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Supplier selection is a multi-criterion decision making problem under uncertain environments. Hence, it
is reasonable to hand the problem in fuzzy sets theory (FST) and Dempster Shafer theory of evidence (DST).
In this paper, a new MCDM methodology, using FST and DST, based on the main idea of the technique for
order preference by similarity to an ideal solution (TOPSIS), is developed to deal with supplier selection
problem. The basic probability assignments (BPA) can be determined by the distance to the ideal solution
and the distance to the negative ideal solution. Dempster combination rule is used to combine all the cri-
terion data to get the final scores of the alternatives in the systems. The final decision results can be
drawn through the pignistic probability transformation. In traditional fuzzy TOPSIS method, the quanti-
tative performance of criterion, such as crisp numbers, should be transformed into fuzzy numbers. The
proposed method is more flexible due to the reason that the BPA can be determined without the trans-
formation step in traditional fuzzy TOPSIS method. The performance of criterion can be represented as
crisp number or fuzzy number according to the real situation in our proposed method. The numerical
example about supplier selection is used to illustrate the efficiency of the proposed method.

� 2011 Published by Elsevier Ltd.
1. Introduction

Many decision-making applications, such as supplier selection,
within the real world inevitably include the consideration of evi-
dence based on several criteria, rather than on a preferred single
criterion. A lot of researchers have devoted themselves to solve
multi-criteria decision-making (MCDM) (Bouyssou, 1986; Gal &
Hanne, 2006; Narasimhan & Vickery, 1988; Shyur & Shih, 2006;
Wadhwa, Madaan, & Chan, 2009). Due to the flexibility to deal with
uncertain information, it is necessary to use fuzzy sets theory (FST)
and Dempster Shafer theory of evidence (DST). Fruitful papers about
MCDM based on FST (Ashtiani, Haghighirad, & Makui, 2009; Chu &
Lin, 2009; Deng & Liu, 2005a, 2005b; Deng, 2006; Hu, 2009; Hanaoka
& Kunadhamraks, 2009; Olson & Wu, 2006; Wu & Olson, 2008; Yang,
Chiu, & Tzeng, 2008; Yeh & Chang, 2009; Zhang, Wu, & Olson, 2005)
and DST are published (Bauer, 1997; Beynon, Curry, & Morgan, 2000,
2001; Beynon, 2002, 2005; Deng, Shi, & Liu, 2004; Mercier, Cron, &
Denoeux, 2007; Srivastava & Liu, 2003; Wu, 2009; Yager, 2008; Yang
& Sen, 1997; Yang & Xu, 2002).

Recently, Wu (2009) proposed a method to select international
supplier using grey related analysis and Dempster–Shafer theory to
deal with this fuzzy group decision making problem. Grey related
Elsevier Ltd.
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analysis (Deng, 1982) is employed as a means to reflect uncertainty
in multi-attribute models through interval numbers in the
individual aggregation. The Dempster–Shafer combination rule is
used to aggregate individual preferences into a collective
preference in the group aggregation.

In this paper, however, we proposed another MCDM
methodology using FST together with DST. The new method has
some desired properties. First, the proposed method uses linguistic
items modeled as fuzzy numbers to represents experts’ subjective
opinions in addition of crisp number to rank the performance of
criterion. Whether using quantitative representation or qualitative
representation is depending on the real situation. This property is
very desired for multiple experts decision making since there are
not only quantitative data but also qualitative representation in
the process of decision making. Second, based on the DST, the
subject fuzzy numbers can be easily combined with the crisp
numbers. That is, the proposed method can efficiently fuse
quantitative and qualitative data in a straightforward manner.
Third, the proposed method can be easily implemented step by
step to solve MCDM problems.

The remaining paper is organized as follows: Section 2 briefly
introduce the preliminaries of fuzzy sets theory (FST) and DST. In
Section 3, our fuzzy Dempster method to deal with MCDM is pro-
posed. A numerical example to supplier selection is used to show
the efficiency of the proposed method. Finally, some conclusions
are made in Section 5.
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Table 1
Linguistic variables for the importance weight and
ratings.

Very low (VL) (0,0.1,0.3)
Low (L) (0.1,0.3,0.5)
Medium (M) (0.3,0.5,0.7)
High (H) (0.5,0.7,0.9)
Very high (VH) (0.7,0.9,1.0)
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2. Preliminaries

In this section, we simply introduce some relative mathematics
tools, such as fuzzy sets theory (FST) and Dempster Shafer theory
of evidence (DST), which will be used in our new proposed method.

2.1. Fuzzy sets theory

2.1.1. Fuzzy number

Definition 2.1 (Fuzzy set). Let X be a universe of discourse, eA is a
fuzzy subset of X if for all x 2 X, there is a number leAðxÞ 2 ½0;1�
assigned to represent the membership of x to eA, and leAðxÞ is called
the membership of eA (Zimmermann, 1991).
Definition 2.2 (Fuzzy number). A fuzzy number eA is a normal and
convex fuzzy subset of X. Here, the ‘‘Normality’’ implies that (Zim-
mermann, 1991).

9x 2 R; _
x
leAðxÞ ¼ 1 ð1Þ

and ‘‘Convex’’ means that

8x1 2 X; x2 2 X; 8a 2 ½0;1�;
leAðax1 þ ð1� aÞx2ÞP minðleAðx1Þ;leAðx2ÞÞ

ð2Þ
Definition 2.3. A triangular fuzzy number eA can be defined by a
triplet (a,b,c) shown in Fig. 1. The membership function is defined
as Zimmermann (1991).

leAðxÞ ¼
0; x < a
x�a
b�a ; a 6 x 6 b
c�x
c�b ; b 6 x 6 c

0; x > c

8>>><
>>>:

ð3Þ
2.1.2. Linguistic variable
The concept of linguistic variable is very useful in dealing with

situations which are too complex or ill-defined to be reasonably
described in conventional quantitative expressions. Linguistic vari-
ables are represented in words or sentences or artificial languages,
where each linguistic value can modeled by a fuzzy set (Kauffman
Fig. 1. A triangular fuzzy number.
& Gupta, 1985). In this paper, the importance weights of various
criteria and the ratings of qualitative criteria are considered as lin-
guistic variables. For example, these linguistic variables can be ex-
pressed in positive triangular fuzzy numbers as Table 1. It should
be noticed that there are many different methods to represent lin-
guistic items. Which kind of represent method is used is depend on
the real application systems and the domain experts’ opinions.

2.1.3. Defuzzification
Defuzzification is an important step in fuzzy modeling and fuz-

zy multi-criteria decision-making. The defuzzification entails con-
verting the fuzzy value into a crisp value, and determining the
ordinal positions of n-fuzzy input parameters vector. Many defuzz-
ification techniques are available (Zimmermann, 1991), but the
common defuzzification methods include centre of area, first of
maximums, last of maximums, and middle of maximums (MoM).

Different defuzzification techniques extract different levels of
information. In this paper, the canonical representation of opera-
tion on triangular fuzzy numbers (Chou, 2003), which is based
on the graded mean integration representation method is used in
defuzziness process. For detailed information, please refer (Chou,
2003).

Definition 2.4. Given a triangular fuzzy number eA ¼ ða1; a2; a3Þ,
the graded mean integration representation of triangular fuzzy
number eA is defined as

P eA� �
¼ 1

6
ða1 þ 4� a2 þ a3Þ ð4Þ

By applying Eq. (4), the graded mean integration representation for
importance weight of each criterion and ratings are shown in
Table 2
2.2. Dempster shafer theory of evidence

DST (Dempster, 1967; Shafer, 1976) can be regarded as a gen-
eral extension of Bayesian theory that can robustly deal with
incomplete data. In addition to this, DST offers a number of advan-
tages, including the opportunity to assign measures of probability
to focal elements, and allowing for the attachment of probability to
the frame of discernment. In this section, we briefly review the ba-
sic concepts of evidence theory.

Evidence theory first supposes the definition of a set of hypoth-
eses H called the frame of discernment, defined as follows:

H ¼ fH1;H2; . . . ;HNg

It is composed of N exhaustive and exclusive hypotheses. Form
the frame of discernment H, let us denote P(H), the power set
composed with the 2N propositions A of H:

PðHÞ ¼ f;; fH1g; fH2g; . . . ; fHNg; fH1 [ H2g; fH1 [ H3g . . . ;Hg

where Ø denotes the empty set. The N subsets containing only one
element are called singletons. A key point of evidence theory is the
basic probability assignment (BPA). The mass of belief in an element
of H is quite similar to a probability distribution, but differs by the
fact that the unit mass is distributed among the elements of P(H),



Table 2
Graded mean integration representation for the impor-
tance weight of each criterion.

Very low (VL) 0.1167
Low (L) 0.3000
Medium (M) 0.5000
High (H) 0.7000
Very high (VH) 0.8333
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that is to say not only on the singletons in HN in H but on composite
hypotheses too. A BPA is a function from P(H) to [0,1] defined by:

m : PðHÞ ! ½0;1�

and which satisfies the following conditions:X
A2PðHÞ

mðAÞ ¼ 1

mð£Þ ¼ 0

In the case of imperfect data (uncertain, imprecise and incom-
plete), fusion is an interesting solution to obtain more relevant
information. Evidence theory offers appropriate aggregation tools.
From the basic belief assignment denoted mi obtained for each
information source Si, it is possible to use a combination rule in or-
der to provide combined masses synthesizing the knowledge of the
different sources. Dempsteris rule of combination (also called
orthogonal sum), noted by m = m1 �m2, is the first one within
the framework of evidence theory which can combine two BPAs
m1 and m2 to yield a new BPA:

mðAÞ ¼
P

B\C¼Am1ðBÞm2ðCÞ
1� k

ð7Þ

with

k ¼
X

B\C¼£

m1ðBÞm2ðCÞ ð8Þ

where k is a normalization constant, called conflict because it mea-
sures the degree f conflict between m1 and m2, k = 0 corresponds to
the absence of conflict between m1 and m2, whereas k = 1 implies
complete contradiction between m1 and m2. The belief function
resulting from the combination of J information sources SJdefined as

m ¼ m1 �m2 � � � �mj � � � �mJ ð9Þ

Given reliability coefficients, the next step is to incorporate
them into the fusion process.To handle conflict between informa-
tion sources, a discounting rule has been introduced in DSET given
by the following theorems.

Theorem 1. Let BEL: 2H ? [0,1] be a belief function and discounting
coefficient a(0 6 a 6 1) qualify the strength of the reliability of the
evidence. The discounting function, BELa: 2H ? [0,1], is defined as
(Shafer, 1976)

BELaðHÞ ¼ 1; ð10Þ

BELaðAÞ ¼ ð1� aÞ � BELðAÞ; 8A � H and A – / ð11Þ

The function BELa is also a belief function.
Theorem 2. From the definition of discounted belief function BELa

given by Theorem 1, the BPA macorresponding to BELa are further
modified in the following manner (Shafer, 1976):

maðHÞ ¼ ð1� aÞmðHÞ þ a; ð12Þ

maðAÞ ¼ ð1� aÞmðAÞ; 8A � H and A – / ð13Þ
The intrinsic meaning of the transformation is that the reliabil-
ity of any hypothesis is reflected in its own BPA by redistributing
the degree of support among the hypotheses based on the reliabil-
ity coefficients. So the weight of any evidence holds the value of 1.
These discounted BPAs can be combined to obtain the fused result,
using the Dempster’s rule of combination.

Beliefs manifest themselves at two levels - the credal level (from
credibility) where belief is entertained, and the pignistic level where
beliefs are used to make decisions. The term ‘‘pignistic’’ was pro-
posed by Smets (2000) and originates from the word pignus, mean-
ing ‘bet’ in Latin. Pignistic probability is used for decision-making
and uses Principle of Insufficient Reasonto derive from basic probabil-
ity assignment. It is a point (crisp) estimate in a belief interval and
can be determined as

betðAiÞ ¼
X

Ai # Ak

mðAkÞ
jAkj

ð14Þ

Eq. (14) is also called as Pignistic Probability Transformation
(PPT).

3. Proposed method

In this section, a new fuzzy evidential approach to deal with
MCDM is proposed. Assume that a committee of k decision-makers
(D1,D2, . . . ,Dk). In general, a multiple criteria decision-making
(MCDM) problem can be concisely expressed in matrix format as
Hwang and Yoon (1981).

where A1,A2, . . . ,Am are possible alternative, C1,C2 , . . . ,Cn are criteria
with which performance of alternatives are measured, xij is the rat-
ing of alternative Ai with respect to criteria Cj. In this paper, the rat-
ing rij of alternative Ai and the weights of criteria are assessed in
linguistic terms represented as triangular fuzzy numbers.

In many MCDM, we do not care the final scores of each alterna-
tive. What we need usually is the ranking order of all alternatives
to choose the best alternative. Hence, an ideal based on TOPSIS
(Hwang & Yoon, 1981) is used to develop our method. For each cri-
teria in MCDM, it can easily determine the ideal solution and neg-
ative ideal solution. The distance of an alternative between ideal
solution and negative ideal solution can also be determined. The
distance functions can be used to generate BPA to describe how
close the alternative to ideal solution and to negative ideal
solution.

For example, the frame of discernment is {IS,NS}, where IS
means that ideal solution and NS means negative ideal solution.
For one alternative, the BPA is shown as follows:

m1fISg ¼ 0:8; m1fNSg ¼ 0:1; m1fIS;NSg ¼ 0:1 ðBPA1Þ

It means that:

(1) The BPA supports the hypothesis ‘‘the alternative is an ideal
solution with belief degree 0.8’’.

(2) The BPA supports the hypothesis ‘‘the alternative is a nega-
tive ideal solution to with belief degree 0.1’’.

(3) The BPA supports the hypothesis ‘‘We do not known the
alternative is an ideal solution or a negative ideal solution.
We know nothing about the alternative with belief degree
0.1’’.
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If we get another alternative with the following BPA

m2fISg ¼ 0:1; m1fNSg ¼ 0:7; m1fIS;NSg ¼ 0:2 ðBPA2Þ

It means that:

(1) The BPA supports the hypothesis ‘‘the alternative is an ideal
solution with belief degree 0.1’’.

(2) The BPA supports the hypothesis ‘‘the alternative is a nega-
tive ideal solution to with belief degree 0.7’’.

(3) The BPA supports the hypothesis ‘‘We do not known the
alternative is an ideal solution or a negative ideal solution.
We know nothing about the alternative with belief degree
0.2’’.

According to the BPA shown in Eqs. (BPA1) and (BPA2), it can
easily to say that alternative 1 is better than alternative 2 due to
the fact that the BPA support alternative 1 is more like an ideal
solution while alternative 2 is more like a negative ideal solution.
Based on the idea mentioned above, the proposed method can be
listed step by step as follows:

Step 1. Selects the ideal solution and negative ideal solution and
determine the BPA of each performance.

Step 2. Discounts the BPA of performance using the criteria
weights as discounting coefficient. Combined the BPA of
each criterion to get one comprehensive evaluation of an
alternative.

Step 3. Discounts the BPA of combined performance (obtained in
Step 2) using the DMs’ weights as discounting coefficient.
Combined the BPA of all DMs’ to get the final performance
of each alternative.

Step 4. Determine the final ranking order based on pignistic prob-
ability transformation (PPT).

4. Numerical example

In this section, the numerical example used in Wu (2009) is
adopted to illustrate the efficiency of our proposed method. Sup-
plier selection is a typical MCDM problem. The initial condition,
such as the performance and the weighs of each criterion as well
as the weights of experts are shown in Table 3.

There are four criteria, namely product late delivery, cost, risk
factor and suppliers’ service performance detailed as follows:
Table 3
Data for international supplier selection (Wu, 2009).

Performance C1 (%)

DM1 [0.20 0.45] Weights [0.20 0.35]
Supplier1 60
Supplier2 60
Supplier3 70
Supplier4 50
Supplier5 90
Supplier6 80

DM2 [0.35 0.55] Weights [0.25 0.45]
Supplier1 60
Supplier2 60
Supplier3 70
Supplier4 50
Supplier5 90
Supplier6 80

DM3 [0.70 0.95] Weights [0.20 0.55]
Supplier1 60
Supplier2 60
Supplier3 70
Supplier4 50
Supplier5 90
Supplier6 80
C1 Product late delivery – late delivery in percentage is to be
minimized.

C2 Cost – overall cost of the product including procurement
cost, transportation cost, tariff and custom duties is to be
minimized.

C3 Risk factor – the risk of supplier located (political risk, eco-
nomic risk, terrorism, etc.) is to be minimized.

C4 Supplier’s service performance – the ongoing improvement
of the product and service (e.g., product quality acceptance
level, technological and R&D support, information process)
is to be maximized.

Costs and product late delivery rate are crisp values as outlined
in Table 3, but risk factors and supplier’s service performance have
fuzzy data for each source supplier. Now we implement the meth-
od from the prior section to this data.

Step 1. Selects the ideal solution and negative ideal solution and
determine the BPA of each performance.

For the sake of simplicity, we give following assumptions: We
used the crisp number to represent the fuzzy number in Table 3.
Also, we transfer the interval weight into crisp number. For exam-
ple, the weights of four criteria are [0.20,0.35], [0.30,0.55],
[0.05,0.30] and [0.25,0.50], respectively. The crisp weights can be
determined as follows:

W1 ¼
ð0:20þ 0:35Þ

ð0:20þ 0:35Þ þ ð0:30þ 0:55Þ þ ð0:05þ 0:30Þ þ ð0:25þ 0:50Þ

¼ 11
50

W2 ¼
ð0:30þ 0:55Þ

ð0:20þ 0:35Þ þ ð0:30þ 0:55Þ þ ð0:05þ 0:30Þ þ ð0:25þ 0:50Þ

¼ 17
50

W3 ¼
ð0:05þ 0:30Þ

ð0:20þ 0:35Þ þ ð0:30þ 0:55Þ þ ð0:05þ 0:30Þ þ ð0:25þ 0:50Þ

¼ 7
50
C2 C3 C4

[0.30 0.55] [0.05 0.30] [0.25 0.50]
40 Low High
40 Medium Medium
80 Low Very high
30 Medium Medium
130 Very high Very low
120 Very low Very low

[0.2 0.55] [0.05 0.3] [0.2 0.6]
40 Medium High
40 High Medium
80 Low Very high
30 Medium Medium
130 High Low
120 Low Very low

[0.20 0.70] [0.10 0.40] [0.20 0.60]
40 Medium High
40 Low Low
80 Low High
30 Medium High
130 Very high Low
120 Low Very low



Table 4
Crisp number of Linguistic items.

Linguistic item VL L M H VH

Crisp value 0.1 0.3 0.5 0.7 0.9
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W4 ¼
ð0:25þ 0:50Þ

ð0:20þ 0:35Þ þ ð0:30þ 0:55Þ þ ð0:05þ 0:30Þ þ ð0:25þ 0:50Þ

¼ 15
50

Since the discounting coefficient is used in next step, the weights
can be transformed into discounting coefficient as follows

aC1 ¼
11
50

=
17
50
¼ 0:6471

aC2 ¼
17
50

=
17
50
¼ 1

aC1 ¼
7

50
=

17
50
¼ 0:4118

aC1 ¼
15
50

=
17
50
¼ 0:8824

Using the same method, the interval weights of DMs’ importance
can be transformed into crisp number as follows

aDM1 ¼ 0:3939
aDM2 ¼ 0:5455
aDM3 ¼ 1:0000

The data after transformation mentioned above can be shown in Ta-
bles 4 and 5, where all weights and performance are crisp numbers
now. It can easily to choose the ideal solution and negative ideal
solution. In addition, the distance of an alternative between the
ideal solution and negative ideal solution can be easily calculated.

For example, as can be seen from Tables 4 and 5, the ideal solu-
tion of the performance according to criterion 1, given by DM1 is
50, while the negative ideal solution of the performance of DM1
is 90. The performance of the supplier 1 is 60. The distance can
be calculated as follows:
Table 5
Data for international supplier selection after transformation.

Performance C1 (%)

DM1 0.3939 Weights 0.6471
Supplier1 60
Supplier2 60
Supplier3 70
Supplier4 50
Supplier5 90
Supplier6 80

DM2 0.5455 Weights 0.8750
Supplier1 60
Supplier2 60
Supplier3 70
Supplier4 50
Supplier5 90
Supplier6 80

DM3 1.0000 Weights 0.8333
Supplier1 60
Supplier2 60
Supplier3 70
Supplier4 50
Supplier5 90
Supplier6 80
d11ðISÞ ¼ j60� 50j ¼ 10

d11ðNSÞ ¼ j60� 90j ¼ 30

d11ðIS;NSÞ ¼ 60� ð50þ 90Þ
2

����
���� ¼ 10

Hence, the BPA for the first DM1 about supplier 1 according to cri-
terion 1 is obtained as follows:

m11ðISÞ ¼
d11ðNSÞ

d11ðISÞ þ d11ðNSÞ þ d11ðIS;NIÞ ¼
30

10þ 30þ 10
¼ 0:6

m11ðNSÞ ¼ d11ðISÞ
d11ðISÞ þ d11ðNSÞ þ d11ðIS;NSÞ ¼

10
10þ 30þ 10

¼ 0:2

m11ðIS;NSÞ ¼ d11ðIS;NSÞ
d11ðISÞ þ d11ðNSÞ þ d11ðIS;NIÞ ¼

10
10þ 30þ 10

¼ 0:2

All BPA can be calculated and shown as in Table 6.

Step 2. Discounts the BPA of performance using the criteria
weights as discounting coefficient. Combined the BPA of
each criterion to get one comprehensive evaluation of an
alternative.

For example, for the first supplier, the BPA of the four criteria
can be listed in Table 7.

Using the weighs as discounting coefficient, then the first dis-
counted BPA of supplier 1 according to C1 can be calculated as
follows:

ma
11fISg ¼ a�m11 ¼ 0:6471� 0:6 ¼ 0:3883

ma
11fNSg ¼ a�m12 ¼ 0:6471� 0:2 ¼ 0:1294

ma
11fIS;NSg ¼ a�m11fIS;NSg þ ð1� aÞ ¼ 0:4823

Hence, the performance represented by discounted BPA of the sup-
plier 1 given by the first DM1 is listed in Table 8.

Using the classical Dempster combination rule to combine the
four criterion discounted BPA to get the comprehensive opinions
of the supplier 1. The results can be shown as follows:
C2 C3 C4

1.0000 0.4118 0.8824
40 0.3 0.7
40 0.5 0.5
80 0.3 0.9
30 0.5 0.5
130 0.9 0.1
120 0.1 0.1

0.9375 0.4375 1.0000
40 0.5 0.7
40 0.7 0.5
80 0.3 0.9
30 0.5 0.5
130 0.7 0.3
120 0.3 0.1

1.0000 0.5556 0.8889
40 0.5 0.7
40 0.3 0.3
80 0.3 0.7
30 0.5 0.7
130 0.9 0.3
120 0.3 0.1



Table 6
Generating BPA according to the distance functions.

Performance C1 C2 C3 C4
({IS}, {NS}, {IS,NS}) ({IS}, {NS}, {IS,NS}) ({IS}, {NS}, {IS,NS}) ({IS}, {NS}, {IS,NS})

DM1 Weights 0.6471 1 0.4118 0.8824

Supplier1 (0.60,0.20, 0.20) (0.6429,0.0714,0.2857) (0.60,0.20, 0.20) (0.60,0.20,0.20)
Supplier2 (0.60,0.20, 0.20) (0.6429,0.0714,0.2857) (0.50,0.50, 0) (0.50,0.50,0)
Supplier3 (0.50,0.50, 0) (0.50,0.50,0) (0.60,0.20, 0.20) (0.6667,0,0.3333)
Supplier4 (0.6667,0,0.3333) (0.6667,0,0.3333) (0.50,0.50, 0) (0.50,0.50,0)
Supplier5 (0,0.6667,0.3333) (0,0.6667,0.3333) (0,0.6667,0.3333) (0,0.6667,0.3333)
Supplier6 (0.20,0.60, 0.20) (0.0714, 0.6429,0.2857) (0.6667,0,0.3333) (0,0.6667,0.3333)

DM2 Weights 0.8750 0.9375 0.4375 1

Supplier1 (0.60,0.20, 0.20) (0.6429,0.0714,0.2857) (0.50,0.50, 0) (0.60,0.20,0.20)
Supplier2 (0.60,0.20, 0.20) (0.6429,0.0714,0.2857) (0,0.6667,0.3333) (0.50,0.50,0)
Supplier3 (0.50,0.50, 0) (0.50,0.50,0) (0.6667,0,0.3333) (0.6667,0,0.3333)
Supplier4 (0.6667,0,0.3333) (0.6667,0,0.3333) (0.50,0.50, 0) (0.50,0.50,0)
Supplier5 (0,0.6667,0.3333) (0,0.6667,0.3333) (0,0.6667,0.3333) (0.20,0.60,0.20)
Supplier6 (0.20,0.60, 0.20) (0.0714, 0.6429,0.2857) (0.6667,0,0.3333) (0,0.6667,0.3333)

DM3 Weights 0.8333 1 0.5556 0.8889

Supplier1 (0.60,0.20, 0.20) (0.6429,0.0714,0.2857) (0.5714,0.2857,0.1429) (0.6667,0,0.3333)
Supplier2 (0.60,0.20, 0.20) (0.6429,0.0714,0.2857) (0.6667,0,0.3333) (0.2857,0.5714,0.1429)
Supplier3 (0.50,0.50, 0) (0.50,0.50,0) (0.6667,0,0.3333) (0.6667,0,0.3333)
Supplier4 (0.6667,0,0.3333) (0.6667,0,0.3333) (0.5714,0.2857,0.1429) (0.6667,0,0.3333)
Supplier5 (0,0.6667,0.3333) (0,0.6667,0.3333) (0,0.6667,0.3333) (0.2857,0.5714,0.1429)
Supplier6 (0.20,0.60, 0.20) (0.0714, 0.6429,0.2857) (0.6667,0,0.3333) (0,0.6667,0.3333)

Table 7
BPA of the four criteria for the first supplier.

Performance C1 C2 C3 C4
({IS}, {NS}, {IS,NS}) ({IS}, {NS}, {IS,NS}) ({IS}, {NS}, {IS,NS}) ({IS}, {NS}, {IS,NS})

Weights 0.6471 1 0.4118 0.8824
DM1 Supplier1 (0.60,0.20,0.20) (0.6429,0.0714,0.2857) (0.60,0.20, 0.20) (0.60,0.20,0.20)
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m1
DM1 ¼ BPAaC1

C1 � BPAaC2
C2 � BPAaC3

C3 � BPAaC4
C4

¼ m1
DM1fISg ¼ 0:8829;m1

DM1fNSg ¼ 0:0760;m1
DM1fIS;NSg ¼ 0:0411

� �

In above equation, m1
DM1 means the BPA given by DM1 about the

supplier 1. All the results of the experts of each alternative,
taking consideration of combination of four criteria can be listed
in Table 9.

Step 3. Discounts the BPA of combined performance (obtained in
Step 2) using the DMs’ weights as discounting coefficient.
Combined the BPA of all DMs’ to get the final performance
of each alternative.

For example, all the performance about the supplier 1 given by
the three DMs can be listed as follows:

m1
DM1fISg ¼ 0:8829;m1

DM1fNSg ¼ 0:0760;m1
DM1fIS;NSg ¼ 0:0411

m1
DM2fISg ¼ 0:8885;m1

DM2fNSg ¼ 0:0904;m1
DM2fIS;NSg ¼ 0:0211

m1
DM3fISg ¼ 0:9270;m1

DM3fNSg ¼ 0:0177;m1
DM3fIS;NSg ¼ 0:0097

The relative weights of each DM are 0.3939, 0.5455 and 1, respec-
tively. Using weights of DMs’ as discounting coefficient, then the
discounted BPA of three DMs about supplier 1 can be calculated.
The discounted BPA of DM1, taking consideration of DM’s weights,
is listed as follows
m1
DM1

afISg ¼ 0:3939� 0:8829 ¼ 0:3478

m1
DM1

afNSg ¼ 0:3939� 0:0760 ¼ 0:0299

m1
DM1

afIS;NSg ¼ 1�m1
DM1

afISg �m1
DM1

afNSg ¼ 0:6223

All the three DMs’ BPAs about supplier 1 can be combined using
Dempster rule. The results are shown in Table 10.

Step 4. Determine the final ranking order based on pignistic prob-
ability transformation (PPT).

For example, for the supplier 1, the final performance is listed as
follows

m1fISg ¼ 0:9727

m1fNSg ¼ 0:0177

m1fIS;NSg ¼ 0:0096

Then, the results using PPT is shown as follows

Bet1fISg ¼ 0:9727þ 0:0096
2

¼ 0:9775

The Bet and the final ranking order are shown in Table 10.
It can be easily seen that the rank order is supplier 4 > supplier

1 > supplier 2 > supplier 3 > supplier 6 > supplier 5. It is coincided
with the results of that presented in Wu (2009).



Table 8
The performance represented by discounted BPA of the supplier 1 given by the first DM1.

Performance C1 C2 C3 C4
({IS}, {NS}, {IS,NS}) ({IS}, {NS}, {IS,NS}) ({IS}, {NS}, {IS,NS}) ({IS}, {NS}, {IS,NS})

DM1 Weights 0.6471 1 0.4118 0.8824
Supplier1 (0.3883,0.1294,0.4823) (0.6429,0.0714,0.2857) (0.2471,0.0824,0.6705) (0.5294,0.1765,0.2941)

Table 9
Fuse multi-criteria data using discounting coefficient of each criterion.

Performance DM1 DM2 DM3 Combined results
Weights 0.3939 0.5455 1

({IS}, {NS}, {IS,NS}) Supplier1 (0.8829,0.0760,0.0411) (0.8885,0.0904,0.0211) (0.9270, 0.0431,0.0299) (0.9727,0.0177,0.0097)
Supplier2 (0.7827,0.1959,0.0214) (0.7249,0.2571,0) (0.8138,0.1545,0.0317) (0.8947,0.0930,0.0122)
Supplier3 (0.7475,0.2525,0) (0.8080,0.1870,0.0050) (0.7959,0.2041,0) (0.8888,0.1111,0.0001)
Supplier4 (0.8366,0.1379,0.0255) (0.8649,0.1351,0) (0.9516,0.0113,0.0372) (0.9804,0.0077,0.0119)
Supplier5 (0,0.9343,0.0566) (0.0269, 0.9462,0.0269) (0.0308,0.9404,0.0289) (0.0100,0.9840,0.0061)
Supplier6 (0.0768, 0.8584,0.0648) (0.0676, 0.8924,0.0400) (0.0902,0.8642, 0.0456) (0.0367,0.9477,0.0156)

Table 10
Fuse multi-persons data using discounting coefficient of each alternative.

Performance Combined results bet(IS) Final ranking order

Supplier1 (0.9727,0.0177,0.0096) 0.9775 2
Supplier2 (0.8947,0.0930,0.0123) 0.9008 3
Supplier3 (0.8888,0.1111,0.0001) 0.8888 4
Supplier4 (0.9804, 0.0077,0.0119) 0.9864 1
Supplier5 (0.0100,0.9840,0.0060) 0.0130 6
Supplier6 (0.0367, 0.9477,0.0156) 0.0445 5
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5. Conclusions

In this paper, a new MCDM method based on DST is proposed. It
is shown that the new method can deal with MCDM in an efficient
manner. We use a supplier selection example to illustate the use of
the proposed method. It can easily be applied to other MCDM. In
the future, the conflict data fusion alogrithm will be taken into con-
sideration since that the DM may conflict with each other DM and
the criterion in MCDM may conflict with each other criterion. If
highly conflicting evidence are collected, the classical DS combina-
tion rule will get uncorrect results. Hence, it is necessary to effi-
ciently handle conflict evidence in the decision making process
(Guo, Shi, & Deng, 2006; Lefevre, 2002; Murphy, 2000).
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