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Abstract In this paper voice activity detection (VAD) is
formulated as a two-class classification problem using sup-
port vector machines (SVM). The proposed method com-
bines a noise robust speech processing feature extraction
process together with SVM models trained in different back-
ground noises for speech/non-speech classification. A multi-
class SVM is also used to classify background noises in
order to select SVM model for VAD. The proposed VAD
is tested with TIMIT data artificially distorted by different
additive noise types and is compared with state-of-the-art
VADs. Experimental results show that the proposed VAD
can extract speech activity under poor SNR conditions, and
it is also insensitive to variable levels of noise.

Keywords Voice activity detection · Perceptual wavelet
packet transform · Noise classification · Support vector
machine

1 Introduction

Voice activity detection (VAD) is a process, which can detect
speech and non-speech segments from a speech signal. A
typical conversational speech is characterized by a speech-
to-non-speech ratio of forty to sixty [1]. Hence, the use of
VAD could improve the channel capacity as well as the
power consumption of voice communication systems. VAD
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can also help in many speech-related applications such as
speech coding [2], automatic speech recognition [3], and
speech enhancement systems [4].

The basic procedure of most VADs in use today consists
of a feature extraction step followed by a decision part. The
feature extraction step extracts acoustic parameters from the
input speech signal for discrimination of speech and non-
speech segments. The conventional acoustic parameters are
the short-time energy levels, zero-crossing rates, pitch period,
and spectral difference. Then, the decision part makes use of
these acoustic parameters with some decision rules to deter-
mine the VAD result. The decision rules could be simple
threshold values or complex statistical models. It is possible
to use a trained classifier such as support vector machines
(SVM) for the decision rule part. This paper shows an effec-
tive method employing SVM for VAD in noisy environments.

Regardless of the decision rules, using appropriate fea-
tures is very important in the performance of VAD. Since
speech signals are non-stationary and contain many tran-
sient components, it is not appropriate to use a fixed time–
frequency resolution method for feature extraction in VAD,
especially in noisy environments. Wavelet transform is based
on time–frequency signal analysis. The wavelet analysis
adopts a windowing technique with variable-sized regions.
It allows the use of long time intervals, when we want more
precise low-frequency (LF) information, and shorter regions,
where we want high-frequency (HF) information. Here, per-
ceptual wavelet packet transform (PWPT) is used as a tool
for feature extraction. PWPT is utilized to adjust the decom-
position tree structure of the conventional wavelet packet
transform (WPT) in order to approximate the critical bands
of the psychoacoustic model as close as possible. The pri-
mary reason for embedding the psychoacoustic model in the
PWPT is that humans are capable of detecting the desired
speech in a noisy environment without prior knowledge of
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the noise [5]. Therefore, the human’s auditorium system is
capable of distinguishing between different acoustical noises.

In noisy environments, the performance of VADs is
severely affected. Commonly, there are two main methodolo-
gies to deal with noise in VADs. In the first approach, a speech
enhancement method is usually used for noise reducing [6],
and in the second one, noise robust features are extracted
from noisy speech for VADs [7]. There are many different
acoustical noises in the environment (such as babble, street,
car, etc.), which result in performance degradation of VADs.
Usually, the effect of different noises is not considered in
VADs. By modifying the processing according to the type of
background noise, the performance of VAD can be enhanced.
This requires noise classification, which has been used in
many applications, such as robust speech recognition [8],
and speech enhancement [9].

The remainder of this paper is organized as follows.
The PWPT is briefly reviewed in Sect. 2. Section 3 gives
the description of the noise classification algorithm and the
SVM-based VAD directed by noise classification. Section 4
illustrates experimental results and compares to other meth-
ods. Finally, conclusions are given in Sect. 5.

2 Perceptual wavelet packet transform

The mathematical work of the WPT was first proposed
by Coifman [10]. WPT is a wavelet transform where the
discrete-time (sampled) signal is passed through more filters
than the DWT, and therefore, there are more HF sub-bands
to appropriately represent the signal.

The PWPT method is developed to adjust the decom-
position tree structure of the conventional WPT in order

to approximate the critical bands of the psychoacoustic
model. In the psychoacoustic model, frequency components
of sounds can be integrated into critical bands that refer to
bandwidths at which subjective response becomes signifi-
cantly different [11]. Critical bands are important in under-
standing many auditory phenomena, such as perception of
loudness, pitch, and timbre. One class of critical band scales
is called Bark scale. Based on the measurements by Zwicker
et al. [12], the Bark scale z can be approximately expressed
in terms of the linear frequency by:

z ( f ) = 13 arctan
(

7.6 × 10−4 f
)

+3.5 arctan
(

1.33 × 10−4 f
)2

[Bark] (1)

where f is the linear frequency in Hertz. The corresponding
critical bandwidth (CBW) of the center frequencies can be
expressed by

CBW ( fc) = 25 + 75
(

1 + 1.4 × 10−6 f 2
c

)0.69
[Hz] (2)

where fc is the center frequency. Theoretically, the range of
human’s auditorium frequency spreads from 20 to 20,000 Hz
and covers approximately 25 Barks.

Since the Bark scale is a function of linear frequency, the
first step of constructing the PWPT is to set the sampling
rate of speech signals in order to determine the valid Bark
numbers. In this paper, the underlying sampling rate was cho-
sen to be 8 kHz, yielding a bandwidth of 4 kHz. Within this
bandwidth, there are approximately 17 critical bands [11].
The tree structure of the PWPT can be constructed as shown
in Fig. 1a. The corresponding frequency bandwidths of the
PWPT tree are shown in Fig. 1b. It contains 16 decompo-

Fig. 1 a The tree structure of
the PWPT and b the frequency
bandwidths for the PWPT tree,
where w j defines the wavelet
coefficient of the j th sub-band
of PWPT, where j = 1–17. (The
sampling rate is chosen to be
8 kHz, yielding a bandwidth of
4 kHz. Within this bandwidth,
there are approximately 17
critical bands.)
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sition cells with five decomposition stages to approximate
these 17 critical bands.

3 Proposed method

As described in Sect. 1, the proposed robust VAD uses a
classification-based technique, in which classification mod-
els are trained using noisy speech signals in specific envi-
ronments. Given a speech signal, a set of features for noise
classification is extracted from a short period of silence at
the beginning of signal. Features extracted from the silence
portion are then used to identify the type of environment.
Once knowing the environment type, the recognizer selects
a corresponding model for classifying the rest of signal as
speech or non-speech.

First, the environment or noise classification module is
constructed using PWPT and SVM. The computational over-
head of the noise classification module should be kept as low
as possible, so that the overall system can achieve an accept-
able processing time. Then, a particular SVM is trained on
noisy speech signals with various levels of SNR. Figure 2
shows block diagram of the proposed method, which con-
sists of a number of essential stages:

1. A small frame of 1,024 samples at the beginning of the
speech signal, which was expected to be silence, is used
for noise classification.

2. Multi-class SVM classifier is used to identify the type of
noise.

3. The input signal x(n) sampled at 8 kHz is decomposed
into 32-ms overlapped frames with a 15-ms window shift.
Then, four types of features are extracted from each frame
for the classification task.

4. The appropriate SVM model based on noise classification
result is selected for classifying noisy speech frame as
speech or non-speech.

In the following subsections, we have provided more detailed
explications of the VAD process.

3.1 Noise classification

The goal of noise classification is to identify the type of
speech environment. Here, a simple model based on multi-
class SVM classifier is used to identify the type of noise.

3.1.1 Feature extraction

The choice of signal features is usually based on a priori
knowledge of the nature of the signals to be classified. A
variety of signal features have been used for this purpose,
including low-level parameters such as the zero-crossing rate,
signal bandwidth, spectral centroid, signal energy, and mel-
frequency cepstral coefficients.

As discussed in Sect. 1, PWPT is selected as a tool for fea-
ture extraction. For better discrimination between different
noises in the PWPT domain, three features including mean,
standard deviation, and entropy are extracted from each sub-
band as:

M j = 1

N j

N j∑
k=1

∣∣w j (k)
∣∣ (3)

Std j =

√√√√√ 1

N j

N j∑
k=1

(∣∣w j (k)
∣∣ − ∣∣w j

∣∣)2 (4)

En j = −
L∑

l=0

h j (l) × Log2
(
h j (l)

)
(5)

where w j (k) defines the kth coefficient of the j th sub-band
of PWPT, where j = 1–17, N j is the number of coefficients
in j th sub-band, and k = 1, 2, . . . , N j . h j is normalized
histogram of absolute values of wavelet coefficients at w j

sub-band, and L is the number of corresponding histogram
levels.

At the end of feature extraction step, a stack of 51-
dimensional feature vector is obtained. Now, PCA is used in
order to extract the most significant features. PCA has been
widely used for feature extraction in pattern recognition. The
main concept of PCA is to project the original feature vector
onto principal component axes. These axes are orthogonal

Fig. 2 Block diagram of the
proposed VAD method

123



SIViP

and correspond to the directions of greatest variance in the
original feature space. Therefore, projecting input vectors
onto this principal subspace allows reducing the redundancy
in the original feature space as well as the dimension of input
vectors.

3.1.2 Noise classification results

Five types of noise from NOISEX-92 [13] including factory,
white, pink, babble, and car were preprocessed by reduc-
ing the sampling rate to 8 kHz. A total of 34,590 frames
(17.75 min), equally distributed between the 5 classes, have
been used for the classification. Figure 3 shows the projected
feature vector (weight vectors) obtained from 34,590 feature
vectors derived from all five types of environment (factory,
white, pink, babble, and car) onto a three-dimensional space
using PCA. The type of noise is easily identified, as shown
in Fig. 3.

Noise classification problem is a multi-class classification.
Therefore, we have used the “one-against-one” approach in
which k(k − 1)/2 classifiers are constructed and each one
uses the training data from two different classes. The first
use of this strategy on SVM was in [14]. In classification,
we have used a voting strategy: Each binary classification
is considered to be a voting where votes can be cast for all
data points x . In the end, each point is designated to a class
with maximum number of votes. The SVM model has been
trained using LIBSVM software tool [15].

The performance of SVM can be controlled through the
term C , which is the penalty parameter that controls the trade-
off between the complexity of the decision function and the
number of misclassified training examples, and the kernel
parameters called hyper-parameters. These parameters influ-
ence the number of the support vectors and the maximization
margin of the SVM. As mentioned, the performance of SVM-
based classifier can be controlled through hyper-parameters

Fig. 3 Distributions of PCA-reduced features computed from five dif-
ferent noises

of the SVM. Here, genetic algorithm (GA) implemented in
Matlab optimization toolbox is used to find optimal parame-
ters. Two parameters are considered to be optimized using
GA as follows: C is the penalty parameter, and σ is the kernel
parameter.

The whole dataset is divided into three parts: training set
(30 %), evaluation set (30 %), and test set (40 %). The train
and evaluation sets are used for finding optimal parameters
by GA, and the fitness function is the classification error
rate, which should be minimized. In addition, the population
size is set to 15, and generation size is set to 10 for genetic
optimization as a good compromise between accuracy and
complexity.

The number of principal components of feature vector is
another parameter, which should be selected for the classi-
fication. For this purpose, the minimum error rate using GA
is obtained for different numbers of principal components in
the classification algorithm. Figure 4 shows the classification
error rate versus the number of principal components used
for the classification. The classification error rate is almost
fixed after 20 principal components; therefore, we have cho-
sen 20 principal components for the classification task. In
addition, the optimal parameters of SVM using GA are as
follows: C = 1.93 and σ = 0.53.

After obtaining optimal parameters, SVM is retrained
using train and evaluation sets (60 % of whole dataset), and
then the trained SVM is tested using optimal parameters with
test set (40 % of whole dataset), and the classification error
rate is 1.62 %. A detailed presentation of the classification
results for each class is given in the form of a classification
matrix. Table 1 shows that the classification accuracies rang-
ing from 96.46 to 100 % were obtained for different classes.
Volvo and white noises are completely classified, and bab-

Fig. 4 The classification error rate versus the number of principal com-
ponents used for noise classification
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Table 1 The classification
matrix Noise type Babble Factory Pink Volvo White

Babble 97.94 1.86 0 0 0

Factory 2.05 97.43 3.53 0 0

Pink 0 0.70 96.46 0 0

Volvo 0 0 0 100 0

White 0 0 0 0 100

ble, factory, and pink noises are misclassified with error rates
ranging from 1 to 4 %.

It is also interesting to show level-by-level results showing
the improvements caused by different feature groups in the
noise classification algorithm. Figure 5 shows the classifica-
tion accuracy results versus different feature groups includ-
ing PCA feature vector used in the classification task. From
the result, it is evident that each feature has important effect
in the noise classification algorithm using SVM.

3.2 VAD directed by noise classification

After identifying the noise type using noise classification
algorithm, a robust model based on noise type is constructed
for a variety of signal-to-noise ratios (SNRs).

3.2.1 Feature extraction

The feature extraction step is used to increase discrimination
between noise (non-speech) and speech for the classification
task. The algorithm for feature extraction is stated as fol-
lows. The input signal x(n) sampled at 8 kHz is decomposed
into 32-ms overlapped frames with a 15-ms window shift.
Then, four types of features are extracted from each frame
for the classification task: (1) sum of autocorrelation (SAC)
sequence, (2) entropy, (3) sum of local maxima (SLM) of
power spectral density (PSD), and (4) mean of PWPT sub-
bands.

3.2.1.1 Sum of autocorrelation sequence The periodic prop-
erty is an inherent characteristic of speech signals and is
commonly used to characterize speech. The periodic prop-
erties of speech signals are exploited to accurately extract
speech activity. In fact, voiced or vowel speech sounds have
a stronger periodic property than unvoiced sounds and noise
signals. Consequently, the well-known autocorrelation func-
tion (ACF) is defined in the time domain to evaluate the peri-
odic intensity of each frame. The biased estimate of the ACF
is shown as:

R (k) = 1

N

N−k−1∑
n=0

x(n)x(n + k), k = 0, 1, . . . , N − 1 (6)

The SAC sequence is used as the first feature:

SAC =
N−1∑
k=0

R (k) (7)

Figure 6c illustrates the first feature in different frames of
speech signal when input speech is contaminated by white
noise. From this figure, it is observed that the SAC of speech
segments has more obvious peaks than that of non-speech
and white noise.

3.2.1.2 Entropy Entropy is a statistical measure of random-
ness and measures information content in a signal. Because
of periodic property of speech signal and random nature of
noise, the entropy metric can effectively discriminate them.

Fig. 5 The classification
accuracy results versus different
feature groups including PCA
feature vector used in the noise
classification algorithm
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Fig. 6 a Clean speech signal, b
noisy signal distorted by white
noise (5 dB SNR), and different
features extracted from noisy
speech signal in consecutive
frames including c sum of
autocorrelation sequence (SAC),
d entropy, and e sum of local
maxima of power spectral
density (SLM)

Therefore, we can use this measure to discriminate noise and
speech in each frame (see Fig. 6d). The entropy index is
defined as:

H = −
K∑

k=0

h (k) × Log2 (h (k)) (8)

where h is the normalized histogram of the absolute value
of the speech signal x(n) in a frame with length N , n =
0, 1, . . . , N − 1, and K is the number of corresponding his-
togram levels.

3.2.1.3 Sum of local maxima of power spectral density The
PSD of a stationary random process is mathematically related
to the correlation sequence by the discrete-time Fourier trans-
form. In general, the more correlated or predictable a signal,

the more concentrated its power spectrum, and conversely,
the more random or unpredictable a signal, the more spread
its power spectrum. Therefore, the power spectrum of a signal
can be used to deduce the existence of repetitive structures
or correlated patterns in the signal process.

Welch’s method is used for PSD estimation, which is a
nonparametric algorithm [16]. Welch’s method is attained
by averaging modified periodograms from overlapped and
windowed segments. After obtaining PSD for each frame,
SLM of it is used as the third feature for the classification
task. Figure 7 clearly illustrates that local maxima of PSD
can effectively discriminate noise and speech signals (it is
also observable from Fig. 6e).

3.2.1.4 Mean of PWPT sub-bands Using PWPT, the input
speech signal can be decomposed into 17 sub-bands, which
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Fig. 7 Local maxima of power spectral density using Welch’s method of two sample frames of a noise and b speech signals

are corresponding to wavelet coefficient sets. The white noise
exists in all frequency sub-bands; however, this is not true for
other noises. Therefore, for better discrimination between
noise and speech, mean of noisy speech in each PWPT sub-
band expressed in (3) is used as fourth feature.

In addition to the four features mentioned above, delta
of each feature is used to exploit the correlation between
neighboring frames in speech signal. The delta function for
each feature is defined as follows:

�F = 2F (n) − (F (n − 1) + F (n + 1)) (9)

where n is the frame number.
At the end of feature extraction step, we have a stack of

40-dimensional feature vector (FV) for each frame to classify
it as speech or non-speech:

FV = [SAC, H, SLM, M,�SAC,�H,�SLM,�M]
where each of the M and �M consists of 17 features corre-
sponding to the 17 sub-bands of PWPT.

As a final stage, we also applied PCA to these features
in order to extract the most significant ones to be used. The
effect of different feature groups consisting of PCA feature
vector in the proposed VAD algorithm is separately evaluated
in terms of classification accuracy, and it will be discussed
in the next subsection.

3.2.2 Construction of SVM model based on noise type

Having the feature vector, SVM is used for the classification
problem. Using SVM, a robust model based on noise type
is constructed for a variety of SNRs. In other words, a par-

ticular SVM model is trained on noisy speech with various
levels of SNR. Clean speech, whose SNR exceeds 30 dB,
is also combined in the training set of each noisy acoustic
model.

In order to construct a particular SVM model for different
noise types, 110 utterances of the TIMIT corpus [17] are used,
in which each speech sample is artificially distorted by adding
a particular noise type such as babble, white, factory, pink,
and volvo provided in [13], at different SNR levels (clean, 30,
25, 20, 15, 10, 5, 0 dB). Therefore, a total of 880 speech files
are considered for each noise to construct SVM model for it.
It should be mentioned that the speech utterances are visually
labeled into speech and non-speech classes. The SVM model
has been trained using LIBSVM software tool [15].

The same experiments similar to the noise classification
task are done for finding optimal parameters including C (the
penalty parameter), σ (the kernel parameter), and the number
of principal components. The whole dataset for each noise
type is divided into two parts: training set (60 %) and evalua-
tion set (40 %). The training and evaluation sets are used for
finding optimal parameters using GA, and the fitness function
is the classification error rate, which should be minimized.
In order to obtain the number of principal components, the
minimum error rate using GA is obtained for different num-
bers of principal components in the classification algorithm.
Figure 8 shows weight vectors obtained from 85,685 feature
vectors derived from 880 speech files distorted by white noise
at different SNR levels onto a three-dimensional space using
PCA.

Figure 9 shows the classification error rate versus the num-
ber of principal components used for the classification of
noisy speech distorted by white noise. Based on the results,
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Fig. 8 Distributions of PCA-reduced features computed from 880
speech files distorted by white noise

Fig. 9 The classification error rate versus the number of principal com-
ponents used for speech/non-speech classification

we have chosen 25 principal components for the classifi-
cation. In addition, Table 2 shows the optimal SVM para-
meters obtained by GA to generate SVM model for different
noise types. After finding the optimal parameters for different
noise types, the SVM classifier is retrained using the whole
dataset.

Figure 10 shows the classification accuracy results ver-
sus different feature groups including PCA feature vector
used in the classification task. From the result, it is evident
that each feature is individually important in the speech/non-
speech classification using SVM for different noise types.
Most effective feature is mean of wavelet coefficients, which
is obtained from 17 sub-bands of PWPT. The results are also
shown that the use of delta feature has considerably improved
the classification accuracy. It should be mentioned that dif-

Table 2 The optimal SVM parameters obtained by genetic algorithm
to generate SVM model for different noise types

Noise type SVM parameters

C σ

Babble 2.465 0.761

Factory 1.336 0.638

Pink 1.640 0.685

White 1.895 2.794

Volvo 0.616 0.289

ferent noise types result in different classification accuracies
(white noise gives the best and babble noise gives the worst
classification results). In the proposed algorithm, noise type
information is used to improve VAD result, and different fea-
tures are used to discriminate between specific noise type and
speech signal. However, noises like babble (which looks like
speech signal) and factory (which is highly non-stationary)
are hard to model, and therefore, the classification accuracies
are lower for them.

Support vector machines (SVM) for VADs are exam-
ined in the literature [18,19]. The idea is very sim-
ple, using a feature extraction step and a SVM classifier.
The main differences in our algorithm with SVM-based
VADs are using of the noise classification and also a new
robust feature vector. Here, the classification accuracy results
for two feature vectors, which have been used for SVM-
based VAD, are compared with the proposed feature vec-
tor. It can be seen from Table 3 that our proposed fea-
ture vector outperforms the other methods in different noise
conditions.

4 Experimental results

The proposed VAD was evaluated in terms of the ability
to discriminate speech from non-speech at different SNRs.
By reducing the sampling rate to 8 kHz, 130 utterances of
the TIMIT corpus were preprocessed and used for evaluat-
ing the proposed VAD algorithms [17]. Each speech sample
was artificially distorted by adding five types of noise from
NOISEX-92, i.e., factory, white, pink, babble, and volvo [13],
at different SNR levels (20, 15, 10, 5, 0 dB).

The performances of the algorithms are evaluated by com-
paring the percentage of correct classifications (non-speech
and speech) with manually marked decisions on all test utter-
ances (see Fig. 11). The performance metrics are percentage
of correct non-speech identification (Pcn) and percentage of
correct speech identification (Pcs) described in [1].

Figure 12 shows speech/non-speech discrimination as a
function of the SNR for different noise types. The best
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Fig. 10 Classification accuracy results versus different feature groups
including PCA feature vector used in speech/non-speech classifica-
tion for different environments. H is entropy feature, SLM is sum of

local maxima of power spectral density, SAC is sum of autocorrelation
sequence, and M is the mean of PWPT sub-bands

Table 3 The classification accuracy results for different features

Feature Noise type

White Volvo Pink Factory Babble

Proposed 91.5 92.17 90.9 88.54 87.92

MFCC [18] 86.42 91.13 85.03 84.81 80.84

LTSD [19] 74.35 89.66 76.35 80.90 83.68

Fig. 11 An example of test set and its handmade label for evaluation
of VAD result

results are related to the “volvo” and “white” noises. This is
because these noises are rather stationary and uncorrelated.
The results of “babble” and “factory” noises are weak at
low SNRs. The “babble” noise is correlated and contains LF
information, which makes it very hard to discriminate from
speech signal at low SNRs. In addition, the non-stationary

property of “factory” noise makes it hard to construct a good
SVM model for it at low SNRs.

It is also interesting to discuss about the proposed VAD
behavior in situations of noise types not observed in train-
ing set, which is a critical point in the algorithm perfor-
mance. For better exploration of proposed VAD behavior in
unseen noise type, Fig. 13 demonstrates the proposed VAD
results for average SNRs (0–15 dB) in different train/test situ-
ations. It can be seen from the results that when SVM model
is wrongly chosen for white and volvo noises, the perfor-
mance of proposed VAD algorithm has highly affected. In
other words, the performance of proposed algorithm in these
cases is highly related to the noise type. However, it can be
seen from Table 1 that the classification accuracy for noise
classification algorithm is 100 % for both volvo and white
noises.

The performance of the proposed VAD is compared with
the state-of-the-art methods such as Sohn’s, order-statistics
filters (OSF), and long-term spectral divergence (LTSD)
VADs. Sohn et al. [20] applied Markov model on a sta-
tistical likelihood ratio test to build a robust voice activity
detector. The developed VAD employs the decision-directed
parameter estimation method for the likelihood ratio test.
OSF proposed in [6] is based on the determination of the
speech/non-speech divergence by means of specialized OSFs
working on the sub-band log-energies. The LTSD VAD mea-
sures the LTSD between speech and noise and formulates
the speech/non-speech decision rule by comparing the long-
term spectral envelope to the average noise spectrum [21].
The decision threshold is adapted to the measured noise
energy while a controlled hangover is activated only when
the observed SNR is low.

An additional test was conducted to compare speech
detection performance by means of the receiver operating
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Fig. 12 Speech/non-speech discrimination analysis as a function of the SNR for different noise types. a Percentage of correct speech identification
and b percentage of correct non-speech identification

Fig. 13 Performance of the proposed VAD algorithm for average
SNRs (0–15 dB) in different train/test situations

characteristic (ROC) curves [22], a frequently used method-
ology in communications based on the hit and error detection
probabilities, which completely describes the VAD error rate.
The Pcn or the pause hit rate and the false alarm rate (1-Pcs)
were determined in each noise condition for different VADs
in Fig. 14. From the results, it is clear that the proposed VAD
outperforms the Sohn’s, OSF, and LTSD methods in almost
all cases. Among all the VADs examined, our VAD yields
the lowest false alarm rate for a fixed non-speech hit rate and
also the highest non-speech hit rate for a given false alarm
rate.

Most speech enhancement algorithms make use of the
VAD module in order to estimate the statistics of noise.

Therefore, the effectiveness of the noise compensation algo-
rithms is strongly affected by the accuracy of the VAD. The
results show that the proposed VAD can be used to let us esti-
mate statistics of noise for speech enhancement algorithms,
since the Pcn is acceptable under different noise conditions.
However, the Pcn results for the Sohn’s, OSF, and LTSD VAD
methods are low, especially at low SNRs, and therefore, these
methods are not appropriate for noise estimation and speech
enhancement. It should be mentioned that the implementa-
tion codes of the proposed algorithm are available at Matlab
central file exchange [23].

5 Conclusions

In this paper, we have tried to provide a simple model for
VAD based on a noise classification as the first step of the
algorithm. We have also proposed a new robust feature vector
based on the PWPT for both noise and speech/non-speech
classification.

The experimental results for noise classification have been
very promising. We have reached 98.4 % classification accu-
racy to classify five noise types extracted from NOISEX-92.
Experimental results for VAD show that the performance of
the proposed algorithm is superior to the Sohn’s, OSF, and
LTSD VADs, especially in low SNRs. The proposed algo-
rithm has also reached to 86.14 % Pcs and 86.44 % Pcn in
five noise environments and four SNR levels (0, 5, 10, and
15 dB) on average.

One aspect that we would like to explore in the future is to
consider speech phase information in the feature extraction
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Fig. 14 ROC curves for different VADs and different noise types
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process. We are also considering improving the VAD per-
formance by using other classification algorithms. Taking
into account more noise types in the proposed VAD can
improve the performance in real-world applications. Future
work should be done on these promising issues.
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