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Frequency-Domain System Identification of an
Unmanned Helicopter Based on an

Adaptive Genetic Algorithm
Yuhu Du, Jiancheng Fang, Member, IEEE, and Cunxiao Miao

Abstract—This paper presents a frequency-domain identifi-
cation method for an unmanned helicopter (UH) based on an
adaptive genetic algorithm (AGA). By using a homemade micro-
guidance, navigation, and control system (MGNCS), data regard-
ing the inputs (control signals of servos) and outputs (states of the
UH) are recorded. After data preprocessing, the attitude model of
the UH is identified by employing the AGA. The identified model
is then analyzed in the time domain and the frequency domain
in comparison with the least squares (LS) method. Control com-
pensators are designed based on the identified model. Automatic
hovering is successfully achieved based on the compensators. Sim-
ulation and experimental results demonstrate the effectiveness and
superiority of this identification method.

Index Terms—Adaptive genetic algorithm (AGA), least squares
(LS), system identification, unmanned helicopter (UH).

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) have been designed
for applications in many areas for decades [1]–[3].

Among UAVs, the unmanned helicopter (UH) is an excellent
aerial platform because it is able to take off and land vertically,
cruise at ultra low speeds, and hover in the air. It has already
drawn intensive attention worldwide for its distinguished fea-
tures [4]–[10]. The UH has been successfully employed in civil
and military applications, such as aeronautic photography, for-
est fire extinguishing and power line inspection, surveillance,
battleground monitoring, etc.

As we know, the UH is a multivariable, nonlinear, and
strongly coupled system, which brings great motivation for the
modeling of the UH [11]. System identification, which is an
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effective modeling technique that uses experimental input–
output data to produce a mathematical model for the plant
[12], has become an important approach through which to
obtain dynamics parameters, which are useful for computer
simulation and outdoor flight control experiments. In com-
parison with the wind tunnel approach, system identification
is relatively low cost and easy to implement. In addition, in
comparison with analytical methods, it is more direct because
it is based on real input–output test data and is closer to
reality.

In recent years, there has been increasing interest in the study
of system identification methods for UAVs, mainly includ-
ing time-domain and frequency-domain methods. Time-domain
system identification is widely used to obtain dynamic models,
and commonly used approaches include the least squares (LS)
method [13]–[15], the prediction error method (PEM) [16]–
[19], etc. Under the assumption that a loitering helicopter could
be treated as a system with three independent single-input
single-output (SISO), Park et al. [13] used LS to develop a
new autoregressive model that corresponds to a three-degree-
of-freedom (DOF) helicopter. Based on the flight test data,
Wu et al. [14] identified two fourth-order autoregressive with
exogenous input models, which present the attitude character-
istics of the longitudinal (pitch) and the lateral (roll) control
channels, respectively. Cai et al. [16] adopted PEM to minimize
the sum of squared prediction errors at all sample points,
and compared the identified model with the actual measured
frequency response. Manai et al. [20] identified the parameters
of the nonlinear model of a manned aerial vehicle based on
the output error approach for the purpose of replacing an
existent gain-scheduled proportional–integral–derivative with a
nonlinear controller.

Although time-domain methods are widely employed to
obtain the dynamic models of UAVs, regarding the system
identification of the UH, frequency-domain methods are more
suitable than time-domain methods due to their high-grade
properties [21]. Frequency-domain identification is manipu-
lated by minimizing a frequency-domain cost function. Due to
the prespecified frequency range estimated from the frequency
response of input–output data, irrelevant information, such
as noise and disturbance, are separated from the information
that is relevant to the system identification of the UH dy-
namic model. Moreover, output measurement noise and process
noise are automatically separated from the data. Therefore,
this type of disturbance does not bias the frequency response
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Fig. 1. UH.

TABLE I
PARAMETERS OF THE UH

estimate. Comprehensive Identification from Frequency Re-
sponse (CIFER), which was developed by the U.S. Army and
NASA, and has become a common tool used for frequency-
domain identification, has been successfully used in a wide
range of fixed, rotary-wing, and unconventional aircraft appli-
cations [22]–[27]. By using CIFER, Mettler et al. [23]–[26]
derived a linear state-space model for a small-scale UH in the
hovering condition. Nino et al. [27] used CIFER to identify the
lateral and longitudinal SISO models for a micro air vehicle.

As we know, a genetic algorithm (GA) is based on the
mechanism of natural evolution and population genetics. As a
robust and efficient searching algorithm, it is widely used to
identify the parameters of models [28]–[30]. In this paper, we
intend to identify the model of the UH using the frequency-
domain method and utilize the adaptive GA (AGA) to obtain the
optimal parameters of the dynamic model for its high searching
performance.

This paper is organized as follows. In Section II, the dynamic
model of the system is reviewed, and a discrete transfer function
model for the attitude rate is presented. An AGA identification
method is presented in Section III. In Section IV, the AGA is
utilized to fine-tune the parameters of the dynamic model based
on the actual flight data. Verification of frequency and time
domains, as well as flight control experiments, is implemented
to test the validity of the identified model in Section V. Finally,
conclusions are provided in Section VI.

II. SYSTEM DYNAMIC MODEL

As shown in Fig. 1, the UH used in this paper is upgraded
from a radio-controlled hobby helicopter. The physical param-
eters of the UH are depicted in Table I. The UH is powered by
a piston engine running on a mixed-model engine fuel.

The UH is free to rotate and translate in the air. Fig. 2 shows
the key forces acting on the six-DOF UH [23]. Origin O is the

Fig. 2. Forces and moments acting on the UH.

center of gravity of the UH, and XB , YB , and ZB form the
body reference frame; u, v, and w are the velocities in the XB ,
YB , and ZB directions, respectively; φ, θ, and ψ are the Euler
angles; p, q, and r are the angular rates along the XB , YB , and
ZB axes, respectively; X , Y , and Z are the forces acting on
the center of gravity of the UH, whereas L, M , and N are the
moments in XB , YB , and ZB , respectively; and x, y, and z form
the displacement of the center of gravity of the UH from OI in
the XI , YI , and ZI axes of the inertial frame, respectively.

In order to obtain the dynamic model of the UH, we make
the following assumptions.

1) The UH is a rigid body.
2) The UH is symmetric.
3) The mass distribution of the UH is unchanged during the

flight.
4) The cross product of inertia is small; therefore, the princi-

pal axes are coincident with the axes of the body reference
system.

Then, based on Newton’s second law and the principle of
rotor dynamics, the translational and rotational motion equa-
tions that describe the UH in the hovering condition can be
described as ⎧⎨

⎩
m

(
du
dt + wq − vr

)
= X

m
(
dv
dt + ur − wp

)
= Y

m
(
dw
dt + vp− uq

)
= Z

(1)

⎧⎨
⎩

Ix
dp
dt + (Iz − Iy)qr = L

Iy
dq
dt + (Ix − Iz)rp = M

Iz
dr
dt + (Iy − Ix)pq = N

(2)

where m is the mass of the UH, and Ix, Iy , and Iz are the
moments of inertia of the UH in the XB , YB , and ZB axes,
respectively. With the equations in (1) and (2), we can yield
the model of the UH in different structures, e.g., a state-space
model or a transfer function model. In this paper, we intend
to identify the transfer function of the attitude channel of the
UH. A previously obtained model [21], [23] is introduced here,
whose transfer function is given by{

p
δlat

=
LaAlat/τf

s2+(1/τf )s+La

q
δlon

=
LbAlon/τf

s2+(1/τf )s+Lb

(3)
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where δlat and δlon are the lateral cyclic control input and
the longitudinal cyclic control input, respectively; La is the
lateral rotor moment derivative; Alat is the parameter of the
lateral stick to cyclic pitch gearing; Lb is the longitudinal rotor
moment derivative; Alon is the parameter of the longitudinal
stick to cyclic pitch gearing; and τf is the main rotor time
constant.

The cyclic control input of the UH is controlled by the servo
installed on the UH, whose model can be described as a first-
order inertia term, i.e.,

δ

u
=

1

1 + Tδs
(4)

where u is the input of the servo, δ is the output, and Tδ is the
time constant.

According to (3) and (4), the relationship between the atti-
tude rate and the input of the servo actuator can be obtained{

p
ulat

=
LaAlat/τf

s2+(1/τf )s+La
· 1
1+Tδs

q
ulon

=
LbAlon/τf

s2+(1/τf )s+Lb
· 1
1+Tδs

(5)

where ulat and ulon are the inputs of the servos of the lateral
channel and the longitudinal channel, respectively.

III. AGA

In this section, we will introduce the flowchart of the AGA
employed in this paper, and the key components of the AGA
will be also depicted in detail.

A. Algorithm Flowchart

The flowchart for the AGA is shown in Fig. 3. The AGA
begins by defining an array of chromosomes (i.e., individuals)
to be evaluated. Because the experimental data obtained are
discrete, a bilinear transformation is utilized to obtain the
discrete model of the UH for the sake of model verification in
Section V. The discrete model of the UH derived from (5) is
shown as follows:{

p
ulat

= b1z
3+b2z

2+b3z+b4
z3+a1z2+a2z+a3

q
ulon

= d1z
3+d2z

2+d3z+d4

z3+c1z2+c2z+c3

. (6)

According to (6), in the process of identification of the
lateral channel, each chromosome has seven variables. The
chromosome uses real number encoding and is written as an
array with 1 × 7 elements, as follows:

chromosome = [a1, a2, a3, b1, b2, b3, b4]. (7)

A similar equation can be obtained for the longitudinal channel.
In this paper, the LS is utilized as a time-domain method [31].

It is employed to minimize the sum of the squares of the errors
between the observed values and the fitted values provided by
the model. At the beginning of the process of identification, the
LS method is utilized to get the initial solution, and the cor-
responding search spaces should be established to avoid blind
exploration and to improve the efficiency of the identification.
The AGA then is developed to obtain an improved solution. In

Fig. 3. Flowchart of the AGA.

the searching spaces of the AGA, the individuals of the first
generation are established, with each individual representing a
model.

After the analysis of the frequency response errors between
the real test data and the candidate models, the individuals are
given different fitness values. The individuals with high fitness
values tend to be selected as parents to generate offspring by
using adaptive crossover and mutation operations. The AGA
moves from generation to generation to select suitable solutions
until the termination constraints are met.

Finally, the best individual with the maximum fitness value is
found, i.e., the optimal result of the dynamic model of the UH.

B. Fitness Function

The fitness function, which establishes a performance mea-
surement criterion for the individuals of the AGA, plays an
important role in the evolution process. Here, we use the
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frequency response error as the evaluation criterion. The fitness
function is defined as follows:

F (Θ) = 1

/[
1 +

N∑
i=1

ε(ωi,Θ)T ε(ωi,Θ)

]
(8)

where Θ is the candidate model (i.e., individual) in the AGA to
be evaluated; ωi is the sample frequency point; N is the number
of sample frequency points; and ε(ωi,Θ) is the vector of the
amplitude and phase error between the candidate model and the
collected flight data. According to [21], the importance of
the amplitude relative to the phase is specified as 20 dB to 57.3◦.
The accuracy of the identified model depends on the fitness
function. The higher the fitness value is, the better the model
will be.

C. Adaptive Crossover Operation

In the AGA, crossover is an operation to exchange some parts
of two chromosomes. It can create new individuals by swap-
ping segments of parent genetic information. The crossover
operation used in the AGA is arithmetic crossover [32]. If the
crossover rate is 100%, all offspring are generated by crossover.
If the crossover rate is 0%, a whole new generation is made
from exact copies of chromosomes from the old population.
Crossover is made in the hope that new and improved chro-
mosomes will emerge in the next generation. However, it is
good to allow some part of the old population to survive to
the next generation [33]. To improve the search performance,
an adaptive crossover strategy is used. The adaptive crossover
operator is defined as

Pc =

{
Pc1 − (Pc1−Pc2)(F

′−Favg)
Fmax−Favg

, F ′ ≥ favg
Pc1, F ′ < favg

(9)

where Pc is the crossover rate; Fmax and Favg are the maxi-
mum fitness value and the average fitness value of the current
generation, respectively; F ′ is the higher fitness value between
the two individuals; and Pc1 and Pc2 are the preset crossover
rates. Pc1, Pc2 are constant parameters predefined by users.

On one hand, if F ′ is higher than the average fitness value of
the current generation, the system will use the lower crossover
rate to reduce the possibility of destruction in the evolution
process. On the other hand, if F ′ is lower than the average
fitness value of the current generation, the system adopts the
higher crossover rate.

D. Adaptive Mutation Operation

Mutation is the operation used to change a part of the chro-
mosome. The mutation operation used in the AGA is Gaussian
mutation [33]. If the mutation rate is too high, the GA becomes
a random searching algorithm with low searching performance.
However, a low mutation rate may cause low production of the
new population. To ensure the searching ability, an adaptive
mutation strategy is used here. The mutation operator of the
individual i is defined as

Pmi =

{
Pm1 − (Pm1−Pm2)(Fmax−F )

Fmax−Favg
, F ≥ Favg

Pm1, F < Favg

(10)

where Pmi is the mutation rate, F is the fitness value of the
current individual, and Pm1 and Pm2 are the mutation rates.
Pm1 and Pm2 are constant parameters predefined by the user.

It is shown in (10) that, when the fitness value of an indi-
vidual is higher than the average fitness value of the current
generation, the system will adopt the lower mutation rate, and
when the fitness value of the individual is lower than the average
fitness value of the current generation, the system adopts the
higher mutation rate.

E. Selection Operation Based on Individual Density Strategy

To select high-quality individuals and ensure their diversity,
an individual density strategy is utilized here.

First, we define the density of individual i as follows:

Ai =
l

M
(11)

where M is the number of individuals in the current generation,
and l is the number of individuals whose fitness values satisfy

|Fj − Fi| ≤ δ (12)

where 0 < δ < 1, Fi is the fitness value of individual i, and Fj

is the fitness value of the individual in the current generation,
except for individual i.

We then choose the individuals whose Ai is higher than a pre-
set numerical value ε, which satisfies the following constraint:

0 < ε < 1. (13)

The density probability of the individuals chosen is expressed
as [34]

pt(m) =
1

M

(
1− m

M

)
(14)

where m is the number of the individuals whose Ai is higher
than ε.

The density probability of the individuals whose Ai is lower
than ε is expressed as

pt(M−m) =
1

M
+

m

M2(M −m)
. (15)

For the sake of calculating the probability of selection of
the individuals, we also define variable pF , i.e., the fitness
probability of the individual, which is shown in the following:

pF (i) =
Fi

M∑
j=1

Fj

. (16)

Finally, the probability of selection of the individuals in the
AGA can be calculated as follows:

ps(i)=α ·
(
βNi+(1−β)pF (i)

)
+(1−α) ·

(
1−pt(i)

)
(17)

where ps is the probability of selection; α and β are preset
proportion factors, which satisfy 0 < α and β < 1; and Ni is
defined as

Ni =
ni

M
(18)
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Fig. 4. MGNCS.

where ni is the order of the individual’s fitness value in the
current generation. α and β determine the importance of Ni,
pF (i), and pt(i).

As shown in (17), the higher the fitness value is, the higher
the probability that the individual will be selected. We can
also see that the higher the density of an individual, the lower
the probability of selection. After the probability of selection
is computed, the roulette wheel selection method is applied
to the selection process. By virtue of the density strategy,
individuals with high fitness values are encouraged, and at
the same time, individuals with high-density probability are
restrained, to ensure the diversity of individuals and to avoid
the prematurity of the AGA.

To ensure system searching performance and convergence,
the best individual in the population (i.e., the individual with
the maximum fitness value) passes to the next generation
without any modifications. In addition, the colony transplant
strategy is adopted, i.e., when the algorithm does not evolve
within a certain number of generations, the individuals will be
regenerated. In the process of regeneration, the best individual
is preserved. In this paper, when the GA fails to evolve for
100 generations, the colony transplant strategy is employed.
The colony transplant strategy can improve the efficiency of
the AGA and increase the probability of finding the optimal
individual.

IV. IMPLEMENTATION OF IDENTIFICATION

A. Experimental Equipment

In order to implement the model identification, a series of
flight experiments are needed to be carried out on the UH to
acquire the corresponding input–output data. In previous years,
we have designed several microguidance, navigation, and con-
trol systems (MGNCSs) [35] based on the microelectromechan-
ical systems (MEMSs) and integrated navigation technologies
[36]–[38]. Based on the previous versions, an upgraded version
of the MGNCS (see Fig. 4) was designed for the experimental
tests with the UH.

Due to constraints on the weight and size of the onboard
components of the UH, the MGNCS weighs only 207 g, with
a dimension of 120 mm × 61 mm × 48 mm. Fig. 5 shows
the block diagram of the MGNCS, which consists of four

subsystems: data collection, navigation solution, flight control,
and manual/autonomous mode transfer. Among the four com-
ponents, the data collection subsystem consists of micro inertial
measurement units (MIMUs), an ultrasonic sensor, a barometric
altimeter, and a microprocessor, and it can collect information
including that relating to inertia and altitude. The MIMU is
composed of three MEMS gyros and accelerometers, and it
can detect the angular rates and translational accelerations
along three body axes. Information from the data collection
subsystem and from the Global Positioning System receiver and
the micromachined magnetic compass is fed into the navigation
subsystem. Then, the data fusion algorithm, e.g., the Kalman
filter, is utilized to acquire the real-time attitudes, attitude rates,
position, velocities, etc.

B. Frequency-Domain Model Identification

Here, we use a frequency sweep as the pilot input, and
a skilled human operator performs remote control for data
collection. The flight data of inputs (control signals of servos)
and outputs (the UH’s attitudes, attitude rates, position, and
velocities, etc.) are recorded by the Flash memory of the
MGNCS at a sampling rate of 50 Hz.

To obtain a precise dynamic model of the UH, it is necessary
to preprocess the input–output data, e.g., remove outliers and
noise, before the data identification process. The flight data
recorded by the MGNCS are separated into two subsets. One
subset is used for model identification, whereas the other is used
for model performance verification. Several recorded samples
used for identification are shown in Fig. 6.

In this paper, we use the frequency-domain identification
method. It is important to select the valid frequency range for
frequency-domain identification. As we know, the coherence
method is an effective tool to evaluate the quality of the
sampled data [21]. Taking the lateral channel as an example,
the coherence function obtained from the input–output data is
shown in Fig. 7. In Fig. 7, we can see that the frequencies
among 0.05–5 Hz, 8–11.5 Hz, and 14–16 Hz are superior,
and the other frequencies are less significant. The cross power
spectral density (CPSD) is used to further delimit the range
of useful frequencies. Fig. 8 shows the CPSD values of the
input and output. In Fig. 8, we can see that the CPSD values
among 0.05–5 Hz are much higher than the others. In fact,
the frequency of the pilot’s maneuver is rarely higher than
5 Hz; therefore, 0.05–5 Hz can cover most valid frequencies.
Now, we have the frequency response of the roll angular rate
to lateral input, as shown in Fig. 9. The frequency response of
pitch angular rate to longitudinal input is also obtained in the
same way.

In what follows, we proceed to identify the model of the UH
by means of the AGA presented in Section III. The parameters
of the GA are not fixed, and it is very difficult to predict accu-
rately the effects of any change in these parameters; therefore,
determining their values becomes difficult [40]. Cao et al. [41]
chose the parameters of GA using multifactor analysis of vari-
ance. Based on the method in [41], the parameters of the AGA
are set as Pc1 = 0.85, Pc2 = 0.6, Pm1 = 0.1, Pm2 = 0.05,
δ = 0.03, ε = 0.1, α = 0.9, and β = 0.8. The number for the



DU et al.: FREQUENCY-DOMAIN SYSTEM IDENTIFICATION OF UH BASED ON AGA 875

Fig. 5. Block diagram of the MGNCS.

initial population is set as 200, and the maximal offspring
generation is 5000. The simple GA (SGA) is a conventional
GA [32]. The selection operation of the SGA is performed on
the basis of relative fitness. The crossover rate and the mutation
rate of the SGA are unchanged during the whole process of
computation. The performance of the AGA is tested in compar-
ison with the SGA. The crossover rate and the mutation rate of
the SGA are set as 0.8 and 0.1, respectively.

The process of identification is performed by MATLAB. The
trend line of the maximum fitness value of each generation of
the AGA (dotted line) in the process of identification is shown
in Fig. 10. The trend line of the maximum fitness value of each
generation obtained from the SGA (solid line) is also shown in
Fig. 10. In Fig. 10, we can see that it is very difficult for SGA
to evolve after 1000 generations, whereas the AGA evolves
even after 3000 generations. It is also shown in Fig. 10 that
the efficiency of the AGA in this paper is higher than that of

the SGA as the maximum fitness value of the AGA reaches
0.1789 in 500 generations and 0.2147 in 5000 generations,
whereas that of SGA only reaches 0.1709 in 500 generations
and 0.1732 in 5000 generations. Therefore, we can conclude
that the performance of the AGA is better. Statistical tests have
also been conducted to demonstrate the superiority of the AGA
over the SGA. The model identification tests based on the AGA
and the SGA are both carried out 30 times, and the mean values
and standard errors of the identification results are shown in
Table II. From Table II, we can also see that the AGA is superior
to the SGA. Finally, we get the dynamic model of the UH,
which is represented by

{
p(z)

ulat(z)
= 0.02828z3+0.02634z2−0.07154z+0.005716

z3−2.434z2+2.175z−0.7092
q(z)

ulon(z)
= 0.1467z3+0.4502z2−0.6141z+0.254

z3−2.544z2+2.251z−0.6924 .
(19)
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Fig. 6. Input–output data of identification. (a) Lateral channel. (b) Longitudinal channel.

Fig. 7. Coherence function of the lateral channel.

Fig. 8. CPSD of the lateral channel.

Fig. 9. Frequency response of the lateral channel.

Fig. 10. Trend lines of the maximum fitness value of (dotted lines) AGA and
(solid lines) SGA.
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TABLE II
MEAN VALUES AND STANDARD ERRORS OF IDENTIFICATION

RESULTS BASED ON THE AGA AND THE SGA

V. MODEL VERIFICATION

Once we obtain the identification model of the UH, it is
necessary to assess its validity. In this section, a comparative
study is carried out on the derived model to demonstrate the
effectiveness and superiority of the frequency identification
method based on the AGA.

A. Frequency-Domain and Time-Domain Verification

LS is a commonly employed identification method [31], and
identification using LS has also been performed by MATLAB
for comparison. The model identified from the recorded data
using LS is shown in the following:{

p(z)
ulat(z)

= −0.5774z3+1.3442z2−0.6886z+0.1172
z3−1.9242z2+1.3542z−0.3804

q(z)
ulon(z)

= −0.9794z3+2.5062z2−2.0797z+0.6602
z3−2.1984z2+1.6599z−0.4329 .

(20)

Fig. 11 shows the frequency responses of the recorded flight
data (blue solid lines) and the model obtained by the AGA (red
dotted lines) and LS (black dashed lines). As shown in Fig. 11,
the frequency responses obtained from the recorded data and
the AGA are closely matched in terms of amplitude and phase.
It can be seen that the frequency response error between the
AGA and the recorded data is much smaller than that between
LS and the recorded data.

In order to evaluate explicitly the frequency-domain match-
ing degree between the recorded flight data and the identified
model, the evaluation equation is adopted as follows:

R=1−

√√√√ N∑
i=1

(λ(ωi)−λm(ωi))
2

/√√√√ N∑
i=1

(
λ(ωi)−λ

)2
(21)

where R is the matching degree of the identified model and
the real system; λ(ωi) is the vector of amplitude and phase of
the real system at frequency point ωi; λm(ωi) is the vector of
amplitude and phase of the identified model at frequency point
ωi; and λ is the mean of the vectors of amplitude and phase of
the real system at all of the N valid sample frequency points.

According to (21), the frequency-domain matching degree
between the real flight data and the model derived from the
AGA of the lateral channel is 0.8497, the matching degree
between the real flight data and the model derived from LS
is 0.5986, and the matching degrees of longitudinal channel
under the two methods are 0.8325 and 0.5855, respectively. It
is obvious that the frequency matching degrees of the identified
model in (19) are much higher than those of LS.

Fig. 12 shows the time-domain verification results between
the identified model in (19) and the real flight data. In Fig. 12,
we can clearly see that the iterative predictive outputs of the

Fig. 11. Comparison of frequency responses obtained from (blue solid lines)
flight data, (red dotted lines) AGA, and (black dashed lines) LS. (a) Lateral
channel. (b) Longitudinal channel.

model in (19) (dotted lines) closely match the real flight data
(solid lines), and the output errors are small. In fact, the match-
ing degree of one-step-ahead predictive output is even better.
Again, in order to evaluate explicitly the time-domain matching
degree between the recorded flight data and the identified
model, the equation below is adopted

R = 1−

√√√√ K∑
i=1

(yi − yim)2

/√√√√ K∑
i=1

(yi − y)2 (22)

where yi is the real flight data, yim is the iterative predictive
output data of the identified model, y is the mean of the real
flight data, and K is the number of sample points.

According to (22), the time-domain matching degree be-
tween the real flight data and the model derived from the
AGA is calculated. The matching degrees of one-step-ahead
predictive output, as well as the iterative predictive output of
each channel with different methods, are shown in Table III.

As shown in Table III, the time-domain matching degrees
of the AGA and LS in both channels are at the same level,
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Fig. 12. Comparison of the (solid lines) measured output and iterative (dotted
lines) predictive output. (a) Lateral channel. (b) Longitudinal channel.

TABLE III
TIME-DOMAIN MATCHING DEGREES OF ONE-STEP-AHEAD PREDICTIVE

AND ITERATIVE PREDICTIVE OUTPUTS OF EACH CHANNEL

and the differences between them are not as evident as those
in the frequency domain. Specifically, the matching degrees of
the one-step-ahead predictive output of LS are a little higher
than those of the AGA. In terms of iterative predictive output,
the AGA behaves slightly better than LS in the longitudinal
channel, and the result is reversed in the lateral channel.

Fig. 13. Block diagram of the attitude control loop with the compensator.

B. Control Compensators Based on the Identified Model

Here, control compensators are designed based on the model
identified in (19) to verify further the validity of the iden-
tification method. Comparative simulation and actual flight
experiments are carried out to demonstrate the performance of
the control compensators. Finally, steady automatic hovering is
achieved using the compensators.

Based on the model in (19), which illustrates the relationship
between the attitude rate and the input of the servo, the transfer
function between the attitude and the input of the servo is
derived. Wu et al. [14] adopted a control compensator to realize
the control of the attitude loop. The block diagram of the atti-
tude control loop with the compensator is illustrated in Fig. 13.
Here, GA is the attitude transfer function; YA is the attitude of
the UH; RA is the reference control attitude; EA is the error
between YA and RA; GC is the control compensator; and UA is
the output of the control compensator. The control compensator
is designed to suffice for the specifications of small overshoot
and short settling time. The model-based compensation control
method in [14] is utilized to select proper control compensators
for the attitude control loops in this paper. The control compen-
sators selected for the lateral and longitudinal channels based
on the model of AGA are shown, respectively, in the following:

GAGA_cplat =
0.954z2 − 4.121z + 1.602

z2 − z
(23)

GAGA_cplon =
0.942z2 − 4.01z + 1.553

z2 − z
(24)

where GAGA_cplat and GAGA_cplon are the control compen-
sators of lateral channel and longitudinal channel, respectively.

The control compensators selected for the lateral and longi-
tudinal channels based on the model of LS are shown, respec-
tively, in the following:

Gcp_lat =
0.792z2 − 3.77z + 1.523

z2 − z
(25)

Gcp_lon =
0.731z2 − 3.72z + 1.51

z2 − z
. (26)

An attitude step reference of 30◦ is given to the left of the
diagram of both the lateral and the longitudinal channels in
Fig. 13, and the simulation control results of the model obtained
from AGA and LS are shown in Fig. 14. It is shown in Fig. 14
that the overshoots of both channels of the model from AGA
and LS are small.

A series of actual flight experiments are carried out on the
UH to verify further the effectiveness of the control compen-
sators derived from the identified model, and the flight data are
collected by the MGNCS. The attitude control experiments of
lateral and longitudinal channels are implemented separately.
The UH is first maneuvered by a professional pilot, and the
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Fig. 14. Comparison of simulation attitude response errors between control
loops based on (dotted lines) AGA and (solid lines) LS. (a) Lateral channel.
(b) Longitudinal channel.

flight mode is subsequently transferred from manual mode to
autonomous mode. Fig. 15(a) shows the experimental flight
control results of the lateral channel. In Fig. 15(a), we can see
that the roll error of the control loop based on the AGA has
smaller overshoot and shorter settling time than the control loop
based on LS, and the attitude fluctuation of the former is also
smaller than that of the latter. In other words, it can be seen from
the flight control results that the roll control loop based on the
AGA is superior to that based on LS. The same conclusion can
be drawn in Fig. 15(b), which displays the flight control results
of the longitudinal channel.

In the following, we proceed to examine the performance of
the control compensator in actual automatic hovering. The pilot
manipulates the UH to the vicinity of the target point, and the
flight mode of the UH is subsequently transferred from manual
to autonomous mode. A number of flight tests are implemented.
All of them achieved successful automatic hovering in the air.
A duration of 32 s of automatic hovering is shown in Figs. 16
and 17. The horizontal coordinate of the target point is (2, 1). In

Fig. 15. Comparison of experimental attitude response errors between control
loops based on (dotted lines) AGA and (solid lines) LS. (a) Lateral channel.
(b) Longitudinal channel.

Fig. 16. Top view of the actual automatic hovering of the UH.
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Fig. 17. Attitudes, attitude rates, and inputs of servos during the automatic
hovering flight.

Fig. 16, it can be noted that the maximum horizontal tolerance
in each axis is smaller than 0.9 m; specifically, it is 0.62 m in
the x-direction and 0.89 m in the y-direction. This performance
achieves a level 1 evaluation, according to the aeronautical
design standard performance specification handling quality re-
quirements for military rotorcraft [42]. The attitudes, attitude
rates, and inputs of the servos during the automatic hovering
flight are depicted in Fig. 17. It is shown in Fig. 17 that the roll
and pitch of the UH are smaller than 5◦, and the attitude rates
are within 5◦/s. It can be concluded in Figs. 16 and 17 that
the control compensator designed using the identified model
can successfully implement automatic hovering of the UH. The
successful automatic hovering demonstrates the validity of the
identified model, namely the validity and feasibility of the iden-
tification method that we designed for UH based on the AGA.
It is necessary to note that good performance with a control
compensator design does not necessarily mean that the system
identification is perfect, as the control compensator usually
bears some robustness. However, testing the performance of the
controller is a common and reasonable way to test the identified
model. Our further research will concentrate on the design of
robust and optimal flight control methods for the UH.

VI. CONCLUSION

System identification of the UH has been carried out in this
paper. The attitude model of the UH is obtained by using a
frequency-domain identification method based on the AGA.
Due to the superiority of the frequency-domain methods in the
identification of the UH, the method in this paper shows its
effectiveness and superiority in time-domain and frequency-
domain analyses, compared with the commonly used identi-
fication method, i.e., LS. To verify further the performance

of the identified model, control compensators are designed
using the identified model, and actual automatic hovering is
successfully achieved. The simulation and experimental results
demonstrate that: 1) this identification method is able to obtain
a model for UH, whose effectiveness and superiority has been
shown; and 2) flight controllers can be designed based on
the identified model, which simplifies the design of the con-
troller and improves the efficiency of the experimental study of
the UH.
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