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ABSTRACT

With the growing interest in native XML query processing comes an
increased awareness of the lack of maturity in XML optimizers. We believe
that there is a significant opportunity to adapt and extend mature relational
optimization techniques in XML systems.

In this paper we introduce a novel two-level approach to cost-based
optimization. The higher level consists of the traditional join order selection
together with the cost-based selection of access methods. The lower level
cost-based optimization is entirely performed within an original access
method that takes advantage of XML path indexes. A path index, also
known as a structural index or as a structural summary, represents a
summarization of the paths that actually occur in an XML document. Using
path indexes in XML optimization helps to constrain the query plan search
space and allows the exploitation of cost models based on XML-specific
statistics.

The optimization approach is described in the context of ToXop, a cost-based
optimizer for ToX that seamlessly incorporates both streaming (single-pass)
and path index based pattern matching evaluation strategies for XQuery.

1. INTRODUCTION

Over the past few years the Extendible Markup Language (XML)
has became the dominant data format for information exchange.
With the proliferation of data in this format comes the motivation
to query and manipulate XML documents. XQuery [28] is the
predominant proposal for a native XML query language standard.
Query optimization proved to be the foundation of success for
Relational Database Management Systems. However, while there
are many XQuery implementations, the vast majority of them
lack a query optimizer.

We believe that there is a significant opportunity to adapt and
extend mature relational optimization techniques in XML
systems. As in relational systems, we can regard XML query
optimization as a combination of two stages: access method
selection and join order selection (these separate stages are a
simplification that applies for Select-Project-Join SQL queries
with no sub-queries). In relation systems, the data access
operators also incorporate selection and projection operations.
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This approach can be applied to the XML model as well, with
one major difference: in the XML model the selection predicates
are XPath expressions. The evaluation of these path expressions
by different access methods used within XML engines represents
the bulk of the research in XML query evaluation.

Methods for evaluating XPath expressions have been developed
with the assumption that the query processor has to apply the
selection condition while streaming through the document. There
is extensive work on streaming XPath processors [5, 9, 12, 15,
21, 22]. These implementations use automata in order to evaluate
on the fly a number of XPath expressions. Any of these
processors can be encapsulated into an access method.

When a native XML system controls the storage of the XML
documents, the stream processing requirement can be relaxed.
Consequently, the XML documents can be pre-parsed into
special purpose data structures in order to speed up query
execution. One such data structure is derived from the notation
used in region algebras [7], where an inverted file like structure
with the element name, the begin, start and level of the text
region of each element is used. Utilizing this type of data
structures evaluating path expressions is equivalent to joins
between lists of element regions, referred to as containment
queries [27] or structural joins [2].

In the relational model, a SQL query is translated into a
relational algebra expression and then optimized. Many of the
XQuery implementations use the same approach, although many
of the algebras in the literature are simply an API or are based on
some procedural semantics. For instance, Galax [30] translates
XQuery to XQuery Core [29]. Other XQuery systems, such as
Timber [16], Niagara [14], Natix [10] and ToX [3] rely on a
logical XML algebra. In between are systems like BEA/SQRL
[11] that translates XQuery into an internal representation and
performs optimization based on heuristics. Ultimately, XQuery
systems implement a set of access methods.

for $x in document(“file:/supplier.xml")//supplier,
$y in document(“file: /catalog.xml")//item
where $x/supplier_no = $y/supplier_no
and $x/city = "Toronto"
and $x/province = "Ontario"
return
<result> { $y/name } { $y/description } </result>

Figure 1: Sample XQuery expression




An XQuery expression frequently contains several XPath sub-
expressions, such as the example given in Figure 1.

The example query joins a supplier document and a catalog
document based on supplier no, returning the name and
description of items in the catalog for those suppliers located in
Toronto, Ontario. The XPath expressions that occur in the query
above and apply to the supplier document are: ‘supplier’,
V/supplier/supplier no’, //supplier/city’ and
YV/supplier/province’. A fragment of a sample supplier document
is shown in Figure 2.

<suppliers>
<supplier>

<supplier_no> 1 </supplier_no>
<name> Magna </name>
<city> Toronto </city>
<province> Ontario </province>

</supplier>

<supplier>
<supplier_no> 2 </supplier_no>
<name> Ford Canada </name>
<city> Oakuville </city>
<province> Ontario </province>

</supplier>

<supplier>

<supplier_no> 3 </supplier_no>
<name> MEC </name>
<city> Vancouver </city>
<province>British Columbia</province >
</supplier>
</suppliers>

Figure 2: Sample supplier.xm! document

Although each of the XPath expressions in an XQuery expression
such as the example above can be computed separately, a much
better approach is to group XPath queries. The group of XPath
expressions that apply to a certain document (such as suppliers in
the example above) can be computed in a single pass through the
document. Most of the XPath processors as well as novel
structural join algorithms support this approach [4, 15, 16].

Relational query optimization relies on schema information. In
the XML data model the information given by XML Schemas (or
by DTDs) specifies the conditions for validity of documents.
However, an XML Schema is not necessarily very descriptive
about the structures occurring in a collection of XML documents.
As such, XML Schema information is not well-suited for
optimization. However, there are different data structures
employable as schema, namely path indexes. A path index, also
known as a structural index or as a structural summary,
represents a summarization of the paths that actually occur in a
document. That is, for each distinct path in an XML document
there is a distinct path in the path index [13, 20] or an
approximation of it [18, 24]. Because, a path index reflects the
existing schema of the document, it can be used for optimization
in a similar fashion than a relational schema.

In this paper, we describe a comprehensive approach to XML
query optimization that incorporates several novel characteristics.
The description in the paper focuses on ToXop, a cost-based
optimizer for ToX.

The key novel contributions showcased by ToXop are:

*  An original two-level approach to cost-based optimization.
The higher level consists of the traditional join order
selection together with the cost-based selection of access
methods. The lower level cost-based optimization is entirely
performed within the access method that takes advantage of
the path indexes.

e The high level cost-based selection is based on just two
access methods specialized for XML query processing. The
first access method supports streaming (single-pass) pattern
matching in XML documents, while the second access
method takes advantage of path index structures for
matching patterns in pre-processed XML documents.

*  The lower level cost-based optimization determines how the
path index will be traversed. This choice is encapsulated in
the second access method described above. This access
method also encapsulates the pruning of the patterns to be
matched against the path index. Incorporating the path index
in this lower level optimization has the benefits of
constraining the query plan search space and exploiting a
cost model based on XML-specific statistics

e The two access methods used by ToXop share the same data
model as the operators in the native XML logical algebra.
They operate on collections of trees at both levels, which
should be contrasted with XML implementations in the
literature that employ structural join access methods, which
operate on collections of trees at the logical level, but switch
to operations on collections of nodes at the physical level.

We have to note here a similarity of the work that we present in
the XML context, with earlier the work in query optimization for
Object Oriented Databases (OODB) [6, 8, 19]. For instance,
Access Support Relations (ASRs) provide an indexing
mechanism for paths like XML path indexes. Despite the
similarities, in the OODB context the schema information is
known, while this is frequently not the case in the XML context.
Moreover, ASRs may cover only some paths from the database
instance, while in the XML context the path indexes cover all
paths from the document instance. Finally, previous work on
optimization that incorporates ASRs does not employ the two-
level cost-based access method selection introduced in this paper.

In the following section we introduce the cost-based access
method selection employed by ToXop (the high level
optimization). Section 3 describes the use of path indexes within
an access method that performs the low-level cost-based
optimization. We conclude by mentioning future research in
Section 4.

2. COST-BASED ACCESS METHOD
SELECTION

In this section we describe the cost-based access method
selection used by ToXop, an XML query optimizer that exploits
ToXin, a path index. ToXop and ToXin are part of a larger
project: the Toronto XML Server (ToX), a native DBMS for
XML under development at the University of Toronto [3].



The logical algebra used in ToXop is essentially the Tree
Algebra for XML (TAX) [17]. TAX is also the logical algebra
employed by Timber [16]. However, as we will describe below,
ToXop relies on different access methods than Timber and
employs a novel two level optimization approach that exploits
path indexes instead of using structural joins.

In the TAX algebra, each logical operator L takes as input a
collection of trees or a document D and a pattern tree PT and
outputs a collection of n witness trees:

L(D,PT)=[WT, WT2, ... ,WT"]

The witness trees are those sub-trees that satisfy the pattern tree.
Because each collection of trees can be transformed into one
document (by adding a virtual root), in this paper we treat a
document D and a collection of trees as the same.

As an example, consider the TAX algebra expression below,
which is a translation of the query in Figure 1:

Pr Uj ection /fitemmame, /i tem/description

(Join yitemsuppiier_no = /isupplier/supplier_no (

Selection( supplier.xml’, PT1), Selection(‘catalog.xml’, PT2))

where PT1 and PT2 are pattern trees, a concatenation of XPath
expressions augmented with value predicates. In Figure 3 we
present the pattern tree P71 associated with variable $x from the
query in Figure 1. P71 is obtained from concatenating the four
XPath expressions: /supplier,  //supplier/supplier no,
//supplier/city, and //supplier/province.

() root

supplier
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Figure 3: The Pattern Tree PT1

In a relational optimizer, each logical operator can be
implemented by many access methods. The purpose of access
method selection is to choose a low cost alternative among those
that are applicable. Relational optimizers also group several
logical operators within a single access method. For instance, the
relational access method Scan does group functionality from the
relational algebra (logical) operators Selection and Projection.
Finally, in relational implementations, the logical operators and
the corresponding access methods operate on the same data
model, namely relations.

In the ToXop framework, both logical operators and access
methods operate on the same XML model, namely collections of
trees. This approach is novel, since in other XML optimization
frameworks the access methods do not operate on the same XML
model as the logical operators. For instance, access methods
based on structural join operate on sets of nodes.

In order to perform a cost based optimization we need catalog
information. In the relational model the catalog information
contains schema information and statistics on data distribution.
However, in the XML model the existing schema specifications,
DTD and XML-Schema, are merely used for document validation
and do not reflect the existing schema of the document. In order
to overcome this limitation we employ a path index (specifically,
ToXin) as document schema. In ToXin, for each distinct path in
the XML document there is a distinct path in the index [25].
ToXin has a tree structure, reflecting a simplified XML data
model.

Figure 4 has an example ToXin tree for the supplier document
shown in Figure 2.
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Figure 4: A ToXin tree for the supplier.xm! document.

We divide the ToXin tree into two structures: the ToXin tree
itself (TT) and a set of associated instance and value tables
(collectively, TT). Each node in 77T points either to an Instance
Table, which contains the parent/child information to support
forward and backward navigation, or it points to a Value Table,
which records the content of each node.

The ToXin index has two important properties. First, it
summarizes the structure of a document instance. Second, a path
query can be answered by traversing the ToXin tree only. These
two properties suggest that we can employ ToXin as both a
catalog and an index.

In order to use ToXin as a comprehensive catalog we need to
collect statistics on the data. Whereas in the relational model the
statistics to gather have been extensively studied, in the XML
model the statistics are still a subject of research [1, 23, 26]. In
the initial version of ToXop we use a simple set of statistics such
as the number of instances for an element, the number of distinct
values for an element and its fan-out. We collect these statistics



in an augmented version of the TT structure. The statistical
information is gathered at document parsing time. The root node
of the TT structure contains one piece of additional information:
the size of the document.

ToXop supports two basic access methods: ToXStream and
ToXinScan. The first access method supports streaming (single-
pass) pattern matching in XML documents, while the second
access method takes advantage of path index structures for
matching patterns in pre-processed XML documents. These two
access methods also support grouping the functionality of several
logical operators such as Selection and Projection. ToXop makes
a cost-based decision to determine which one of the two access
methods to use in a given plan.

ToXStream is a variant of TurboXPath, an XPath processor that
works on streaming data [15]. ToXStream uses a bounded
memory automaton-like data structure and evaluates the pattern
tree in a single pass through the document. ToXStream is well
suited to work on documents that are streamed or documents that
have not yet been pre-parsed to create index structures.

The ToXStream access method has a similar signature as a
logical algebra operation. Tt takes as input a document D and a
pattern tree PT and outputs a collection of n witness trees in D
that satisfy the pattern tree PT:

ToXStream(D, PT) = [ WT', WT?%, ... , WT"]

ToXStream can also produce, during its single pass over a
document D, the ToXin index structures for D, TTp and TIp.
Therefore, once ToXStream processes a document, the
corresponding TTp and TIp are available for subsequent
operations.

ToXop can determine the cost of utilizing the ToXStream access
method by looking at the size of the document to stream. Recall,
that the root node of the TTp structure contains the size of the
document. As we will see below, once the TTp structure is
available, we will use it to retain the execution cost of the
ToXinScan access method. In particular, the total cost of
ToXinScan will be stored in the root node of TTp. Therefore,
ToXop uses a comparison of the costs at the root of the path
index structure to select an access method.

3. PATH INDEXES IN THE OPTIMIZER

This section describes the access method in ToXop that uses path
indexes and illustrates the low-level cost-based optimization.

ToXinScan is the access method that operates on the ToXin
index structures. Thus, a ToXinScan operator takes as input a
document D (where TTp and TIp are available) and a pattern
tree PT and outputs a sequence of witness trees that satisfy the
pattern tree PT:

ToXinScan(D.PT) = [ WI', WT% ..., WI" ]

ToXinScan 1is the result of composing three operators:
PruneToXinTree, ComputePlan and Traverse.

The first step (PruneToXinTree) is to match the pattern in the
query against the path index. For a given pattern tree PT and an
augmented ToXin tree TT, we call matched ToXin Trees (MTT)
those sub-trees of TT that satisty the pattern tree P7. The nodes
of MTT are adorned with the corresponding node selection
predicates from the pattern tree P7.

Therefore, PruneToXinTree takes a pattern tree PT and an
augmented ToXin tree TT and outputs the k sub-trees of TT that
satisfy the pattern PT:

PruneToXinTree (TTp, PT) = [TT'ppr, TT?per, ... , TTpp1]

In Figure 5 we present the result of pruning the ToXin tree from
Figure 4 according to the pattern from Figure 3.

supplier

O (=Ontaria’)
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Figure 5: A matched ToXin tree

The second step (ComputePlan) is to evaluate the execution cost
of MTTs. First, we observe that the evaluation cost function
works recursively on TTs (each node contains the cost of
evaluating the sub-tree rooted in that node). In order to obtain the
costs, the lower level cost-based optimization will have to
determine how the path index will be traversed.

For the MTT from Figure 5, in order to retrieve all nodes that
satisfy the selection predicates we can proceed as follows. First
we evaluate the path Ysupplier/province’ then Ysupplier/city’
then “supplier/supplier no’. Finally, we intersect all instances
of the ‘supplier’ node obtained from the evaluation of the paths
and the predicates. Evidently, this is an inefficient method of
evaluating the tree. The reason is that we have two predicates on
nodes province and city. Consequently, there is a possibility that
one of these predicates has higher selectivity. In this case, we
would like to evaluate the higher selectivity path first and then
evaluate the next path only for those instances of the supplier
node that satisfy the first path. We call this process the right
order selection and it is the first part of the access order
selection.

The second part of access order selection constitutes the right
direction selection. Assume that we evaluate first the path
supplier/province’; this means that we have a set of supplier
nodes for which there are child province nodes that satisty the
predicate on province. The next step is to evaluate the path
/supplier/city’. There are two options. The first one is to use a
bottom-up evaluation and intersect the supplier nodes selected by
the “/supplier/city’ path with those supplier nodes selected by the
/supplier/province’ path. The second approach is to perform a
top-down evaluation. A top-down evaluation works as follows:
for those nodes supplier that satisfy the “supplier/province’ path,



we select their corresponding city children nodes and then for
these city nodes only we evaluate the predicate on city.

The right order selection and right direction selection are the
lower level optimization in the two level optimization process.
This optimization is an XML-specific technique that relies on the
use of path indexes.

In Figure 6 we present a plan augmented ToXin tree that is, a
ToXin tree with the right order/selection in place for each node
and the lowest execution cost computed and stored for each node.
In the example we assume that the predicate on the city node has
higher selectivity than the predicate on the province node thus,
we will evaluate the Ysupplier/city’ path first using a bottom-up
evaluation and then the Ysupplier/province’ path using a top-
down evaluation. The arrows in the figure reflect these choices of
direction.

O (='Cirtaria’)
province

supplier_no  city
a)

[='"Toronta")

Figure 6: A plan augmented ToXin tree

Plan selection is done by the ComputePlan operator. It takes as
input a matched toxin Tree TT'ppr and outputs a plan
augmented ToXin tree PTT'p pr:

ComputePlan(TT'p pr) = PTT! pr

The last operator is Traverse. It takes a plan augmented ToXin
tree PTT'p pr, the corresponding instance and value table TIp and
outputs a witness tree that is part of the answer to the query.
Traverse has the following signature:

Traverse(PTT'ppr, TIp) = WIT!
In summary, the ToXinScan access method is the composition:

ToXinScan(D,PT)=
Traverse(
ComputePlan( PruneToXinTree( getTT(D),PT) ),
getTI(D) )

where getTT and getTI are two auxiliary functions that return
TTp and TIp, respectively.

ToXinScan can take advantage of pruning the patterns early on ,
selecting those parts of the document which are of interest, and
drastically reducing the size of the trees manipulated by the
execution engine. ToXinScan cam yield benefits by constraining

the query plan search space and exploiting a cost model based on
XML-specific statistics.

The current ToXop prototype includes an implementation of the
ToXinScan operator. In Figure 7 we present and intermediate
output (pretty printed as XML) of the ToXop optimizer
describing the supplier node of a plan augmented tree that is part
of the optimization process.

<ToxinNode>
<id>2</id>
<name>supplier</name>
<level>1</level>
<type>3</type>
<parentlD>1</parent|D>
<cost> 5.0 </cost>
<children>
<child>
<id>3</id>
<order>3</order> <direction>down</direction>
</child>
<child>
<id>4</id>
<order>1</order> <direction>up
</child>
<child>
<id>5</id>
<order>2</order> <direction>down</direction>
</child>
</children>
<statistics>
<!-- no text content, thus no values -->
<distinctValue> null </distinctValue>
<fanOut>
<value>1.0</value>
<value>1.0</value>
<value>1.0</value>
</fanOut>
</statistics>
</ToxinNode>

</direction>

Figure 7: The supplier node augmented with plan
information

4. CONCLUSIONS

We have presented on-going work on a two level approach to
XML optimization used by ToXop, a cost-based XML query
optimizer. The higher level consists of the cost-based selection of
two XML access methods: ToXStream and ToXinScan.
ToXStream supports single pass evaluation through XML
documents, while ToXinScan operates on ToXin trees, a path
index structure for XML documents. Both access methods use
ToXin trees as a system catalog. The higher optimization level
also includes traditional join order selection.

The lower level optimization determines how the path index will
be traversed. This choice is encapsulated in the second access
method, ToXinScan. This access method also encapsulates the
pruning of the patterns to be matched against the path index.
Exploiting the path index in this lower level optimization brings
the two crucial benefits of constraining the search space of query
plans and of exploiting a cost model based on XMIL-specific
statistics.




Our immediate plans for ToXop begin with an experimental
evaluation of the optimizer’s behavior. Future work includes
incorporating a wider variety of native XML indexing access
methods (beyond path indexes) into a uniform framework such as
the one described here. We are also interested in extending the
use of XMIL-specific statistics to support better cost models and
cost estimates.
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