
Electrical Power and Energy Systems 33 (2011) 131–136
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier .com/locate / i jepes
Artificial immune system for dynamic economic dispatch

M. Basu
Department of Power Engineering, Jadavpur University, Kolkata 700098, India
a r t i c l e i n f o

Article history:
Received 16 July 2008
Received in revised form 25 February 2010
Accepted 7 June 2010

Keywords:
Dynamic economic dispatch
Artificial immune system
Clonal selection principle
0142-0615/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.ijepes.2010.06.019

E-mail address: mousumibasu@yahoo.com
a b s t r a c t

Dynamic economic dispatch determines the optimal scheduling of online generator outputs with pre-
dicted load demands over a certain period of time taking into consideration the ramp rate limits of the
generators. This paper proposes artificial immune system based on the clonal selection principle for solv-
ing dynamic economic dispatch problem. This approach implements adaptive cloning, hyper-mutation,
aging operator and tournament selection. Numerical results of a ten-unit system with nonsmooth fuel
cost function have been presented to validate the performance of the proposed algorithm. The results
obtained from the proposed algorithm are compared with those obtained from particle swarm optimiza-
tion and evolutionary programming. From numerical results, it is found that the proposed artificial
immune system based approach is able to provide better solution than particle swarm optimization
and evolutionary programming in terms of minimum cost and computation time.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Static economic dispatch (SED) allocates the load demand
which is constant for a given interval of time, among the online
generators economically while satisfying various constraints
including static behavior of the generators. Dynamic economic dis-
patch (DED) is an extension of static economic dispatch problem. It
schedules the online generator outputs with the predicted load de-
mands over a certain period of time so as to operate an electric
power system most economically. In order to avoid shortening
the life of the equipment, plant operators try to keep gradients
for temperature and pressure inside the boiler and turbine within
safe limits. This mechanical constraint is transformed into a limit
on the rate of increase or decrease of the electrical power output.
This limit is called ramp rate limit which distinguishes DED from
SED problem. Thus, the dispatch decision at one time period affects
those at later time periods. DED is the most accurate formulation of
the economic dispatch problem but it is the most difficult to solve
because of its large dimensionality. Further, due to increasing com-
petition into the wholesale generation markets, there is a need to
understand the incremental cost burden imposed on the system
by the ramp rate limits of the generators.

Since the DED was introduced, several classical methods [1–7]
have been employed for solving this problem. However, all of
these methods may not be able to find an optimal solution and
usually stuck at a local optimum solution. Classical calculus-
based methods address DED problem with convex cost function.
But in reality large steam turbines have a number of steam
ll rights reserved.
admission valves, which contribute nonconvexity in the fuel cost
function of the generating units. Dynamic programming (DP) can
solve such type of problems but it suffers from the curse of
dimensionality.

Recently, stochastic search algorithms [8–16] such as simulated
annealing (SA), Genetic algorithm (GA), evolutionary programming
(EP) and particle swarm optimization (PSO) have been successfully
used to solve power system optimization problems due to their
ability to find the near global solution of a nonconvex optimization
problem. The SA is a powerful optimization technique but in prac-
tice, the annealing schedule of SA should be carefully tuned other-
wise achieved solution will still be of locally optimal. Nevertheless,
an appropriate annealing schedule often requires tremendous
computation time. Both GA and EP based on the metaphor of nat-
ural biological evolution can provide near global solution. EP dif-
fers from GA in aspect that EP relies primarily on mutation and
selection but not crossover as in GA. Hence, considerable computa-
tion time may be saved in EP. In spite of their successful implemen-
tation, both GA and EP posses some weakness leading to more
computation time and less guaranteed convergence in case of
highly epistatic objective functions i.e. the parameters being opti-
mized are highly correlated. Although PSO can be used to solve
nonlinear and noncontinuous optimization problem, it suffers from
premature convergence especially while handling problems with
more local optima.

Artificial immune system (AIS) [17–22] has emerged in the
1990s as a new branch in computational intelligence. AIS is in-
spired by immunology, immune function and principles observed
in nature. It is now interest of many researchers and has been suc-
cessfully used in power system optimization problems [23–26].

http://dx.doi.org/10.1016/j.ijepes.2010.06.019
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Nomenclature

Pit real power output of ith unit during time interval t
Pmin

i , Pmax
i lower and upper generation limits for ith unit

PDt load demand at the time interval t
PLt transmission line losses at time t
ai, bi, ci, di, ei cost coefficients of ith unit
Fit(Pit) cost of producing real power output Pit at time t
URi, DRi ramp-up and ramp-down rate limits of the ith generator

Bij loss coefficient
N number of generating units
NP population size
Nc number of clones
T number of intervals in the scheduled horizon
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In this paper AIS algorithm is developed for solving the DED
problem. The proposed approach is based on the clonal selection
principle and implements adaptive cloning, hyper-mutation,
aging operator and tournament selection. In order to show the
validity of the proposed approach the developed algorithm is
illustrated on a ten-unit system [10] with nonsmooth fuel cost
function. Results obtained from the proposed approach are com-
pared with those obtained using particle swarm optimization
and evolutionary programming. The comparison shows that
the proposed AIS based approach performs the best amongst
three in terms of minimum production cost and computation
time.

2. Problem formulation

Normally, the DED problem minimizes the following total pro-
duction cost of committed units:

F ¼
XT

t¼1

XN

i¼1

FitðPitÞ ð1Þ

The fuel cost function of each unit considering valve-point ef-
fect [11] can be expressed as

FitðPitÞ ¼ ai þ biPit þ ciP
2
it þ jdi sinfeiðPmin

i � PitÞgj ð2Þ

Subject to the following equality and inequality constraints for
the tth interval in the scheduled horizon

(i) Real power balance

XN

i¼1

Pit � PDt � PLt ¼ 0 t 2 T ð3Þ

(ii) Real power operating limits

Pmin
i 6 Pit 6 Pmax

i i 2 N; t 2 T ð4Þ

(iii) Generating unit ramp rate limits

Pit � Piðt�1Þ 6 URi; i 2 N; t ¼ 2; . . . ; T

Piðt�1Þ � Pit 6 DRi; i 2 N; t ¼ 2; . . . ; T
ð5Þ
3. Determination of generation levels

In this approach, the power loading of first (N � 1) generators
are specified. From the equality constraints in Eq. (3) the power le-
vel of the Nth generator (i.e. the remaining generator) is given by

PNt ¼ PDt þ PLt �
XN�1

i¼1

Pit t 2 T ð6Þ
The transmission loss PLt is a function of all the generators
including that of the dependent generator and it is given by

PLt ¼
XN�1

i¼1

XN�1

j¼1

PitBijPjt þ 2PNt

XN�1

i¼1

BNiPit

 !
þ BNNP2

Nt t 2 T ð7Þ

Expanding and rearranging, Eq. (6) becomes

BNNP2
Nt þ 2

XN�1

i¼1

BNiPit � 1

 !
PNt þ PDt þ

XN�1

i¼1

XN�1

j¼1

PitBijPjt �
XN�1

i¼1

Pit

 !

¼ 0 t 2 T ð8Þ

The loading of the dependent generator (i.e. Nth) can then be
found by solving Eq. (8) using standard algebraic method.
4. Immune system

The immune system of vertebrates including human is com-
posed of cells, molecules and organs in the body which protect
the body against infectious diseases caused by foreign pathogens
such as viruses, bacteria, etc. To perform these functions, the im-
mune system has to be able to distinguish between the body’s
own cells as the self cells and foreign pathogens as the non-self
cells or antigens. After distinguishing between self and non-self
cells, the immune system has to perform an immune response in
order to eliminate non-self cell or antigen. Antigens are further cat-
egorized in order to activate the suitable defense mechanism and
at the same time, the immune system also developed a memory
to enable more efficient responses in case of further infection by
the similar antigen.

Clonal selection theory explains how the immune system
fights against an antigen. It establishes the idea that only
those cells which recognize the antigen, are selected to pro-
liferate. The selected cells are subjected to an affinity matu-
ration process which improves their affinity to the selected
antigens.

Clonal selection operates both on B-lymphocytes or B cells pro-
duced by the bone marrow and T-lymphocytes or T cells produced
by the thymus. When the body is exposed to an antigen, B cells
would respond to secrete specific antibodies to the particular anti-
gen. Thereafter, a second signal from the T-helper cells, a subclass
of T cells, would then stimulate the B cell to proliferate and ma-
ture into terminal (non-dividing) antibody secreting cells called
plasma cells. In proliferation, clones are generated in order to
achieve the state of plasma cells as they are the most active sec-
retors of the antibodies at a larger rate than rate of antibody secre-
tion by the B cells. The proliferation rate is directly proportional to
the affinity level i.e. higher the affinity level of B cells more clones
is generated. Clones are mutated at a rate inversely proportional
to the antigen affinity i.e. clones of higher affinity are subjected
to less mutation compared to those which exhibit lower affinity.
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This process of selection and mutation of B cells is known as affin-
ity maturation.

T cells do not secrete antibodies but play a central role in the
regulation of the B cell response and are the most excellent in cell
mediated immune responses. Lymphocytes, in addition to prolifer-
ating into plasma cells, can differentiate into long-lived B memory
cells. These memory cells circulate through the blood, lymph and
tissues, so that when exposed to a second antigenic stimulus, they
commence to differentiate into plasma cells capable of producing
high affinity antibody, preselected for the specific antigen that
had stimulated the primary response.
Evaluate affinity of each mutated clone

Application of aging operator 

Tournament selection

Stopping rule 

Finish

No 

Yes

Fig. 1. Flowchart of artificial immune system.
5. Artificial immune system

Artificial immune system (AIS) mimics these biological princi-
ples of clone generation, proliferation and maturation. The main
steps of AIS based on clonal selection principle are activation of
antibodies, proliferation and differentiation on the encounter of
cells with antigens, maturation by carrying out affinity maturation
process, eliminating old antibodies to maintain the diversity of
antibodies and to avoid premature convergence, selection of those
antibodies whose affinities with the antigen are greater.

In order to emulate AIS in optimization, the antibodies and
affinity are taken as the feasible solutions and the objective func-
tion respectively. Real number is used to represent the attributes
of the antibodies.

Initially, a population of random solutions is generated which
represent a pool of antibodies. These antibodies undergo prolifera-
tion and maturation. The proliferation of antibodies is realized by
cloning each member of the initial pool depending on their affinity.
In minimization problem, a pool member with lower objective va-
lue is considered to have higher affinity. The proliferation rate is di-
rectly proportional to the affinity of the antibodies. The maturation
process is carried through hyper-mutation which is inversely pro-
portional to the antigenic affinity of the antibodies. The next step is
the application of the aging operator. This aging operator elimi-
nates old antibodies in order to maintain the diversity of the pop-
ulation and to avoid the premature convergence. In this operator
an antibody is allowed to remain in the population for at most sB

generations. After this period, it is assumed that this antibody cor-
responds to local optima and must be eliminated from the current
population, no matter what its affinity may be. During the cloning
expansion, a clone inherits the age of its parent and is assigned an
age equal to zero when it is successfully hyper-mutated i.e. when
hyper-mutation improves its affinity.

Fig. 1 shows the flowchart of artificial immune system algorithm.
6. Clonal selection-based AIS for solving DED problem

AIS based on clonal selection principle is presented here to solve
DED problem. The algorithmic steps are as follows:

Step 1. Let

pk ¼ ½ðP11; P21; . . . ; Pi1; . . . ; PN1Þ; . . . ; ðP1t ; P2t ; . . . ; Pit ; . . . ; PNtÞ; . . . ;

ðP1T ; P2T ; . . . ; PiT ; . . . ; PNTÞ�=

be the kth antibody of a population to be evolved and k = 1, 2, . . . , NP.
The elements of pk are real power outputs of the committed N gen-
erating units over T number of intervals. The real power output of
the ith unit at the tth interval is determined by setting
Pit � UðPmin

i ; Pmax
i Þ, where i = 1, 2, . . . , N and t = 1, 2, . . . ,T.

UðPmin
i ; Pmax

i Þ denotes a uniform random variable ranging over
½Pmin

i ; Pmax
i �. Each antibody should satisfy the constraints given by

Eqs. (3)–(5).
Step 2. As DED is a minimization problem, affinity is the inverse
of the objective function and it is given by the following
equation.

Affinity ¼ 1PT
t¼1

PN
i¼1ai þ biPit þ ciP

2
it þ jdi sinfeiðPmin

i � PitÞgj
ð9Þ

Step 3. The antibodies are cloned directly proportional to their
affinities.
Step 4. The clones undergo maturation process through hyper-
mutation mechanism and are given by the following equation

P=ijt ¼ Pkjt þmul� Fk

Fmin
� Nð0;1Þ � ðPmax

j � Pmin
j Þ;

k ¼ 1; . . . ;NP; i ¼ 1; . . . ;Nc; j ¼ 1; . . . ;N ð10Þ

where Fmin is the minimum value of F among the NP solutions, mul is
a scaling factor, Fk is the value of the function associated with pk and
N(0, 1) represents a Gaussian random variable with mean 0 and

standard deviation 1. P=ijt is the real power output of jth unit of ith

clone during time interval t. The term Fk
Fmin

makes the mutation more

intensive in antibodies with a high production cost and smooth in
antibodies with low production cost.

Each mutated clone must satisfy the constraints given by Eqs.
(3)–(5).

Step 5. The affinities of the mutated clones are evaluated.
Step 6. The aging operator eliminates old antibodies in order to
maintain the diversity of the population and to avoid the pre-
mature convergence. For this reason, an antibody is allowed
to survive for at most sB generations. The aging operator elim-
inates those individuals which have more than sB generations
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from the current population. When an individual is sB + 1 old it
is erased from the current population, no matter what its fitness
value may be.
Step 7. Tournament selection is done to select a new population
of the same size as the initial from the antibodies and mutated
clones which are remained after application of aging operator.

Each of the antibodies and mutated clones which are remained
after the application of aging operator undergoes a series of Nt

tournaments with randomly selected opponents. The score for
each population after a stochastic competition is given by

Spk
¼
XNt

l¼1

Sl

Sl ¼ 1 if Fpk
< Fpr

¼ 0 otherwise

ð11Þ
Table 1
Hourly generation (MW) schedule, cost (�106 $) and CPU time (second) of dynamic econo

Hour P1 P2 P3 P4 P5 P6

1 151.7188 142.7248 155.2973 96.9809 118.9239 98.00
2 152.0119 135.0000 185.8322 106.2452 165.6634 118.23
3 150.0000 147.4581 264.1075 152.0469 165.6587 113.99
4 165.5986 138.7404 309.8241 201.3245 181.8031 149.56
5 150.0000 135.9797 286.1487 239.0691 226.5914 142.84
6 155.6444 185.5964 333.6620 286.2148 230.1123 154.68
7 220.6328 173.4209 340.0000 288.6863 235.1433 160.00
8 191.8259 252.3653 335.6473 300.0000 239.2651 153.01
9 270.1137 327.4564 341.6645 296.9106 242.4084 160.00

10 300.0550 401.5677 335.5574 300.0000 241.7840 159.36
11 309.5846 470.0000 340.0000 298.4852 243.0000 158.21
12 387.3360 464.7866 338.5846 299.6854 237.2337 157.48
13 310.2941 438.8216 339.2683 296.5652 242.0924 159.01
14 233.0006 359.1525 340.0000 296.0900 228.5755 157.89
15 178.9715 280.3439 336.3661 300.0000 238.6375 154.32
16 147.0967 201.0938 304.3512 279.2461 236.1371 115.90
17 152.7787 135.0000 282.9980 257.1466 238.6955 147.64
18 161.2552 191.8650 302.0309 293.2186 232.3159 149.72
19 229.4679 244.3134 319.1639 299.0818 236.5163 160.00
20 307.3244 323.8625 335.8765 298.0084 243.0000 158.33
21 261.6011 318.6516 332.2783 300.0000 242.5040 160.00
22 182.3335 239.6949 260.2021 257.4387 235.2103 140.23
23 150.0000 183.3650 217.7193 247.6629 186.9385 112.75
24 150.3447 135.0000 155.2479 238.2374 141.5510 124.37

Table 2
Hourly generation (MW) schedule, cost (�106 $) and CPU time (second) of dynamic econo

Hour P1 P2 P3 P4 P5 P6

1 178.2974 152.4782 175.9679 152.2693 82.6967 100.25
2 151.9730 135.0000 213.2147 201.7864 131.9888 118.51
3 203.1254 163.9726 251.9514 199.1529 138.8356 113.36
4 150.7934 200.2340 325.5753 226.0880 162.2524 113.64
5 173.3115 144.6134 285.1757 275.9783 211.5299 135.32
6 193.0859 180.9466 295.7199 294.4164 243.0000 150.28
7 199.5730 227.0251 317.7981 285.0641 232.0515 149.85
8 230.4454 246.3501 318.5516 281.4019 243.0000 160.00
9 309.2169 325.9173 340.0000 300.0000 240.8720 159.71

10 319.3131 405.6572 338.3825 291.2641 243.0000 155.70
11 376.5109 470.0000 293.8462 299.8919 241.4655 145.59
12 410.5210 460.0330 330.1543 290.0606 240.5785 157.82
13 354.5582 458.7721 325.3415 294.7094 243.0000 158.69
14 300.6076 379.5915 301.5840 285.1112 215.5048 148.79
15 229.4357 300.8396 328.6496 276.8651 236.1853 136.82
16 150.0000 230.9564 290.8325 285.5966 226.2529 129.90
17 168.5816 155.4401 312.8637 259.7161 197.5561 142.48
18 150.0000 235.2465 326.6851 295.5718 233.0072 131.94
19 225.5372 252.2426 308.9457 293.8158 241.5050 160.00
20 304.6380 331.5404 337.4662 300.0000 243.0000 154.71
21 290.6766 310.6099 340.0000 299.9669 242.0460 159.85
22 211.5595 231.5171 260.5104 288.5803 242.1627 130.75
23 150.0000 165.9392 212.1930 239.0283 196.6465 98.06
24 180.3674 135.0000 133.2234 190.3317 168.2021 132.24
The competitor pr is selected at random from among the anti-
bodies and mutated clones. After competing the antibodies and
mutated clones are ranked in descending order of the score ob-
tained in (10). The first NP population is selected for the next
generation.

Step 8. If the maximum number of generations is reached, out-
put the optimal solution i.e. the highest affinity value obtained
so far and terminates the proposed algorithm. Otherwise, go
back to Step 3.

7. Simulation results

In order to demonstrate the performance of the proposed AIS
algorithm, a ten-unit test system with nonsmooth fuel cost func-
tion is used. The demand of the system has been divided into 24
mic dispatch obtained from AIS.

P7 P8 P9 P10 Cost CPU time

44 99.5246 70.0395 79.4591 43.1083
97 124.2103 68.3935 52.5093 24.3062
66 124.7598 76.0711 48.4324 44.4734
24 119.1335 82.8205 59.3074 33.9469
17 127.9076 110.7802 55.3247 44.9427
98 125.6117 96.9938 66.8544 41.2362
00 130.0000 111.4642 78.3817 49.5989
54 128.4027 100.7748 79.3723 54.2562
00 129.6346 119.1165 59.3356 48.3666
14 128.0621 117.4973 64.2570 53.9388
59 130.0000 120.0000 78.7250 46.3176 2.5197 53.56
34 128.2107 118.2156 59.6021 52.1431
10 128.3990 118.8761 69.0924 54.5769
33 128.0513 119.6744 79.9437 52.7125
77 129.2965 96.5616 70.0446 50.5518
83 103.4811 119.7890 51.1641 40.2571
92 128.5761 92.4929 41.5873 42.7073
15 129.4764 118.1036 60.6432 37.8760
00 124.7610 116.0010 54.3140 51.3141
55 130.0000 117.1829 80.0000 53.4780
00 129.0591 119.7926 76.8193 54.0164
36 126.5771 118.1959 63.2538 51.7462
85 111.6819 89.8889 35.4291 29.0366
91 112.3036 64.0560 48.4250 39.8908

mic dispatch obtained from PSO.

P7 P8 P9 P10 Cost CPU time

70 55.1840 86.1211 32.0525 40.7531
95 33.4036 82.8231 35.5465 28.5607
58 42.5714 70.8768 56.7945 47.1242
50 58.7423 96.9791 62.9590 45.6968
82 86.1134 107.2580 52.8395 47.9709
37 91.6984 119.8831 59.2527 48.5979
11 121.3454 95.4300 74.6611 53.1300
00 130.0000 118.9990 55.1984 50.9417
76 127.3408 107.4298 34.9745 50.1778
18 130.0000 120.0000 54.6931 44.5437
09 128.4700 117.7083 76.6091 45.5225 2.5722 68.47
25 130.0000 99.3619 72.5975 52.6241
78 125.2569 100.0073 61.8662 35.9623
61 130.0000 119.2818 71.6677 43.9232
60 118.9267 102.5443 68.2499 37.5047
50 111.5957 95.6673 39.5550 38.3823
82 119.8778 84.3126 39.2104 40.0607
63 121.1258 103.6587 43.9754 36.0901
00 130.0000 120.0000 72.9211 29.9004
02 127.7088 118.4984 80.0000 49.6164
59 130.0000 117.6984 72.4081 32.2045
13 110.3033 101.3453 55.6514 45.1916
30 116.2304 119.0883 29.2393 37.8554
41 104.0532 98.6428 54.6286 12.8466



Table 3
Hourly generation (MW) schedule, cost (�106 $) and CPU time (second) of dynamic economic dispatch obtained from EP.

Hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Cost CPU time

1 150.0000 137.3240 165.8277 130.9594 185.8528 86.6659 43.1268 82.1384 60.5076 13.3651
2 154.0813 142.0823 111.6599 173.9694 212.5123 127.5569 26.5848 90.0247 58.4067 35.8485
3 167.6789 175.6266 190.4018 182.6740 243.0000 100.9178 33.9537 104.2804 43.8270 45.1084
4 151.0869 234.2356 201.1268 192.8167 232.0634 140.5203 58.3984 120.0000 61.3047 51.1215
5 179.0793 167.5926 241.0310 242.2296 233.1403 132.5917 85.7099 110.1910 76.4297 52.2067
6 178.1383 246.7190 319.0410 243.9511 222.8359 130.1020 113.9272 114.8017 69.8714 38.1359
7 231.2156 232.1208 330.9049 293.7810 238.4605 127.7300 101.5284 116.2500 70.6214 13.9564
8 186.8206 299.0632 336.2252 278.7172 243.0000 152.4734 117.8664 115.2754 79.4536 26.5290
9 254.2367 344.7199 340.0000 296.9019 235.7257 157.4128 125.5643 120.0000 72.5853 47.9489

10 323.6424 423.9759 339.7272 282.1438 243.0000 157.9184 128.9391 97.5989 54.7205 51.3773
11 379.9329 470.0000 333.0634 300.0000 236.4433 160.0000 115.5534 93.1074 54.6007 53.1176 2.5854 72.68
12 413.1634 443.5430 337.5237 289.1344 238.2085 159.5075 124.2170 119.3562 80.0000 38.7139
13 335.4767 470.0000 334.4274 295.0397 230.2758 136.9080 129.4886 116.0717 73.7319 36.8421
14 279.7477 390.3287 309.3307 277.8978 236.6148 157.8536 129.2263 93.2559 74.6412 47.1851
15 225.8492 300.6198 340.0000 271.4831 235.7474 160.0000 113.9795 97.3194 60.2646 30.6238
16 156.8943 221.9919 274.1830 222.1209 224.4294 145.5529 120.9893 119.0116 71.2232 41.9545
17 150.0000 142.9721 307.5557 236.0399 229.9259 119.3528 128.4166 92.4584 77.2718 35.9486
18 213.3822 209.6171 280.5045 285.5809 236.6284 160.0000 118.0363 89.8209 48.4504 35.0462
19 216.8980 288.5752 330.2142 300.0000 233.9977 126.9242 128.6758 99.3605 75.2536 35.9281
20 271.3901 367.8558 340.0000 298.0471 243.0000 160.0000 129.7412 108.7347 78.6677 49.8348
21 285.6118 378.6250 327.2155 300.0000 240.5381 151.3773 127.6958 102.3417 51.2099 31.5443
22 216.5251 289.8412 318.2870 250.3409 190.6218 112.0639 127.3546 100.7594 46.4267 26.1429
23 157.4794 210.8063 256.3831 215.0895 181.2377 116.3920 97.4503 82.3338 59.7178 43.7112
24 150.0000 140.8972 179.9885 221.9082 180.1364 106.8230 87.4166 63.2514 33.6222 45.5223
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intervals. Unit data has been adopted from [10]. Simulations have
been carried out on a P-IV, 80 GB, 3.0 GHz personal computer and
coding is written using MATLAB.

Results obtained using the proposed AIS algorithm, are shown
in Table 1. Here, scaling factor (mul), population size (NP) and max-
imum iteration number (Nmax) are taken as 0.1, 50 and 400 respec-
tively for the test system under consideration.

To validate the proposed AIS based approach, the same ten-unit
test system is solved by the author using PSO and EP. The PSO con-
trol parameters are c1 = 2, c2 = 2, Wmax = 1.2 and Wmin = 0.7,
NP = 100 and Nmax = 400. Table 2 presents the results obtained from
PSO.

In case of EP, control parameters are scaling factor b = 0.04,
NP = 100 and Nmax = 400. The results obtained from EP are given
in Table 3.

Fig. 2 shows the cost convergence obtained from AIS, PSO and
EP. Table 1, Table 2 and Table 3 reveals that AIS has achieved lower
minimum production cost and less CPU time than PSO and EP.
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Fig. 2. Cost convergence.
8. Conclusion

This paper has presented a novel approach based on AIS for
solving DED problem. AIS algorithm utilizes adaptive cloning,
hyper-mutation, aging operator and tournament selection. Real
number representation of the antibody attributes is implemented
here. The effectiveness of the proposed method is illustrated by
using a ten-unit test system and compared with the results
obtained from PSO and EP. It is evident from the comparison that
the proposed AIS based approach provides better results than PSO
and EP in terms of minimum production cost and computation
time.
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