared to the cost modeling used in previous work [6,7],
which was based solely on the number of turbines in each potential
farm installation, the use of the NREL JEDI-derived cost surface is
much more accurate and representative of real-world farm costs.
5.2. Wake modeling and partial wake interaction

To determine the amount of power a turbine is capable of
developing, a 3-D extrapolation of the PARKwakemodel is used [8].
This wake model is a simplification of the complex aerodynamics
involved with the motion of turbine blades rotating through air.
Fig. 2. Polynomial cost surface as a function of rotor radius and hub height.
This rotation causes a wake e an assumed conical-shaped area of
air in which the flow is severely decremented immediately behind
the rotor, but asymptotically approaches the ambient wind speed
downstream. The PARK model is included in this work for multiple
reasons: (1) it is commonly employed in wind farm optimization
research, because its simplicity lends to fast processing for highly
iterative optimizationmethods, (2) it has been shown to reasonably
approximate wind farm flow as compared to other models,
particularly for turbines in very few wakes [38], and (3) suggested
uncertainty or over-prediction of power losses by the PARK model
for large wind farms [39] are not impactful, because the optimi-
zation method uses relative variation in power development be-
tween solutions and not a global power thresholddto determine
optimality. This wake is modeled as a triangular footprint in two
dimensions, with both the width of the wake and the wind speed
deficit being proportional to the distance downstream from the
rotor [2]. The 3-D extrapolation of the PARK wake model is shown
in Fig. 3.

In Fig. 3, U0 is the ambient wind speed, rr is the radius of the
turbine rotor, r1 is the radial width of the wake at distance x
downstream from the turbine, v is the reduced velocity directly
behind the turbine, and U is the wind speed within the wake at a
distance downstream. U is a decremented representation of U0 and
is abstracted to be constant across the width of the wake (for the
same value of y). The formula for U, the downstream wind speed
within the wake, is given by:
Fig. 3. Depiction of 3-D frustum shaped wake.
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Eq. (2) is used to determine the effective wind speed for any
turbine that lies within one wake, where k is the wake decay
constant as a function of height and stability conditions, as shown
in Eq. (10).

A turbine that does not lie within awake of an upstream turbine
has an effective wind speed equal to the ambient wind speed
approaching the farm. In the case of a turbine located in multiple
wakes, it is necessary to sum the individual kinetic energy deficits
of each of the n wakes to calculate the effective wind speed, as
given by:
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The width of a wake is proportional to the downstream distance
from the wake-producing turbine, based on the rotor radius:

r1 ¼ rr þ ky (4)

Two partial wake interaction scenarios are considered. The first
is a turbine rotor that is partially located within the wake of one
upstream turbine, or two upstream turbines whose wakes do not
overlap across the rotor-swept area. These scenarios are depicted in
Fig. 4.

In either of these cases, the search algorithm determines if the
turbine rotor has a partially interacting wake by calculating the
distance between the hub of the turbine in question and the
centerline of the wake:
Fig. 4. Turbine with partial wake interaction, (A) with on
dr�w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxt � xwÞ2 þ ðzt � zwÞ2

q
(5)

where xt and zt are the x- and z-coordinates of the turbine hub, and
xw and zw are the x- and z-coordinates of the centerline of wake at
downstream distance y. Using Eq. (4), the radius of the wake rw at
the given downstream distance y can be calculated. Partial wake
interaction can be verified using the following statements:�
dr�w � rr þ rw Wake does not act on rotor swept area:
dr�w < rr þ rw Wake acts on portion of rotor swept area:

(6)

Once partial wake interaction is verified, the formula for cir-
cleecircle intersection is used to calculate the area of the partial
wake:
With the area of the acting wake(s), one can determine the
percentage of the rotor swept area that is affected by the wake(s):

% ¼ AOverlap

pr2r
(8)

With this percentage calculated, the effectivewind speed is then
determined for the areas that are affected by a wake or wakes using
Eq. (2), and the effective wind speed is multiplied by the percent-
age(s) of overlap. The remaining portion of the rotor-swept area is
multiplied by the ambient wind speed, and these values are sum-
med to determine the total estimated effective wind speed for the
turbine.

The second wake scenario is that of a turbine that is in two or
more wakes that overlap across the rotor-swept area, as depicted in
Fig. 5.

The percentage of wake overlap as depicted in Fig. 5 is not trivial
to calculate; as such, determining the areas of overlap is calculated
e partial wake, (B) with two distinct partial wakes.



Fig. 5. Turbine with overlapping partial wake interaction, (A) with two wakes, and (B) with three wakes.
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by applying a discretized mesh on the rotor-swept area. The dis-
cretization includes 49 points, which represent an evenly-spaced
grid with a coarseness of ¼ rotor radius. At each of the dis-
cretized points, the effective wind speed can be calculated directly
by determining whether the point lies within an upstreamwake or
wakes. If a discrete point of the rotor swept area lies within the
wake of the upstream turbine in question, then the effective wind
speed at that point can be calculated using Eq. (2). This process is
repeated for each of the 49 discrete points, and the effective wind
speed is calculated based on the distance from, and the effective
wind speed at, the upstream turbine(s) for each point. Each point
then contributes 1/49th of the total effective wind speed for the
turbine.

It should be noted that this wake model is an idealized
semblance of the wake profile and behavior [40]. In particular, the
wind speeds within a wake are considered constant across the
width of the wake for a given downstream distance, whereas the
lines of constant wind speed taking on the shape of a Gaussian
distribution would be more accurate. Similarly, there is an “on/
off” characteristic of the wake boundary that belies the more
realistic wind speed gradient at the edges. Additionally, this
model cannot account for the complex turbulent flow directly
behind and caused by the rotor blades, and as such the wake
effects of the near-wake region are unrealistic. However, given
the minimum proximity constraint between turbines, this short-
coming does not significantly affect the optimization. Regardless
of these simplifications, the use of 3-D wake modeling improves
upon previous wind farm optimization approaches that only
utilize a 2-D representation of the wake and only consider tur-
bines as point coordinates.
5.3. Atmospheric stability

The atmospheric boundary layer, the portion of the atmosphere
that is closest to the earth's surface and the region in which most
wind turbines are located, has physical attributes (temperature,
wind direction, humidity, and so on) that can vary across the ver-
tical range of a farm site and can impact wind turbine power
development. The effects of temperature on airflow caused by the
sun determine the stability of the atmospheric boundary layer,
transitioning through stability conditions based on the time of day.
Stable conditions occur when the temperature increases with
height, often at night [41]. In the daytime, however, heat from the
sun warms the ground and subsequently the air near the ground,
creating unstable atmospheric conditions. This behavior creates
significant atmospheric mixing that change the wind velocity and
temperature gradients. Neutral stability conditions occur during
the transition periods between stable and unstable.

High turbulence in unstable conditions can cause rotor fatigue
and early turbine failure [42]. Stable atmospheric conditions have
the highest wind shear, and depending on wind speed and turbine
size, may prove to either increase or decrease the rotor-averaged
effective wind speed [43]. Frandsen et al. [44] proposed that the
effects of changes in atmospheric stability can greatly impact wind
farm performance, including altering wind speed and turbulence.
Work by Irwin [45], Hanafusa et al. [46], and Zoumakis et al. [47]
explored how atmospheric stability and surface roughness affect
the wind profile power-law exponent. Sumner and Masson [48]
concluded that improper accounting for atmospheric stability us-
ing point estimations of the wind accounts for a 5% overestimation
of the wind capacity of a site. Wharton and Lundquist [43] used
sodar and cup anemometer measurements to define how the shape
of the power law profile changes with atmospheric stability based
on season.

In the current work, changes in atmospheric stability conditions
are mathematically represented through two means. First, stability
variations are reflected in vertical wind shear profile shape, that is,
the curvature of the boundary layer flow that dictates the growth in
wind speed with height from the ground. The second means is
through variation in the wake decay constant, a value that aids in
determining wake propagation width and wind speed recovery
within a wake.

A rotor that is positioned at a higher hub height will generally
see higher wind speeds, based on the influence of the boundary
layer fluid flow, which is known as vertical wind shear and is
represented by the power law [49]:

UðzÞ ¼ UðzrÞ
�
z
zr

�ah

(9)

where U(Z) is the wind speed at hub height z, U(Zr) is the wind
speed at a reference hub height zr. The power law exponent ah
varies with time of day, season, mixing parameters and other fac-
tors. In the current work, atmospheric stability is accounted for by
averaging yearly power law exponent data from the Lamar Low-
Level Jet Program (LLLJP) [50], where ah ¼ 0 implies no shear
across the rotor-swept area and ah ¼ 0.3 represents a very large
shear. The average value for heights of 3 me113 m over the entire
year is ah ¼ 0.15567. The resulting wind shear profiles for stable,
neutral, and unstable atmospheric conditions are shown in Fig. 6.

It should be noted that this work does not intend to show
whether low or high shear flow is optimal for turbine power



Fig. 6. Wind shear profile shape for varying atmospheric stability conditions.
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development; rather we seek to enable wind farm optimization
algorithms to consider these effects, and to explore howwind farm
power development varies with shear condition, and its depen-
dence on wind speed, turbine size, and farm location.

The second means of incorporating atmospheric stability
conditions into wind farm optimization is by varying the wake
decay constant. The wake decay constant plays a role in deter-
mining the distance downstream that the wind speed within a
wake recovers, to determine the width of downstream wakesdas
formulated in Eq. (2) and Eq. (4). As such, variation in the wake
decay constant due to atmospheric stability can have a significant
effect on the power development of wind turbines. In this work,
we model the wake decay constant as a function of height and
atmospheric stability conditions. This model is derived from the
turbulence intensity reported from the LLLJP [50], and from the
estimation of wake decay constant being equal to roughly half the
value of the turbulence intensity [51]. Additionally, we employ
the approximate 20/40/40 ratio of neutral/stable/unstable con-
ditions seen for the Lamar wind site from which the turbulence
intensity data is drawn [52]. This estimation allows us to under-
stand how changes in atmospheric stability relatively affect
optimal layouts and turbine sizing as conditions change between
potential sites. The effect on wake width caused by variation in
wake decay constant (k) for stable, unstable, and neutral condi-
tions is depicted in Fig. 7. The formulas derived for variation in
Fig. 7. Effect of atmospheric stability on wake width.
wake decay constant for each atmospheric stability condition as a
function of height (from LLLJP data [50]) are given in Eq. (10):

stable : k ¼ 0:075h�0:150

neutral : k ¼ 0:088h�0:152

unstable : k ¼ 0:098h�0:135
(10)

In this work, atmospheric stability is explored through the
development of three optimized layouts for each wind case, each
representing stable, neutral, and unstable atmospheric stability
conditions. Neutral atmospheric conditions are represented using
an average yearly power law exponent based onwind data from the
LLLJP (ah ¼ 0.15567); unstable atmospheric conditions are repre-
sented using a low power law exponent (ah ¼ 0.1); and stable at-
mospheric conditions are represented using a higher power law
exponent (ah ¼ 0.2). Traditionally, a constant power law exponent
value of ah ¼ 0.14 is used, derived from flow over flat plates [49].
The wake decay constant as a function of height is calculated for
each of the three atmospheric stability conditions as stated in Eq.
(10). These results will explore how the change in the wind shear
profile shape and wake propagation affects the resulting layout and
turbine sizing optimization, and offer insight into the effects of
using more site-accurate power law profile exponents and wake
decay constants.

5.4. Power modeling

Accurately reflecting the power production of a hypothetical
wind farm is imperative to validate the results of awind farm layout
optimization. This work uses power modeling that accounts for
turbines of varying geometries, and as such employs power
modeling given by Manwell et al. [49]:

P ¼ 1
2
rAU3CP (11)

where r is the density of air (considered constant at 1.225 kg/m3), A
is the cross-sectional area swept by the rotor blades, U is the
effective wind speed, and Cp is the power coefficient (which is
relevant in the cubic region of the power curve shown in Fig. 8). The
total power development of the farm is taken as the sum of the
individual power outputs of each turbine. Additionally, a power
curvewas enforced tomore realistically represent the capability for
turbines to develop power, as shown in Fig. 8.

It should be noted that this algorithm deliberately allows for the
selection of turbine geometries on a continuous scale; that is,
virtually any discrete corresponding values of rotor radius and hub
Fig. 8. Power curve: power (kW) versus wind speed (m/s).
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height can be chosen. Turbine manufacturers, however, generally
produce turbine families that use a set of available geometries, and
are not as widely variable as those used in this study. The hub
heights and rotor diameters in this work are constrained to prevent
infeasible combinations of these parameters.

The total project cost of the farm is taken as the sum of the
project costs of each individual turbine as calculated by Eq. (1). The
total power development of the farm is the sum of the individual
turbine power outputs, as calculated in Eq. (11). With these two
values, a global objective function is developed to accurately
portray the interests of farm developers and researchers. This
objective is the maximization of profit in dollars, formulated as the
minimization of negative profit:

Objective¼ CostProject þ CostO&M � t� EnergyYearly � t� CF � COE

(12)

where CostO&M is the annual operations and maintenance cost of
the farm in $/year, t is the amount of time (years) over which the
cost is relevant, CF is the capacity factor at which the farm performs,
and COE is the cost of energye the price at which a farm ownermay
sell the energy their farm develops, in $/kWh. The operation and
maintenance costs are estimated to be [4]:

CostO&M ¼ 0:007� EnergyYearly � t � CF � COE (13)

The costs included are the initial project cost, which is generated
by the cost surface given in Eq. (1), and the operation and main-
tenance costs per year, which are a function of the annual energy
production of the farm (the amount of power the farm can produce
per year). The annual energy production multiplied by the price at
which the power can be sold in $/kWh gives the amount of money
the farm can make.

6. Numerical procedure

Two test cases are explored in this work, and are shown in Fig. 9.
First, Case (a) is that of constant wind speed (10 m/s) and unidi-
rectional wind (from the bottom of the field in the þy direction).
Case (b) is a more accurate representation of wind site conditions,
with three wind speeds (6, 9, and 12 m/s) and 36 wind directions
(360� in 10� increments), with a probability of occurrence for each,
depicted as a bar graph in Fig. 10 [23]. These test cases are chosen
due their popularity in wind farm optimization literature [2,6,7],
and because they enable the application of the advanced modeling
system presented in this work within new optimization algorithms
frameworks; these test cases are widely available for testing algo-
rithm efficacy.

The farm site is 2000 m � 2000 m with no topographical
variation. The turbine size is initialized to an 80-m hub height
with an 80-m rotor diameter. The EPS-MAS uses a continuous
10 m/s All 6, 9, & 12 m/s

(a) (b) 

Fig. 9. Wind cases.
solution space, and as such every potential agent move first
performs an interference check to ensure that it is not within
200 m radially of any other agent. Additionally, no agent is
permitted to move itself out of the bounds of the farm area. After
a random initial placement, a check is performed to validate
whether an agent lies in the wake of its potential upstream tur-
bines, and the percentage of the swept area the wake overlaps.
The agent then stores this information in order to calculate its
own effective wind speed and power development. The initial
step size of the coordinate EPS is chosen is 400 m and is halved
until reaching a minimum value of 6.25 m. The sublevel Hub
Height EPS algorithm uses an initial step size of 45 m, and is
halved until reaching a minimum value of 1.4 m. The sublevel
Rotor Radius EPS algorithm uses an initial step size of 25 m,
and is halved until reaching a minimum value of 1.5 m. Feasible
hub height values are between 38 m and 135 m, and feasible rotor
radii are between 19 m and 67 m. The popping algorithm will
attempt to relocate the 10 worst performing turbines up to 100
random locations. The cost of energy is taken to be 0.1 $/kWh [9].

7. Results

For both the unidirectional wind case, Case (a), and the more
realistic multi-directional wind case with varying wind speeds,
Case (b), three atmospheric conditions are represented. The values
for the power law exponent and the wake decay constant as they
vary for each wind condition are given in Table 1. Two sets of
results are shown for each wind case: the first includes variation
in only the power law exponent ah, and the second includes
variation in both the power law exponent ah and the wake decay
constant k. This approach will reveal more detail about how the
changes in the wind shear exponent and wake decay constant can
affect the optimal layout and turbine sizing of a proposed wind
farm site.

A preliminary parametric optimization was conducted to
determine the optimal number of years over which the objective
should be considered [23]. As a result of this parametric optimi-
zation, subsequent use of the profit objective will be considered
over a 20-year farm life.
Table 1
Parameters for each atmospheric stability condition.

Unstable Neutral Stable

Power law exponent ah 0.1 0.15567 0.2
Wake decay constant k 0.09759h�0.1352 0.08835h�0.1521 0.07535h�0.1496



Fig. 11. Key for turbine sizes.
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7.1. Unidirectional case

Evaluating the objective for the unidirectional, constant wind
speed case, the ambient wind speed is taken to be 10m/s. Using this
simplified wind case helps explore the capability of the algorithm,
and gives a clear understanding of how the attributes of the search
affect the result. For each stability condition, resulting layouts of
5e50 turbines were generated. The objective function evaluation
data were then plotted versus the number of turbines, and a cubic
polynomial fit was applied; the minimum value for each curve is
taken to be the optimal number of turbines for each stability con-
dition (similar to the procedure performed in previous EPS work
[2]). Tables 2 and 3 show a comparison between the unidirectional
case results for each of the three stability conditions, the first for
variation in only the power law exponent, and the second for
variation in both the power law exponent and the wake decay
constant. A key to aid in interpretation of turbine sizes is given in
Fig. 11 (these symbols indicate ranges but each turbine's size is
exact). Fig. 12 includes the layouts for unstable atmospheric con-
ditions, Fig. 13 for neutral conditions, and Fig. 14 for stable
conditions.

These results show some interesting differences in layout with
the varying atmospheric stability conditions. First, considering only
the variation on the power law exponent, the lower ah value in-
fluences optimal layouts with a greater number of turbines, but
these turbines are generally smaller. The highest ah value of 0.2
(corresponding to stable conditions) gives a layout with fewer
turbines, but of significantly taller average turbine size. These re-
sults are consistent with our understanding of how the wind shear
exponent influences the breadth of wind speeds. The ambient wind
speed (10 m/s) is lower than, but close to, the reference wind speed
(11.5 m/s) for the power law calculation given in Eq. (9). This was
deliberate to explore the incentive for turbines to increase their
height or the size of their rotor-swept areas; doing so can result in
an increase in power development, but will increase cost, poten-
tially leading to an inferior objective evaluation. For all of the ah
values shown here, the largest possible turbine geometries were
situated in the front of the field, with unobstructed ambient wind,
where downstream turbine agents would select generally smaller
geometries or taller hub heights to avoid placement within up-
stream wakes. It must also be considered that turbine agents have
selected relatively small turbine geometries due to the trade-off
between cost and size. This also indicates the influence of
including partial wake interactiondthe smaller the rotor swept
Table 2
Unidirectional case results, ah only.

N Unstable

38

Objective evaluation �3.26156eþ07
Total power (MW) 57.6629
Avg. turbine hub height (m) 70.21
Avg. turbine rotor radius (m) 33.20

Table 3
Unidirectional case results, both ah & k.

N Unstable

39

Objective evaluation �3.74301eþ07
Total power (MW) 65.1655
Avg. turbine hub height (m) 75.15
Avg. turbine rotor radius (m) 34.83
area, the less likely a turbine will produce a wake large enough to
encompass others, and the less likely it will be located within a
wake itself.

The results that include variation in both the power law expo-
nent and the wake decay constant indicate different optimization
behavior than when only considering the power law exponent
alone. Now, with additionally varying the wake decay constant, the
clear relationship between atmospheric stability conditions and the
incentive to gain height is less obvious. In fact, for all three condi-
tions, the turbine geometries are quite similar. However, the results
remain consistent in that the objective function evaluation and
total power development were superior for stable atmospheric
conditions, and less so for unstable conditions.

7.2. Multi-directional case

As with unidirectional case, the multi-directional results are
given for both considering only variation in the power law expo-
nent, and for variation in both the power law exponent and the
wake decay constant. The results for variation in only the power
law exponent are summarized in Table 4, with ah ¼ 0.1 (unstable),
ah ¼ 0.15567 (neutral), and ah ¼ 0.2 (stable) now used within the
multi-directional variable wind speed case. The results for variation
in both the power law exponent and wake decay constant are
summarized in Table 5. Resulting layouts for unstable, neutral, and
stable conditions for both sets of considered variables are shown in
Figs.15e17, respectively. The key for turbine geometries from Fig.11
is applicable to the multi-directional layouts as well.

The results for the multi-directional, varying wind speed case
show consistency with previous work [2] in that the turbine agents
(as the full rotation of wind directions doesn't enable movement
outside of wakes) tend to be fewer in number, maximize their
Neutral Stable

36 31

�4.43837eþ07 �5.83643eþ07
62.7362 79.3729
79.98 95.29
35.69 41.88

Neutral Stable

40 42

�5.18889eþ07 �5.43761eþ07
75.1603 77.8055
77.28 74.93
35.69 34.87



Fig. 12. Unidirectional case, unstable: (a) ah only, 38 turbines, and (b) both ah and k, 39 turbines.

Fig. 13. Unidirectional case, neutral: (a) ah only, 36 turbines, and (b) both ah & k, 40 turbines.

Fig. 14. Unidirectional case, stable: (a) ah only, 31 turbines, and (b) both ah & k, 42 turbines.
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Table 4
Multi-directional case results, ah only.

N Unstable Neutral Stable

8 9 8

Objective evaluation �5.74532eþ06 �6.90359eþ06 �7.24115eþ06
Total power (MW) 9.92175 12.4051 12.5599
Avg. turbine hub height (m) 75.87 78.36 80.00
Avg. Turbine Rotor Radius (m) 35.03 37.26 40.00

Table 5
Multi-directional case results, both ah & k.

N Unstable Neutral Stable

17 21 24

Objective evaluation �8.95028eþ07 �7.49638eþ07 �7.2379eþ07
Total power (MW) 75.7309 60.5494 48.7015
Avg. turbine hub height (m) 116.65 94.20 81.41
Avg. turbine rotor radius (m) 58.03 46.82 40.63
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downstream distance, and migrate toward the outer field perim-
eter. Therefore, the reduced wind speed behind a rotor is given the
distance needed to recover and approach its ambient speed. This
behavior is especially evident in the layouts where only variation in
the power law exponent is considered. As with the unidirectional
case, the higher ah ¼ 0.2 value suggests larger turbine geometries,
and the smaller ah¼ 0.1 value influences a layout of smaller turbine
geometries. This is due to the effect of the power law exponent on
the wind shear profile shapedthe larger exponent creates a more
severe profile curve, with lower wind speeds at the ground and
higher wind speeds at the top of the profile. The larger turbine
geometries better capture this higher wind speed, and the higher
resulting power development counteracts the higher cost of the
larger size in the profit objective.

When considering variation in both the power law exponent
and the wake decay constant, there is still some turbine migration
toward the outer edges of the field, but it is less evident then when
considering variation in the power law exponent alone. The trend
in the number of turbines selected for the optimal layout for each
atmospheric stability condition remains consistent with the uni-
directional case (fewer turbines for unstable conditions, more
Fig. 15. Multi-directional case, unstable (ah only), (a) ah
turbines for stable conditions), but where the unidirectional case
showed little variation in turbine sizing, the multi-directional case
showed significant larger turbine geometries for the unstable case,
with the turbines selecting smaller geometries in more stable at-
mospheric conditions. This is particularly interesting to note,
because due to the inclusion of larger turbines, the objective eval-
uation and power development for the unstable multi-directional
case were significantly better than the objective function evalua-
tion and power development for more stable conditions. For the
unidirectional case, it appeared that a more stable atmosphere
presented ideal wind conditions for both the objective function
evaluation and power development, but for the multi-directional
case, the more unstable atmospheric conditions are more ideal.
This behavior suggests that when multiple, unavoidable wakes are
present (as they are in the multi-directional case presented here),
unstable atmospheric conditions create the more ideal optimiza-
tion conditions. The conditions within an unstable wake have a
higher relative wake decay constant, meaning that the wind speed
deficit requires less downstream distance to recover, and the wake
itself is wider. The turbines for the unstable case selected larger
individual geometries because the wider wake widths preclude
them from being able to select smaller turbine geometries in an
effort to “get out of the way” of an upstream wake. The larger
turbine geometries also inherently develop more power, and
capitalize on the unstable conditions' higher wind speed recovery
rate within the wake.
8. Concluding discussion

In this work, a collection of modeling advances was employed
within an EPS-MAS wind farm optimization algorithm to help
only, 8 turbines, and (b) both ah & k, 17 turbines.



Fig. 16. Multi-directional case, neutral (ah only), (a) ah only, 9 turbines, and (b) both ah & k, 21 turbines.

Fig. 17. Multi-directional case, stable (ah only), (a) ah only, 8 turbines, and (b) both ah & k, 24 turbines.
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approach real-world applicability in resulting turbine layouts and
turbine geometries. These modelsdincluding an extrapolation of
the NRELWind Cost and ScalingModel andmeans to accommodate
both partial wake interaction and wind sheardare explored with
variation in atmospheric stability conditions to better understand
how the stability behavior at a particular farm site could affect a
potential wind farm layout.

The resulting layouts indicate that for those areas with a narrow
angular range of predominant wind directions (similar to the uni-
directional scenario), stable atmospheric conditions create higher
power and higher profit scenarios than either unstable or neutral
conditions. These layouts also include a larger number of turbines
of mid-range size. For an area with a wider distribution of wind
onset angles, such as the multi-directional case shown in this work,
the opposite is true e unstable atmospheric conditions lead to
higher profit and higher power development. In addition, the un-
stable multi-directional case layouts included fewer, but signifi-
cantly larger turbine geometries. Given the variation in resulting
layouts when accommodating real-world modeling and the ability
to incorporate the atmospheric stability conditions of a potential
farm site, this work can informwind farm developers of the effects
of stability on the power development of a wind farm, and can
influence the inclusion of these models in real-world farm
development.
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