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ABSTRACT Several methods have been developed for the 

modeling of saturation effects in induction 
machines [8,9,10,11,12]; each differing in areas 
of application and, of course, in the part of the 
machine that inductances are assumed to 
saturate.  In [8,9] induction motors with saturable 
leakage reactance are modeled and simulated 
with the help of IGSPICE and an analog 
computer, respectively.  In He [7] and Levi [11] 
the effect of considering the main flux saturation 
is investigated.  It has been shown that the main 
magnetizing field contributes significantly to the 
disparity between the induction machines’ 
computer simulation results and the 
experimentally derived values [7]. Therefore, to 
a very high level of accuracy, the effects of 
saturation in induction machines can be included 
through variation of the main flux inductance 
while assuming the leakage inductances to be 
constant.  However, where the stator and rotor 
currents are expected to be very high values, 
inclusion of the leakage inductance saturation 
becomes imperative [13].  

 
At high stator phase currents, the effect of 
saturation of the stator and rotor leakage 
inductances becomes noticeable to the extent 
that the conventional machine model fails to 
represent the dynamic performances of 
induction machines. In this paper, a commercial 
software package, MATLAB, is used to simulate 
the dynamic behavior of induction machines with 
saturable inductances. The computer results 
presented in this paper show the errors involved 
when the magnetizing, stator, and rotor leakage 
inductances are assumed constant as in the 
case of conventional machine model. 
 

(Key words: rotor leakage, inductance, MATLAB, 
induction machine) 

 
 
INTRODUCTION 
 
The traditional method of modeling induction 
machines has been applied by several authors 
[1,2,3].  In this method of analysis, it is assumed 
that the effect of saturation due to either the 
magnetizing inductance or the leakage 
inductances is negligible.   

 
In this paper, MATLAB [14] is used to simulate 
the dynamic performances of an induction 
machine by assuming that the main flux 
inductance, stator, and rotor leakage 
inductances vary with the magnetizing current.   
 Using this assumption, the values of the 

magnetizing inductance, stator leakage, and 
rotor leakage inductances are constant and thus 
do not vary with the magnetizing current.  This 
method of analysis was reported by Smith [4] to 
meet only the demands of the steady-state 
behavior of the machine but is inadequate in 
applications involving variable speed drive.  It 
has been proved beyond a doubt by several 
authors [5,6,7,8] that the stability and dynamic 
conditions of induction machines are highly 
affected by saturation.  

MATLAB, licensed by Mathworks, provides a 
powerful matrix analysis environment, the basis 
of state-space modeling of dynamic systems, for 
systems identification, engineering graphics, 
modeling and algorithm development. MATLAB 
has an open system environment, which 
provides access to algorithms and source code 
and allows the user to mix MATLAB with 
FORTRAN or C language, and generates code 
to be used in an existing program. This paper 
uses the d-q axis transformation technique to 
model induction machine parameters. Lastly, the 
computer results of the conventional method of 
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analysis are compared with the results of the 
saturation model. [ ]
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D-Q AXIS TRANSFORMATION THEORY  
 

 The substitutions which replace the variables 
(currents, voltages, and flux linkages) 
associated with the stator windings of a 
synchronous machine with variables related to 
fictitious windings rotating with the rotor was first 
investigated by Park [7]. This method was 
further extended by Keyhani [8] and Lipo [9] to 
the dynamic analysis of induction machines. By 
these methods, a polyphase winding can be 
reduced to a set of two phase-windings with 
their magnetic axes aligned in quadrature as 
shown in Figure 1. 

where, 
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REFERENCE FRAMES VOLTAGES 
 
Under balanced conditions, the stator voltages 
of a three-phase induction machine may be 
considered as sinusoidal and expressed as: 

 
Figure 1: Polyphase winding and d-q 

equivalent. 
  

 tVV bas ωcos2=    (5) The d-q axis transformation eliminates the 
mutual magnetic coupling of the phase-
windings, thereby making the magnetic flux 
linkage of one winding independent of the 
current in the other winding. This system of 
transformation allows both polyphase windings 
in the stator and rotor of an induction machine to 
be viewed from a common reference frame, 
which may rotate at any angular speed or 
remain fixed to the stator. Generally, the 
reference frame can also be considered to be 
rotating at any arbitrary angular speed. The 
transformation from a three-phase system to a 
two-phase system and vis versa with the zero-
sequence included is: 
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These stator voltages are related to the d-q 
frame of reference by equation (1): 
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where, 
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By applying trigonometric identities; equation (8) 
can be further simplified to yield: 

 
( )tVV bsq ωθ −= cos2

  (10) 
 

( )tVV bsd ωθ −= sin2   (11) 
 
Equations (10-11) can be applied in any 
reference frame by making a suitable choice for 
theta (θ). 
 
If theta equals θr, then equations (10-11) lead to 
an expression for voltage in the rotor reference 
frame.  Also, if θ is equal to zero, then equations 
(10-11) apply to a frame of reference rigidly fixed 
in the stator (i.e. stationary reference frame). 
Otherwise, for θ equal to ωt in equations (10-11), 
a synchronously rotating reference frame 
results. 
 
CONVENTIONAL MACHINE MODEL 
DEVELOPMENT 
 
In the development of transient equations for the 
conventional machine model, the following 
assumptions are made:  
 
1. The machine is symmetrical with a linear air-

gap and magnetic circuit 
2. Saturation effect is neglected 
3. Skin-effect and temperature effect are 

neglected 
4. Harmonic content of the mmf wave is 

neglected 
5. The stator voltages are balanced. 
 
The differential equations governing the 
transient performance of the induction machine 
can be described in several ways; they only 
differ in minor detail and in their suitability for 
use in a given application. The conventional 
machine model is developed using the 
traditional method of reducing the machine to a 
two-axis coil (d-q axis) model on both the stator 
and the rotor as described by Krause and 
Thomas [1].  The d-q axis model of the motor 

provides a convenient way of modeling the 
machine and is most suitable for numerical 
solutions.  This is preferable to the space-vector 
machine model that describes the machine in 
terms of complex variables [10].  Figure 2 shows 
the d-q equivalent circuits for a 3-phase, 
symmetrical squirrel-cage induction machine in 
arbitrary-frame with the zero-sequence 
component neglected. 
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Figure 2a: Squirrel-Cage Induction machine 
models in d-q axis: (q-axis model). 

 
 
 
 
 
 
 
 
 
 
 

Figure 2b: Squirrel-Cage Induction machine 
models in d-q axis: (d-axis model). 
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ELECTRICAL MODEL OF THE MACHINE 
 
The non-linear differential equations that 
describe the dynamic performance of an ideal 
symmetrical induction machine in an arbitrary 
reference frame could be derived from the d-q 
equivalent circuits as in (1). 
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where, 
 

mlss LLL +=     (13) 
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mlrr LLL +=     (14) 

 
 
[ ] [ ] [ ] [ ]( )[ ] [ ] [ ]VLiGRLi 11 −− ++−= rp ω  (17)  

  
where, 

dt
dp =

    (15) 
 
[ ] [ ]tdsqs VV 00=V

  (18)  
  
In the analysis of induction machines, it is 
always advisable to transform equation (12) to 
d-q axis fixed either on the stator [19], the rotor 
[20], or rotating in synchronism with the supply 
voltages [21].  In [19], equation (12) is modified 
by setting ω=0 and in [20] ω=ωr while in [21] 
ω=ωe. 
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It is important to note that the choice of a 
reference frame will affect the waveforms of all 
d-q variables and also the simulation speed as 
well as the accuracy of the results.  However, 
the following guidelines as suggested in [22] are 
in order:  
  
1. Use the stationary reference frame if the 

stator voltages are either unbalanced or 
discontinuous and the rotor voltages are 
balanced (or zero) [ ]
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2. Apply the rotor reference frame if the rotor 
voltages are either unbalanced or 
discontinuous and the stator voltages are 
balanced  

[ ] [ ]trdqrdsqs iiii=i
  (22) 

3. Apply either the synchronous or stationary 
reference frames if all voltages are balanced 
and continuous.   

The electromagnetic torque, Te is expressed as:  
 Also, for analysis involving saturation and deep 

bar effect, a reference frame fixed to the rotor is 
recommended [20]. ( )qrdsdrqsme iiiiPLT −=

2
3

  (23)  
 Therefore, the electrical model of the squirrel-

cage induction machine in the rotor reference 
frame becomes, 

where, P=Number of pole pairs. 
 
  MECHANICAL MODEL OF THE MACHINE 
WITHOUT COUPLING ( )
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The mechanical model of an induction motor is 
comprised of the equations of motion of the 
motor and driven load as shown in Figure 3 and 
is usually represented as a second-order 
differential equation [18].  

For the purpose of digital simulation, equation 
(16) is represented in state variable form with 
currents as state variables. 

 

Lemm TTpJ −=θ2    (24) 
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MECHANICAL MODEL OF THE MACHINE 
WITH COUPLING 

Decomposing equation (25) into two first-order 
differential equations gives, 

  
Figure 5 represents the motor mechanical model 
schematic for the motor-load connection. In this 
paper, the coupled load is a 36KW, IEC 132, 
Class F, D.C. motor with a rated current of 
53.8A. 

mmp ωθ =     (25) 
 

( ) ( Lemm TTpJ −= )ω
  (26) 

  
But,  

  
Pmr ωω =     (27) 

 
 

  
Pmr θθ =     (28)  

  
 where,   ,     ,    ,    ,  Jm, and TL represent 

angular velocity of the rotor, rotor angular 
position, electrical rotor angular position, 
electrical angular velocity, combined rotor and 
load inertia coefficient, and  applied load torque 
respectively. 

mω mθ rθ rω  
 
 
 
 

Figure 5: Motor mechanical model schematic 
with coupling. 

 

 

 
The equation of motion of the motor and the 
coupling is given by: 
 

2

2

1 dt
d

JMT m
mwe

θ
=−

   (29) 

Figure 3: Motor mechanical model schematic 
without coupling. 

 
The block diagram representing the mechanical 
model of the machine without coupling is shown 
in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Block diagram of the mechanical 
model without coupling. 

 

 
From equation (25), 

 

2

2

dt
d

dt
d mm θω
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    (30) 

 
Inputting equation (30) into equation (29), we 
have: 
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d

JMT m
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ω
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   (31) 
 

Similarly, the equation of motion between the 
coupling and the driven load is related by: 
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Te 

TL 

+ 

- 

mJ
1

ωm

Sum 

Gain 
Integrator 

The Pacific Journal of Science and Technology   – 9 – 
http://www.akamaiuniversity.us/PJST.htm   Volume 5.  Number 1.  April 2003 (Spring) 



 
To do this, the stiffness constant, cw in equation 
(36), which defines the time function of the shaft 
torque, needs to be determined. 

Where, 
 

dt
d mL

mL
θ

ω =
    (33) 

 
 

 
By definition [23], 

 
( )mLmww cM θθ −=    (34) 
 

Taking the first derivative of equation (34), 
equation (35) results, as follows: 
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Substituting equations (25) and (33) into 
equation (35) we have, 
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Figure 6: Block diagram of motor mechanical 
model with coupling. 

  
Therefore, the general equation of the coupled 
system, with damping factor (dw) neglected, can 
be expressed in matrix form as: 

 
Holzweißig and Dresig [23] give the relationship 
between the shaft’s undamped natural 
frequency (ωd) and the shaft stiffness constant 
(cw) as: 
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      (37) 

 
( )
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Lm
w JJ

JJcd

1

12 +
=ω
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where, Jm1 , Mw , JL , cw and ωmL represent the 
moment of inertia of the induction motor, shaft 
torque, moment of inertia of the D.C. motor, 
stiffness constant of the shaft system, and 
mechanical speed of the D.C. motor, 
respectively. The block diagram of equation (37) 
is shown in Figure 6.  
 
 
DETERMINATION OF THE SHAFT SYSTEM 
STIFFNESS CONSTANT  
 
Since it is difficult to experimentally measure the 
electromagnetic torque developed by induction 
machines unlike the shaft torque, it therefore 
becomes necessary to compute the shaft 
torque.  
 

 
From equation (38), equation (39) results in: 
 

( )
( )Lm

Lmd
w JJ

JJc
+

=
1

1
2ω

   (39) 
 

Figure 7 shows the measured shaft system 
oscillation, from which the undamped natural 
frequency of the shaft system is estimated to be 
80Hz(502.65rad/s).  
 
By substituting the experimental values of the 
moment of inertia of the motor (Jm1) and the load 
(JL) together with the shaft undamped natural 
frequency in equation (39), the shaft stiffness 
constant, cw becomes 14320Nm/rad. 
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Figure 7: Measured shaft system oscillation 
waveform. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 8: Measured shaft system oscillation 

waveform. 
 
 

  
 MODEL DEVELOPMENT WITH SATURATION 

EFFECT  
  
 The values of the inductances used in the 

development of the dynamic equations for the 
conventional induction machine model were 
assumed to be constant. By so doing, the 
models fail to take into consideration the 
saturation effects of both the magnetizing 
inductance and the leakage inductances.  In this 
paper, it is assumed that the magnetizing 
inductance, stator, and rotor leakage 
inductances saturate. This implies that the 
magnetizing inductance and the leakage 
inductances vary with the magnetizing current. 
Therefore, the saturation curves of the test 
machine have to be determined.  

 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 9: Graph of stator leakage inductance 
against magnetizing current. 

Figures 8, 9, and 10, show the dependency of 
the magnetizing inductance and leakage 
inductances with the magnetizing current as 
reported by Okoro [13]. In order to find an 
analytical expression for the saturation 
characteristic curves of figures (8-10), a curve-
fitting method for the algorithm of Marquardt [24] 
is employed. In Figure 8, the estimated function 
becomes, 

and in figure 9 and figure 10, we have: 

 78.196.2 23
1 −−−−= mm ieieL σ

              [mH] (41) 0− 38.59.4 +− mie

 
7291.2124.814 4567 −−−+−−−

 
        2.1= mmmmm ieieieieL

 
81.5107.8 23

2 −−−−−= mm ieieL σ

         [mH] (40) +               [mH] (42) 03.849.247.162.6 23 −+−−−+ mmm ieieie 12.56.12 +−− mie 
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Figure 10: Graph of rotor leakage inductance 

against magnetizing current. 

 

The magnetizing current, im is defined as: 

 
22
qtdtm iii +=     (43) 

and 

drdsdt iii +=     (44) 

 

qrqsqt iii +=     (45) 

 
By storing the analytical expressions of 
equations (40-42) in the computer, the values of 
the magnetizing inductance and leakage 
inductances in the conventional machine model 
can be updated at each integration step. 
 
 
INDUCTION MACHINE MODEL COMPUTER 
SIMULATION 
 
In order to simulate the induction motor transient 
model, the differential equation (17), together 
with equations (40-42), equation (23) and 
equation (37), which gives the mechanical 
behaviour of the motor, are solved by 
developing MATLAB [27] m-files which 
incorporate an in-built numerical algorithm, 

ODE45; a program that uses the Runge-Kutta 
numerical method. The simulations have been 
carried out using the motor data obtained from 
the No-load, Blocked-rotor, D.C. measurement 
and Retardation tests of the motor under study 
(See Appendix A).  
 
By assuming that the magnetizing and leakage 
inductances are constant, the conventional 
machine model is simulated and equations (40-
42) are omitted. Figure 11 shows the 
comparison between the conventional model 
transient behaviours and the model with 
saturation effect for the electromagnetic torque, 
shaft torque, and mechanical speed as a 
function of time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Transient-state models comparison: 
{Saturation effect (SE), Without saturation effect 

(WSE)} 
 
 
The comparison of the simulated transient 
behaviours of the test machine stator phase 
currents as a function of time for the 
conventional model and saturation effect model 
are shown in Figures 12 a, b, and c.  
 
The predicted time function of the magnetizing 
current is shown in Figure 13. Figure 14 shows 
the time function of the magnetizing inductance, 
stator, and rotor self-inductances. 
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A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Graph of magnetizing current 
against time.  
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C
 

Figure 14: Graph of Ls, Lm and Lr 
against time. 

 
 
CONCLUSION 
 
This paper demonstrates that it is possible to 
use MATLAB to model and simulate the 
dynamic behaviours of induction machines with 
saturable leakage and magnetizing inductances. 
The simulated transient results show that there 
exists a difference between the conventional 
machine model and the model with saturation. It 
can be seen in Figure 11, that the conventional 
machine model has a higher starting torque than 
the model with saturation effect. Also in Figure 
11, the time function of the mechanical rotor 
speed graph shows that the model with 
saturation effect rises faster to synchronous 

Figures 12 a, b, and c: Simulated stator phase 
currents comparison: {Saturation effect (SE), 

Without saturation effect (WSE)} 



 
[6.] De Mello, F.P. and Walsh, G. W.: Re-

closing Transients in induction motors 
with terminal capacitors. AIEE 
Transactions, PP. 1206-1213, Feb; 1961. 

speed than the conventional model. However, 
little difference was observed for the stator 
phase currents of the two models. The fact that 
the effect is not noticeable may be due to the 
level of saturation considered. These simulation 
results clearly show the errors that are involved 
when the conventional model is used to predict 
the dynamic behaviours of induction machines 
without the inclusion of a saturation effect. 
Therefore, for accurate modelling and simulation 
of induction machines in dynamic states, the 
effect of saturation must be taken into 
consideration. 
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