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This paper develops a model for Demand Response (DR) by utilizing consumer behavior modeling con-
sidering different scenarios and levels of consumer rationality. Consumer behavior modeling has been
done by developing extensive demand-price elasticity matrices for different types of consumers. These
price elasticity matrices (PEMs) are utilized to calculate the level of Demand Response for a given con-
sumer considering a day-ahead real time pricing scenario. DR models are applied to the IEEE 8500-node
test feeder which is a real world large radial distribution network. A comprehensive analysis has been
performed on the effects of demand reduction and redistribution on system voltages and losses. Results
show that considerable DR can boost in system voltage due for further demand curtailment through
demand side management techniques like Volt/Var Control (VVC).

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The evolution of the deregulation trend in power market has led
to the division of integrated power system into individual fields:
generation, transmission and distribution. The deregulation has
created a healthy competition in the distribution market among
distribution companies (Discos). In this process Discos are in need
of innovative Smart Grid strategies to realize cost efficiency. Some
of these as described by Smart Grid requirements [1] are as
follows:

1. Deployment and integration of DR, demand side resources and
energy efficiency resources.

2. Deployment of smart technologies for metering, communica-
tions concerning grid operations/status and distribution
automation.

3. Adoption of Demand Side Management (DSM) techniques like
Volt/Var control, voltage reduction, etc.

Both DR and distribution voltage reduction are crucial DSM
events that have the common objective of peak demand reduction.
Effective peak load shaving is possible by the combined effect of
bus voltage reduction, demand reduction and demand re-distribu-
tion over time. This paper aims at exploring the possible role of DR
ll rights reserved.

olanki).
as a parameter for Volt/Var Control (VVC) for best possible results
of load reduction to achieve energy efficiency and mutual profit for
utility and consumers. Residential DR has an equally good poten-
tial as industrial DR in mitigating congestion in the network during
peak hours. However, establishing DR contracts with residential
consumers requires proper modeling of consumption patterns
which is far more complicated and random as compared to that
of industrial consumers. This could be achieved by load serving
entities (LSEs) or DR aggregators (these entities are also being
named as DR contractors or simply aggregators). LSEs can repre-
sent residential consumers and sign DR contracts with the utility
for volume of DR that can be achieved. For the successful imple-
mentation of such residential DR contracts, LSEs need comprehen-
sive DR models and thus a study of consumer behavioral patterns.
This paper uses elaborate demand-price elasticity matrices (PEMs)
to model consumer behavior.

Many previous works have focused on developing different
kinds of DR models. Ref. [2] provides substantial literature on fun-
damental principles on spot pricing of electricity and economic
analysis of spot pricing. Significant contribution towards consumer
behavior modeling in the form of price elasticity matrices (PEMs)
has been done in [3–5]. Other papers in literature are focused on
the application of DR from a Smart Grid perspective. A generation
scheduling program was developed using elasticity of DR to com-
pute the real time market clearing price of electricity in [6]. Opti-
mal Power Flow for nodal reliability of a system was performed
using DR application in [7]. A wholesale bidding mechanism
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involving ISO, utility and the consumer was proposed in [8] that
uses consumer modeling through PEMs. Load models were devel-
oped in [9] using customer benefit function and PEMs and the
resultant models were used in a real world distribution system
to show results of load reduction. All these papers make standard
assumptions of demand-price elasticity with respect to consumer
behavior modeling. However, these assumptions need vital refine-
ment for a better understanding of electricity consumption pat-
terns. A considerable work has been done on Volt/Var control
[10] that provides basic guidelines required for optimal voltage
control in the low voltage distribution side. Ref. [11] proposes a no-
vel concept of considering DR as a parameter for applying Volt/Var
control on a real time basis to realize the maximum potential of
both these DSM measures. In this work, PEMs have been developed
to accurately model consumer behavior. DR patterns for different
consumer types have been derived from these PEMs and integrated
into distribution power flow to study the resulting system voltages
and losses. Further, a path has been laid to coordinate DR with
Volt/Var control that would yield better results of demand curtail-
ment, especially during peak hours.

This paper is organized into seven sections. Section 2 briefly de-
scribes DR and its types. Section 3 gives an insight on PEMs and de-
scribes the modeling of DR using PEMs. In Section 4 PEM
prototypes have been developed assuming different rationality lev-
els of consumers. Section 5 briefly describes the test distribution
system and various test scenarios built. Section 6 discusses the
voltage and loss analyses performed on the test system. Section 7
draws conclusions and provides the scope for future work.
2. Demand Response and types

US Department of Energy (DOE) defines Demand Response as:
changes in electric usage by end-use customers from their normal
consumption patterns in response to changes in the price of elec-
tricity over time, or to incentive payments designed to induce low-
er electricity use at times of high wholesale market prices or when
system reliability is jeopardized. DR is divided into two basic cate-
gories and several subgroups.

2.1. Incentive-based programs

1. Direct Load Control (DLC)
2. Interruptible/Curtailable service (I/C)
3. Demand Bidding/Buy Back
4. Emergency Demand Response Program (EDRP)
5. Capacity Market Program (CAP)
6. Ancillary Service Markets (A/S)

2.2. Time-based programs

1. Time-of-Use (TOU) program
2. Real Time Pricing (RTP) program
3. Critical Peak Pricing (CPP) Program

The incentive based DR programs are usually more suited for
industrial consumers. Incentive based DR contracts normally exist
between the distribution utility and a set of large consumers and
most of these schemes involve curtailing the load by consumers
for a specified period of time and by a specified level of energy
to reduce congestion in the network. However, time based DRs
are more suited for residential consumers. In these schemes the
day is usually divided into a number of blocks that have different
prices of electricity that reflect the true market price for generation
of electricity. In case of real time pricing, the day would be usually
divided into a number of time slots, for example 24- one hour slots
and each slot has a different price for electricity that reflects the
real market clearing price. RTP scheme engages maximum cus-
tomer participation. Communicating real time prices to consumers
and expecting them to respond would be cumbersome for both
consumers and utility. So recently, utilities have laid down the
day-ahead real time pricing scheme wherein the next day’s pre-
dicted real time prices would be sent to the customers before hand
and they would be billed for their consumption based on this day-
ahead price. Time of use pricing is more or less similar to real time
pricing, but with a fewer number of time slots to cut down the
complexity involved with real time pricing. Critical peak pricing
has fixed rate tariff for most part of the day, however it imposes
huge pricing for consumption of electricity during a few pre spec-
ified hours of the day. For DR to be implemented through a variable
tariff scheme (such as real time pricing or time of use pricing) Ad-
vanced Metering Infrastructure (AMI) needs to be enabled at the
customer side. In this work, day-ahead real time pricing scheme
has been considered for developing the DR model.

3. Modeling of Demand Response – price elasticity matrix

By far, PEM has been the most powerful and feasible way of
modeling consumer behavior for DR. Considerable literature is al-
ready available on the economic principles of DR and basics of
PEM. As a prologue to the next section, some aspects of PEM have
been described here. Considering electricity as any other commod-
ity, electricity demand does change with price. The demand price
elasticity can be defined by the following equation:

E ¼ Dd=d0

Dp=p0
ð1Þ

where Dd and Dp are the changes in demand and price respectively
and d0 and p0 are the base demand and price respectively.

The whole concept of PEM revolves around the above equation.
Elasticity is composed of two different coefficients namely self
elasticity (or own-price elasticity) and cross elasticity. Self elastic-
ity (Eq. (2)) is defined as the change in demand at a time instant ‘ti’
due to change in price at the same time instant ‘ti’. Since change in
price will have an inverse effect on change in demand, self elastic-
ity takes a negative value. Also there is a cross-time effect involved
in the time varying demand-price elasticity. Cross elasticity (Eq.
(3)) is defined as the change in demand at time instant ‘ti’ due to
change in price at some other time instant ‘tj’. Cross elasticity will
be either positive or zero depending on whether the customer is
willing to shift the load or not.

Eði; iÞ ¼ DdðtiÞ=d0

DpðtiÞ=p0
ð2Þ

Eði; jÞ ¼ DdðtiÞ=d0

DpðtjÞ=p0
ð3Þ

Self elasticity is a measure of load curtailment by the consumer
where as cross elasticity is a measure of load shifting. Both these
constituents put together make the concept of DR.

For a RTP scenario that has hourly varying rates, PEM will be of
the order 24 � 24. The diagonal elements of the PEM represent self
elasticity coefficients and the off-diagonal elements represent
cross elasticity coefficients. Each column of a PEM represents the
scheduling of loads throughout the day, owing to the change in
price at the time instant corresponding to the column number.
The overall change in load at time ‘ti’ due to change in price
throughout the day can be obtained by summing up the entire
row corresponding to ‘ti’ as shown in the following equation:

DdðtiÞ ¼
X24

j¼1
Eði; jÞ � Dpj=p0

� �
� d0 ð4Þ



Table 1
Hourly day Ahead RTP with self elasticity coefficients.

Hour of day Price (¢/KWh) Self elasticity

1 2 �.01
2 2 �.01
3 2 �.01
4 2 �.01
5 2 �.01
6 2 �.01
7 3 �.01
8 4 �.02
9 6 �.02

10 8 �.02
11 10 �.03
12 10 �.03
13 11 �.04
14 12 �.16
15 13 �.20
16 14 �.25
17 15 �.45
18 12 �.16
19 12 �.16
20 10 �.20
21 13 �.22
22 9 �.10
23 7 �.05
24 5 �.05
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The optimum model of PEM is the key to determine the level of
DR and load reduction or redistribution per customer. With the
availability of AMI and other Distribution Automation (DA) fea-
tures, the real time distribution operation model with DR data
could be utilized for identifying the exact set points for Volt/Var
control.

Earlier works involving PEMs have assumed constant values of
self and cross elasticity coefficients which may not be applied in
a real world scenario. With a constant self elasticity coefficient,
for example, the relative effect on consumption is the same for
an increase in price per kWh from $0.01 to $0.02 as an increase
in price from $0.05 to $0.10 which is not the case with any rational
consumer. Exploratory regression analysis was performed in [12]
on year long consumer load profiles with a pilot RTP program to
derive the price dependence of self elasticity coefficients. The self
elasticity estimates for a typical 24 h RTP curve on a summer peak
day have been listed in Table1. Constant low values of self elastic-
ity coefficients are assumed for extremely low price levels since,
the self elasticity values as derived from the regression analysis
were either positive or zero (effectively insignificant figures) dur-
ing these low priced period. Beyond the threshold of 3 cen-
ts per kWh, self elasticity increases with increasing price signal.
These self elasticity coefficients have been used along with varying
cross elasticity coefficients that have been extrapolated from ear-
lier works ([3], [6]) depending on the assumed consumer rational-
ities explained in Section 4.
4. Consumer rationality assumptions

Consumer rationality assumptions indicating real world scenar-
ios have been utilized. Consumers were grouped into five different
categories such that any real world consumer should fall into one
of these categories.

4.1. Long Range (LR) or optimizing consumers

This category comprises optimizing consumers who can shift
their consumption over a wide range of time following changes
in prices. So, their PEMs will have more non-zero entries corre-
sponding to self and cross elasticity coefficients. A part of the
24 � 24 matrix for LR consumer is shown in Fig. 1. It should be note
that self elasticity coefficients are not constant. The same values of
self elasticity coefficient will be used for other categories as well.
Some observations to be made are as follows:

� With respect to the prices in Table 1, all elements below diago-
nal are zero because no consumer would shift his load from a
low price period to a high price period.
� Some weight in the value of cross elasticity is given for shift

within short range of time. A fading effect has been incorpo-
rated to take short range shift rationale of the consumer. For
instance cross elasticity for load shift from t13 to t6 (0.04) is
higher than the cross elasticity for load shift from t13 to t1

(0.02) despite the fact that price at t6 is the same as price at t1.

4.2. Real World (RW)-postponing consumer

This category comprises consumers whose perception depends
on current and future prices only. This paper assumes a perception
of 5 h into the future. A part of 24 � 24 matrix for RW-postponing
consumer is shown in Fig. 2. The cross elasticity values are higher
as compared to corresponding values in LR’s PEM. This is due to the
fact that unlike LR consumers who optimize their load throughout
the day, RW-postponing consumers only shift their load over a
short range of 5 h into the future.

4.3. Real world-advancing consumers

These consumers have PEMs similar to postponing consumers
except that there will be non-zero elements on and above the diag-
onal implying consumer perception into current and past time
periods alone. A perception of 5 h into the past is assumed. On a
24 � 24 PEM, it can be seen that load is shifted around the high
price period of t10–t21 about the diagonal.

4.4. Real world-mixed consumers

These consumers are a mix of postponing and advancing con-
sumers. Their perception goes 5 h into the past and future which
means they will have non-zero elements both above and below
the diagonal. These consumers differ from LR consumers in the fact
that their flexibility ranges over a period of 5 h only whereas, LR
consumers are flexible throughout the 24 h period. A part of
24 � 24 matrix for RW-mixed consumer is shown in Fig. 3.

4.5. Short Range (SR) consumers

These consumers do not optimize their load and are only con-
cerned about the price at the current time instant. This PEM will
only have diagonal elements implying that there is only the self
elasticity component that has varying coefficients.

5. Test system

The IEEE 8500 node test feeder [13] as shown in Fig. 4 repre-
sents a large radial distribution feeder and provides an excellent
platform for various load shape studies and Volt/Var simulation.
The test feeder consists of residential loads, each connected to a
120 V/240 V split-phase transformer. This kind of residential load-
ing is convenient to show the impact of residential DR models on
the feeder. A section of the circuit as highlighted in Fig. 4 has been
chosen for analyzing the impacts of various DR models on the sys-
tem. This highlighted section consists of 245 individual residential
loads and contributes around 18% (around 2 MW) of the total sys-
tem load (around 11 MW). Distribution simulation tool, OpenDSS



Note: The demand price ratios above indicate how to traverse the rows and columns of a PEM. Elasticity values corresponding to Rows 1, 6 and 
8 through 16 for columns 8 through 16 are shown for LR consumer. 

Row1 0 .01 .02 .02 .02 .02 .02 .02 .02 

Row 6 .015 .035 .04 .04 .04 .04 .04 .04 .043 

 Column 8 9 10 11 12 13 14 15 16 

8 -.02 .015 .025 .027 .027 .029 .029 .032 .035 

9 0 -.02 .017 .025 .025 .027 .028 .03 .033 

10 0 0 -.02 .017 .017 .018 .019 .02 .023 

11 0 0 0 -.03 0 .015 .016 .017 .018 

12 0 0 0 0 -.03 .015 .016 .017 .018 

13 0 0 0 0 0 -.04 .015 .016 .017 

14 0 0 0 0 0 0 -.16 .015 .016 

15 0 0 0 0 0 0 0 -.2 .015 

16 0 0 0 0 0 0 0 0 -.25 

Fig. 1. A section of LR-consumer’s PEM.

13 14 15 16 17 18 19 20 21 

13 -.04 0 0 0 0 0 0 0 0 

14 0 -.16 0 0 0 0 0 0 0 

15 0 0 -.02 0 0 .0 0 0 0 

16 0 0 0 -.25 0 0 0 0 0 

17 0 0 0 0 -.45 0 0 0 0 

18 0 0 0.02 0 0.025 -.16 0 0 0 

19 0 0 0.02 0 0.025 0 -.16 0 0 

20 0 0 0.025 0.02 0.03 0.02 0 -.2 0 

21 0 0 0 0 0.02 0 0.019 0 -.22 

Fig. 2. A section of RW-postponing consumer’s PEM.

15 16 17 18 19 20 

15 -.2 .018 .02 0 0 0 

16 0 -.25 .019 0 0 0 

17 0 0 -.45 0 0 0 

18 .02 0 .025 -.16 0 .02 

19 .02 0 .025 0 -.16 0 

20 .025 .02 .03 .02 0 -.2 

Fig. 3. A Section of RW-mixed consumer’s PEM.
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[14] has been used to perform voltage and loss analysis of the test
system. OpenDSS is an open source tool for simulating utility dis-
tribution systems and performs various analyses namely power
flow, harmonic and dynamics in frequency domain. OpenDSS can
run annual load simulations along with daily/yearly power flow
solution modes. The simulator can also be interfaced and driven
from tools like Matlab through its COM interface. In addition,
OpenDSS has developed test cases for all IEEE benchmark test feed-
ers. These features of OpenDSS have been used in this work for
studying the effects of DR on IEEE 8500 node test feeder. Time ser-
ies distribution power flow is run for five different scenarios as
follows.

� Scenario 1- No Demand Response: This is the base case distribu-
tion power flow with an assumed 24 h residential load shape
applied to every individual base load in the section of interest.
� Scenario 2- LR consumers: In this case, all the loads of the high-

lighted section are modeled as LR consumers by assigning a DR
pattern derived from the PEM of LR consumer.
� Scenario 3- SR Consumers: In this case, all the loads are

assigned a DR pattern derived from the PEM of SR consumer.
� Scenario 4- RW Consumers: In this case, all the loads are

assigned a DR pattern derived from the PEM of RW-mixed
consumer.



Fig. 4. IEEE 8500 node test feeder showing section with DR loads.

88 N. Venkatesan et al. / Applied Energy 96 (2012) 84–91
� Scenario 5- Mix of LR, SR and RW consumers: In this case, each
consumer type (LR, SR and RW-mixed) constitutes one third of
the total section load.

6. Results

6.1. Voltage analysis of DR integrated test system

Demand Response when applied to a distribution network re-
sults in a load change which in turn changes the power flows
through the distribution transformers and the upstream areas of
the distribution feeder [15]. In case of load reduction due to DR
voltage drops across the distribution feeders reduce, causing a
boost in the voltage at the far end of the feeder. This effect is even
more pronounced when DR is applied at the remote nodes of
the feeder. However, there is a need to explore this DR-voltage
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Fig. 5. Voltage profile at node SX3047289A-phase 1 during peak pricing hours.
relationship on a uniform basis throughout the day with optimum
Volt/Var adjustments. Extensive deployment of AMI and availabil-
ity of huge volumes of historical data and real time distribution
operation models will provide for better understanding on DR-
voltage relationship in the long run. In order to show the effects
of DR explicitly on the system voltages, the control settings of load
tap changers, regulators and capacitor banks have not been ad-
justed during the power flow which is taken care of by OpenDSS.

The voltage analysis of the system with DR integrated into the
highlighted section yields many interesting results. As expected,
all the monitored secondary nodes of the section showed improved
voltage profile for scenarios 2, 3, 4 and 5 during high price periods.
It was observed that DR during peak hours boosts the node volt-
ages which would otherwise sag. Figs. 5 and 6 show voltage com-
parisons at one of the load end nodes of the feeder for the various
test scenarios. As seen from Fig. 5, the node voltage during peak
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Fig. 6. Voltage profile at node SX3047289A-phase 1 during off peak hours.
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Fig. 7. Voltage profile at node SX3029498C-phase 1 during peak pricing hours.
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Fig. 8. Voltage profile at node SX3029498C-phase 1 during off peak hours.
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pricing hours drops below 0.95 p.u. for the base case without any
Demand Response. However, with DR loads in the system, a
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Fig. 9. Loss analysis of section
considerable boost in voltage above 0.95 p.u. was observed for all
the other scenarios.

A closer look at Fig. 6 shows the redistribution trend with LR
consumer during off peak hours. As seen from the Figure, most of
LR consumer’s load is shifted to these early hours of the day due
to which voltage for LR load dips as compared to any other con-
sumer type. Since a RW consumer shifts load over a range of 5 h,
there is some voltage dip from hours 6–12 after which peak pricing
starts. Voltages of SR consumer are constant for these hours and for
scenario 5 (mix of all consumer patterns), voltages lie between
voltage profiles of SR and LR consumers. Fig. 7 examines the volt-
age profile at another secondary node for all the consumer types.
Sharp rise in the voltages is observed during peak hours as a result
of vigorous DR measures by all the consumer types. At instants
when voltages of No DR case are over 0.98 p.u., an additional boost
of 0.1–0.25 p.u. is seen with DR enabled loads. This rise in the sec-
ondary node voltages can provide the required room for Volt/Var
control program to further curtail the system demand during peak
hours. Fig. 8 shows voltage analysis for the same node during off
peak hours.
6.2. Loss analysis of DR integrated test system

The real power losses for the section of interest were analyzed
as a percentage of the total feeder loss over the period of 24 h for
different consumer type scenarios. For the base case snapshot
power flow without any load shape assigned to the system loads,
the total feeder loss recorded was 1.2 MW and the loss recorded
for the analyzed section was around 160 KW. For scenarios with
responsive loads, tremendous reduction in losses was observed
for the peak pricing periods as shown in the surface plot of
Fig. 9. The Y-axis represents customer types. For the No DR case,
losses are at maximum during peak hours. However, for other cus-
tomer types, the percentage losses are considerably less. At hour
17, the percentage losses for LR, SR and RW consumers dip to as
low as 4% as against 15% for the case without Demand Response.
Lowest percentage losses occur for SR consumer as they respond
to high prices during peak hours by immediately shedding their
load. However, an LR or RW consumer sheds load partially and
redistributes it to lower priced periods.

A similar loss analysis of the system during early hours shows
that the case with No DR has minimum loss percentage as indi-
cated by Fig. 10. Following this, SR, RW and Mix consumers have
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Fig. 10. Loss analysis of section during off peak hours.

Table 2
Twenty four hour losses for the feeder and the analyzed section for different
scenarios.

Scenarios No. DR LR SR RW Mix-
LR.SR,RW

24 h System losses
(kWh)

29192.2 30156.1 27931.7 28662.2 28826.9

24 h Section losses
(kWh)

3074.3 3526.9 2504.1 2827.9 2869.9
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a slightly higher loss percentage due to increased consumption due
to lower prices. LR consumer records the maximum percentage
losses during early hours of the day. LR consumers, owing to their
optimizing nature, shift loads throughout the day and also con-
sume maximum possible energy during low priced periods thus
consuming more energy than other type of consumers resulting
in more losses than any other consumer type. Fig. 11 shows the
sectional losses in kWh for various scenarios over an extended per-
iod of time that includes both peak and off peak pricing hours. It
can be observed that the sectional losses for the No DR case grad-
ually decrease as we move from peak loading (or pricing) hours to
valley periods. A reverse effect is observed with DR implemented
since consumption shifts to these valley periods. This increase in
losses is an indication of more energy being consumed in the off
peak hours giving way for valley filling.

Table 2 summarizes the loss analysis results obtained for the
entire system and the section of interest.

It can be seen from Table 2 that the overall 24 h section and sys-
tem losses are considerably decreased with all DR scenarios except
for the case with LR consumers. Excessive losses noted with LR
consumers are again attributed to their optimizing nature due to
which they maximize their energy consumption. However, such
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Fig. 11. kWh losses for the section for various DR scenarios.
a case of increased number of optimizing consumers would shift
the system peak to an early low priced hour of the day leading to
unexpected congestion. This reasoning throws up the importance
of exploring various clustering techniques to aggregate residential
consumers based on their behavior. A right mix of LR, RW and SR
consumers in the system can help avoid unnecessary peaks in
the system demand curve.

7. Conclusions

This paper has developed a model for residential Demand Re-
sponse by developing price elasticity matrices for different types
of consumers. Comprehensive price elasticity matrices have been
developed for each consumer type based on their rationality
assumptions. Further, the impact of Demand Response on system
voltage and losses has been evaluated on a large IEEE test feeder.
Results indicate that DR impacts the distribution network in 3 po-
sitive ways:

1. Voltage profile improvement
2. Loss minimization
3. Valley filling

Voltage analysis results indicate that DR has a great potential to
boost the distribution system voltage at most of the critical nodes.
Until recently, DR was only viewed as a means of curtailing de-
mand side load during peak hours. However, with advancement
in smart grid technologies and advanced metering infrastructure,
there is an excellent scope for integrating DR with demand side
Volt/Var control. This coordination can yield huge profits to utili-
ties and consumers if applied appropriately during peak hours.

Maximum benefits of peak demand curtailment can be
achieved through integration of DR with Volt/Var control
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algorithm. Future work will be directed towards implementing a
Volt/Var control algorithm that utilizes DR model and distribution
operation model in real time to demonstrate their combined effect
on peak load shaving.
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