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Role of tumor-associated macrophages in human malignancies:
friend or foe?
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Tumor-associated macrophages (TAMs) play a pivotal role in
tumor growth in humanmalignancies. Published studies have
analyzed the relationship between TAM infiltration and the
prognosis of patients for many human tumors. Most studies
reported a positive correlation between TAM density and a
poor prognosis. Studies focusing onmacrophage phenotypes
emphasized the protumor role of M2 anti-inflammatory macro-
phages inmany types of human tumors. However, TAMs influ-
ence tumor progression in various ways that depend on
differences in tumor sites, histology, and microenvironments.
In this review, we summarize the function of TAMs in various
humanmalignancies by reviewing the data provided in studies
of TAMs in human malignancies.
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Immunohistochemical analysis of various human tumors via
CD68 and other macrophage markers revealed that tumor-
associated macrophages (TAMs) undoubtedly influenced the
prognosis of patients. Significant positive correlations between
TAM density and poor survival of patients were noted for many
tumors.1,2 Indeed, more than 80% of reports demonstrated the
association of TAM density with an unfavorable outcome of pa-
tients.1 Recent studies with markers of M2 macrophages such
as CD163 and CD204 also indicated that the density of M2-
TAMs had a closer relationship to poor outcome than did the
density of CD68+ TAMs.3,4

RECRUITMENT OF MONOCYTES/MACROPHAGES IN
TUMOR TISSUES

Recruitment of monocytes/macrophages at tumor sites is
guided by tumor-derived cytokines such as chemokine (C-C
motif) ligand 2 (CCL2), CCL5, CCL7, and chemokine (C-X-C

motif) ligand 1(CXCL1).5 Among these chemokines, CCL2 is
the most frequently found in human tumors, and its expression
level correlates with the number of infiltrated TAMs.6 CCL2 pro-
duction was also detected in TAMs themselves,6 as part of an
amplification loop for their recruitment, such as in atherosclero-
sis.7 Besides chemokines, colony-stimulating factor (CSF) -1,
granulocyte-macrophage CSF (GM-CSF), and vascular endo-
thelial growth factor (VEGF) recruit monocytes/macrophages.5

Studies of macrophage ontogeny showed that tissue-
resident macrophages in many organs derive directly from yolk
sac progenitors or via fetal liver hematopoiesis and are main-
tained in those organs throughout life.8 The traditional concept
that all tissue-resident macrophages derive from blood mono-
cytes, as do inflammatory exudatemacrophages,9 was recently
abandoned. Most TAMs, however, are believed to derive from
circulating monocytes recruited by various chemoattractants
as in inflammatory condition, whereas resident macrophages
from surrounding tissues accumulate inside and around tumors
when they are small.10

MACROPHAGE POLARIZATION

Responding to environmental stimuli, macrophages show mul-
tidirectional polarization. Polarized macrophage subtypes are
categorized as classically activated (M1) and alternatively acti-
vated (M2) macrophages, categories that reflect the T-helper
cell classification, T helper 1 and T helper 2 (Th1/Th2).11,12 In-
terferon (IFN)-γ, alone or together with lipopolysaccharide
(LPS) or tumor necrosis factor (TNF), activates macrophages
to be classically activated M1 macrophages, whereas interleu-
kin (IL)-4 and IL-13 induce the alternatively activated phenotype
(M2).11,13 However, other cytokines and factors not fit in the
context of Th1/Th2 responses such as IL-10, transforming
growth factor (TGF)-β, and glucocorticoids also induce macro-
phages similar to M2 phenotype. In view of these data,
Mantovani et al.14 proposed to refer to the three well-defined
forms of M2 as the following: M2a, induced by IL-4 or IL-13;
M2b, induced by exposure to immune complexes and
agonists of Toll-like receptors (TLRs) or IL-1R; and M2c,
induced by IL-10 and glucocorticoids. Regardless of such
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careful categorization, the M1/M2 dichotomy has been widely
accepted, and the concept of classic and alternative activation
has become broad and overinterpreted.

M1macrophages encourage inflammation by producing pro-
inflammatory cytokines such as IL-12, IL-1β, TNF-α, IL-6, and
IL-23 and other effecter molecules such as reactive oxygen
species and nitrogen intermediates. In contrast, M2 macro-
phages suppress inflammation by producing anti-inflammatory
cytokines such as IL-10, IL-13, and TGF-β as well as other
anti-inflammatorymolecules including interleukin-1 receptor an-
tagonist and prostaglandin E2 (PGE2). M2 macrophages also
participate in tissue repair by inducing angiogenesis and acti-
vating stromal cells to producematrix proteins.6 Phenotypically,
M1macrophages show enhanced expression of inducible nitric
oxide synthase (iNOS), human leukocyte antigen (HLA)-DR,
CD80, CD86, CD169, and TLRs 2 and 4, whereas M2
macrophages upregulate CD163, CD204, CD206, and argi-
nase 115–17 (Fig. 1).

Because diversity and plasticity are hallmarks of macro-
phages, that the M1/M2 concept is too bipolar, oversimplified,
and sometimes overinterpretedmay be reasonably argued.12,18

Nevertheless, this paradigm is widely accepted because it is
convenient for understanding the pathological processes of
macrophage-related diseases.

ROLE OF TAMS IN TUMOR PROGRESSION

A considerable proportion of TAMs in human cancers are polar-
ized to the anti-inflammatory M2 phenotype after stimulation by
tumor-derived molecules such as CSF-1 and IL-10.5,6 Tumor
cells may thus educate macrophages to become beneficial for
tumor growth and expansion.5 TAMs, especiallyM2-TAMs, pro-
mote tumor progression in various ways (Fig. 2).

In tumor tissues, a dramatic enhancement of vascular density
promotes oxygenation of and nutrient supply to tumor cells.
In hypoxic conditions, macrophages produce angiogenic

molecules such as VEGF, epidermal growth factor (EGF),
TNF-α, basic fibroblast growth factor, and CXCL8.19 Thymidine
phosphorylase (TP) and various chemokines including CCL2
and CXCL8 produced by M2-TAMs also induce angiogene-
sis.19,20 Many studies of human tumors documented significant
associations between microvessel density and numbers of M2-
TAMs.3,19

M2-TAMs also produce immunosuppressive molecules in-
cluding PGE2, TGF-β, and IL-10 to suppress T-cell mediated
antitumor immunity.1,6,20 Molecules produced by M2-TAMs
such as CSF-1, IL-6, and IL-10 suppress dendritic cell matura-
tion.20 Although the migratory process of regulatory T cells into
tumor tissues is not fully understood, M2-TAM-derived PGE2,
TGF-β, IL-10, and cytokines including CCL17, CCL18, and
CCL22 recruit regulatory T cells.1,6,21 In human cancers, the
numbers of M2-TAMs and regulatory T cells correlate well.22

M2-TAMs are also involved in formation of a niche to main-
tain cancer stem cell survival.23 This niche is enriched in growth
factors, cytokines, prostaglandins, and extracellular matrix
components. Essential cellular players include TAMs and other
immune cells, cancer-associated fibroblasts, mesenchymal
stem cells, and endothelial cells. M2-TAM-derived growth fac-
tors including basic fibroblast growth factor, hepatocyte growth
factor, EGF, platelet-derived growth factor, and TGF-β play im-
portant roles in maintaining cancer stem cells and promoting tu-
mor growth.

In addition, M2-TAMs play a critical role in the process of tu-
mor cell invasion and metastasis. TAMs produce matrix metal-
loproteinases (MMPs) such as MMP2 and MMP9 to degrade
the extracellular matrix. Signal transduction and activator of
transcription 3 (STAT3) has received attention as a significant
transcription factor mediating interactions between TAMs and
tumor cells. STAT3 promotes tumor cell proliferation, survival,
and invasion by regulating many angiogenic and immunosup-
pressive factors.24 STAT3 activation also induces polarization
of TAMs to the M2 phenotype.25 Direct co-culture of tumor cells

Figure 1 M1/M2 polarization of macro-
phages. Macrophages differentiate into
M1 and M2 subtypes in response to envi-
ronmental stimuli. Most TAMs manifest
M2-like functionsandphenotypeandcon-
tribute to tumor progression. Arg1, argi-
nase 1; CCL, chemokine (C-C motif)
ligand; GM-CSF, granulocyte-macro-
phage colony-stimulating factor; HLA, hu-
man leukocyte antigen; IFN, interferon; IL,
interleukin; IL-1ra, IL-1 receptor antago-
nist; iNOS, inducible nitric oxide synthase;
LPS, lipopolysaccharide; RNS, reactive
nitrogen species; ROS, reactive oxygen
species; PGE2, prostaglandin E2; TGF,
transforming growth factor; TLR, Toll-like
receptor; TNF, tumor necrosis factor.
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and macrophages demonstrated activation of STAT3 in macro-
phages and that macrophage-derived factors including EGF,
IL- 6, and IL-10 activate STAT3 in tumor cells. CSF-1 receptor
and sphingosine-1-phosphate receptor (S1PR1) on the cell sur-
face were thought to be important during reciprocal activation of
STAT3.25,26

Of greater interest, recent studies demonstrated that macro-
phages participate in formation of a pre-metastatic niche in
which a suitable microenvironment is prepared before metasta-
sis occurs. Suppressor cell types such as protumor macro-
phages and regulatory T cells accumulate in this niche to
evade the antimetastatic immune response.27 S1PR1-Janus
kinase-STAT3 signaling was said to be crucial for myeloid cell
colonization at future metastatic sites.28

ROLE OF TAMS IN EPITHELIAL TUMORS

Breast cancer

Many studies of breast cancer indicated a close relationship be-
tween TAMdensity and poor outcome of patients. A general ap-
plication of this result, however, needs careful analysis because
many histological subtypes exist in breast cancer and hormone
dependence varies. Invasive ductal carcinoma, the most com-
mon histological subtype, is rich in stroma with well-developed
vasculature, which promotes tumor progression. TAMs, espe-
cially M2-TAMs, induce vascularization via production of blood
vessel growth factors as described earlier. Invasive ductal car-
cinoma showed a strong association among microvessel den-
sity, CD68+ TAM infiltration, reduced relapse-free survival,
and reduced overall survival (OS).29 Expression of TP, one of
the angiogenic factors, in CD68+ TAMs, correlated with poor
prognosis of patients with invasive ductal cancer.30 The authors

indicted that TP+ status was an independent prognostic factor.
Also, VEGF expression in CD68+ TAMs correlated closely with
microvessel density.31 Furthermore, microvessel density and
VEGF expression were related to tumor grade and lymph node
metastasis in patients with invasive ductal carcinoma.31,32 In
contrast, microvessel density in invasive lobular carcinoma
had no correlation with VEGF expression, TAM density, mitotic
activity index, lymph node metastasis, or grade.32 Triple-
negative breast cancer with a high number of CD68+ TAMs
demonstrated a significantly higher risk of distant metastasis,
and lower rates of disease-free survival (DFS) and OS, than
did cancers with a smaller number of TAMs.33

Recent reports indicated the significance of CD163+ M2-
TAMs for the poor prognosis of invasive ductal carcinoma. High
numbers of CD163+ M2-TAMs had potent associations with
rapid proliferation, poor differentiation, estrogen receptor nega-
tivity, and histological ductal type.34 CD163+M2-TAM density in
tumor stroma correlated positively with higher tumor grade,
larger tumor size, Ki67 positivity, estrogen receptor and proges-
terone receptor negativity, and triple-negative basal-like breast
cancer.35

As an intriguing result, the location of TAM infiltration influ-
ences tumor progression. The density of CD68+ TAMs in the tu-
mor stroma, but not in the tumor nest, was an independent
prognostic factor for reduced survival of patients with breast
cancer.35 Another report36 indicated that high CD68+ TAM
counts in the tumor stroma, but not in the tumor nest, were as-
sociated with higher tumor grades and negative estrogen re-
ceptor status, whereas those in the tumor nest were
significantly correlated with microvessel density. The authors
suggested that tumor stromal macrophages and tumor nest
macrophages residing in different microenvironments have dis-
tinct roles.

Figure 2 Role of M2-TAMs in tumor pro-
gression. M2-TAMs induce angiogenesis in
the tumor microenvironment, suppress antitu-
mor immunity, and directly stimulate tumor
cell proliferation. They also participate in
formation of a cancer stem cell niche and
pre-metastatic niche to promote tumor pro-
gression. bFGF, basic fibroblast growth fac-
tor; CCL, chemokine (C-C motif) ligand;
CXCL, chemokine (C-X-C motif) ligand;
CSF-1, colony stimulating factor-1; DC, den-
dritic cell; EGF, epidermal growth factor;
HGF, hepatocyte growth factor; IL, interleukin;
MMP, matrix metalloproteinase; PDGF, plate-
let-derived growth factor; PGE2, prostaglan-
din E2; TGF-β, transforming growth factor-β;
Th1, T-helper cell 1; TNF-α, tumor necrosis
factor-dα; TP, thymidine phosphorylase; Treg,
regulatory T cell; VEGF, vascular endothelial
growth factor.
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Lung cancer

Many reports demonstrated a positive correlation between TAM
density and increased vascularization, as well as poor progno-
sis, in non-small-cell lung cancer (NSCLC).37 The site of TAM
infiltration also influences prognosis. Multiple reports found in-
creased stromal TAM density to be independent predictor of re-
duced survival, whereas TAM density in tumor islets correlated
with a good prognosis.38 Phenotypic analysis of islet macro-
phages indicated that the density of M1-TAMs (defined by
CD68+ and either HLA-DR+ or iNOS+) was significantly in-
creased compared with that of M2-TAMs (defined by CD68+

and either CD163+ or VEGF+); 70% of islet macrophages were
positive for M1 markers versus 38% being positive for M2
markers in the extended survival group of patients with rela-
tively early stages of NSCLC.39 The authors suggested that
TNF-α produced by M1-TAMs may have antitumor activity.40

With regard to the site of TAM infiltration, a study of advanced
NSCLC showed that most (>95%) CD68+ TAMs were found
in the tumor stroma and showed positive co-staining with
CD163.37 Patients with progressive disease had significantly
higher TAM counts, and high TAM counts were significantly re-
lated to poor progression-free survival (PFS) and OS.37 Studies
using CD204 as an M2 marker indicated a significant associa-
tion of CD204+ TAM density and poor outcome of patients with
adenocarcinoma41 and squamous cell carcinoma of the lung.42

As an interesting finding, the number of circulating
CD14+CD204+ cells in the pulmonary vein of NSCLC patients
correlated with the number of CD204+ TAMs in the tumor
stroma andwas a significant independent risk factor for early re-
currence.43 That density of TAMs, especiallyM2-TAMs in tumor
stroma, is associated with poor prognosis in NSCLC is gener-
ally believed. In the early stage of NSCLC, however, M1-TAM
density in tumor islets correlates with long survival.

Only a few reports examined the association between small-
cell lung cancer and TAMs. The analysis of CD204+ TAMs
showed no relationship of these cells with OS or relapse-free
survival of patients with this cancer.44

Hepatocellular carcinoma (HCC)

HCC is an inflammation-related cancer. Chronic inflammation
after hepatitis virus infection is the major risk factor for HCC de-
velopment. Various components including immune cells,
carcinoma-associated fibroblasts, hepatic stellate cells, endo-
thelial cells, and extracellular matrix form microenvironments
in HCC. TAMs are a main component in the microenviron-
ments, but they do not necessarily possess the M2 phenotype,
and, unlike the situation in many other tumors, the activated
state of TAMs varies according to the complex stimulations as-
sociated with the inflammatory milieu.

Several reports showed positive correlations between
CD68+ TAM density and poor prognosis.45–47 In contrast, the

density of CD163+ M2-TAMs had no prognostic value.47 A fa-
vorable association between CD68+ TAM density and DFS
and OS was also reported.48 With regard to the relationship
between macrophages and metastasis, the density of
CD68+HLA-DR+ M1-like TAMs in HCC cases with metastasis
was reportedly significantly higher than in cases without me-
tastasis.49 The authors speculated that increased motility of
HCC cells activated by M1-like macrophages enhanced
metastasis.

Sites of TAM infiltration in HCC influence prognosis in differ-
ent ways. One study reported that both intratumoral and mar-
ginal densities of CD68+ TAMs were associated with poor OS
and DFS, whereas peritumoral TAM density was unrelated to
OS and DFS.46 In contrast, another study45 reported that the
presence of peritumoral TAMs was related to an early recur-
rence and was an independent prognostic factor for OS and
DFS, whereas that of intratumoral TAMs was unrelated to
survival.

Therefore, not all but a considerable number of reports dem-
onstrated a relationship between TAM density and poor out-
come of patients with HCC, but the effect of macrophage
phenotypes was not clear compared with tumors in other sites,
probably because TAMs in HCC are exposed to complex acti-
vation in the tumor microenvironment modified by chronic
inflammation.

Colorectal cancer

Although high numbers of TAMs correlate with poor prognosis
in many cancers,3,4 colorectal cancer is one of the few excep-
tions to this association.50 Many studies reported that a high
density of CD68+ TAMs at the invasive front was related to a fa-
vorable prognosis of patients with colorectal cancer.50,51 Mac-
rophage phenotype analysis found that patients with a high
infiltration of iNOS+ M1-TAMs at tumor fronts had a significantly
better prognosis than those with few iNOS+ M1-TAMs.51 Con-
versely, certain reports indicated that intratumoral CD68+ TAM
counts correlated with depth of invasion, lymph node metasta-
sis, and staging of colorectal cancer.52

The intestine is an organ that is exposed to continuous im-
mune stimuli. Edin et al.51 observed increased infiltration of
M1 macrophages at tumor fronts that was accompanied by a
concomitant increase in M2 macrophage numbers. They found
that the presence and functions of M1macrophages dominated
those of M2 macrophages in colorectal cancer, thereby leading
to an improved prognosis.50 Macrophages expressed
costimulatory molecules such as CD80 and CD86 and stimu-
lated antitumor immunity at the invasive front of colorectal can-
cer.53 Though not related to TAMs, that neoplastic colorectal
cancer cells themselves express CD163 should be noted.
CD163+ tumor cells were detected in 32 of 163 cases (23%)
of rectal cancer, and such patients had a poorer prognosis than
did patients with CD163� cells.54
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Gastric cancer

Gastric cancer, which has close links to Helicobacter pylori in-
fection, is associatedwith infiltration of various immune cells. In-
filtrations of CD8+ cytotoxic T cells, dendritic cells, and
CD45RO+ T cells were related to good prognosis, whereas infil-
trations of TAMs, myeloid-derived suppressor cells, and
forkhead box P 3 (FOXP3+) regulatory T cells were related to
poor prognosis.55 Many studies indicated that the number of
CD68+ TAMs correlated with the depth of invasion, lymph node
metastases, microvessel density, and poor outcome of
patients.56

With regard to phenotypic analysis of TAMs, Pantano et al.57

examined M1-TAMs (CD68+NOS2+) and M2-TAMs
(CD68+CD163+) by double immunostaining in 52 cases of
stomach cancer. A correlation with prognosis was not found
for M2-TAMs alone; the group with a high M1/M2 ratio had a
longer survival. The M1/M2 ratio was thus a positive indepen-
dent predictor of survival. Another study indicated that a high
number of CD204+ M2-TAMs was related to a poor 5-year
OS.58

Pancreatic cancer

Pancreatic cancer possesses abundant stroma, which may ac-
count for up to 80%of the tumormass andwhich containsmany
kinds of non-tumor cells including immune cells such asmacro-
phages, cancer-associated fibroblasts, and endothelial cells.59

Among these cells, TAMs are critical for tumor growth and influ-
ence the outcome of patients. Many researchers noted the un-
favorable role of M2-TAMs in this disease.60–62 Cases with high
numbers of M2-TAMs (either CD163+ or CD204+), but not
CD68+ TAMs, manifested significantly increased lymphatic
vessel density, a high incidence of lymph node metastasis,
and poor prognosis.60 High numbers of CD204+ TAMswere as-
sociated with large tumors, early recurrence, and shortened
survival in patients with invasive ductal carcinoma of pancreas
head.61 Close localization of CD44+CD133+ cancer stem cells
and CD204+ TAMs was related to shorter OS and DFS in pan-
creatic ductal adenocarcinoma.62 Taken together, these reports
show M2-TAMs contributed to poor prognosis in pancreatic
ductal carcinoma.

Prostate cancer

As in many other cancers, dense infiltration of TAMs correlates
with unfavorable clinical characteristics in patients with prostate
cancer.63,64 A significant number of studies, however, reported
the opposite relationship.65

In one report analyzing biopsy specimens, the number of
CD68+ TAMs correlated with blood levels of prostate-specific
antigen, Gleason’s score, and advanced clinical stage.64 An-
other report found a significantly higher number of CD68+ TAMs

in prostate cancer compared with prostatic intraepithelial neo-
plasia and normal prostate tissue.66 Patients treated with an-
drogen deprivation therapy showed a relationship between
high CD68+ TAM density and an increased risk of biochemical
recurrence.63 With regard to macrophage phenotype analysis,
denser infiltration of CD204+ TAMs was observed in malignant
glands than in normal glands, in contrast to CD68+ TAMs, which
tended to infiltrate normal glands.67

However, opposite correlations were also reported. Several
groups found that reduced numbers of CD68+ TAMs and/or
CD204+ cells including macrophages and dendritic cells were
associated with cancer progression and poor prognosis.65

Thyroid cancer

In the early 1990s, a positive correlation between the density of
CD68+ TAMs and increased vascularization of thyroid tumors
was published.68 Ryder et al., in a comparative analysis of
well-differentiated, poorly differentiated, and anaplastic thyroid
carcinomas, reported a denser infiltration of CD68+ TAMs in an-
aplastic carcinomas (95%) and poorly differentiated carcino-
mas (54%) compared with well-differentiated carcinomas
(27%). In that report, increased TAMnumbers in poorly differen-
tiated carcinomas were associated with capsular invasion,
extrathyroidal extension, and reduced cancer-related sur-
vival.69 Another group reported a positive correlation between
the density of CD68+ TAMs and lymph node metastases in pa-
tients in advanced stages of the disease.70

In contrast, the infiltration of immune cells, including CD68+

TAMs and CD8+ lymphocytes, was associated with an in-
creased DFS in differentiated thyroid carcinoma.71 Those au-
thors believed that such contradictory results may have been
related to the different microenvironments in differentiated and
undifferentiated carcinomas and that the prognosis of patients
with differentiated thyroid carcinomas may be influenced by
the complex interactions among infiltrated mixed immune cells.

Cholangiocarcinoma

An association between TAM infiltration and poor survival was
also found for cholangiocarcinoma. We reported that the densi-
ties of CD68+ TAMs andCD163+M2-TAMs in intrahepatic chol-
angiocarcinoma were associated with microvessel density and
the number of FOXP3+ regulatory T cells.22 High numbers of
CD163+ M2-TAMs correlated with poor DFS, although no such
relationship was seen with OS. Another study reported that pa-
tients with a high density of MAC387+ macrophages (recently
migrated monocyte-derived macrophages) had the worst OS.
Double immunofluorescent staining revealed that MAC387+

macrophages co-expressed matrix metalloproteinase-9, which
indicated that such macrophages are critical for degrading the
extracellular matrix and facilitating tumor metastasis.72 The
same group found an increased CD14+CD16+ monocyte
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subset in peripheral blood in patients with a high density of
MAC387+ macrophages and suggested the CD14+CD16+

monocyte level as a possible predictor of tissue invasion in
cholangiocarcinoma.73 One recent study reported a significant
association of a high density of CD163+ M2-TAMs in cholangio-
carcinoma with the presence of extrahepatic metastases.74 As
an interesting result, they found that some tumor cells
expressed CD163, which correlated with metastasis. They sug-
gested that this observation was evidence of involvement of
epithelial-to-mesenchymal transition.75

Renal cell carcinoma (RCC)

TAM infiltration in RCC contributes to tumor progression and
metastasis via stimulating angiogenesis, tumor growth, and cell
migration and invasion. Moreover, TAMs were involved in the
epithelial-to-mesenchymal transition of RCC cells and in devel-
opment of tumor resistance to targeted drugs.76 The density of
CD68+ TAMs increased with tumor size and was implicated in
RCC progression.77 Patients with recurrence had significantly
higher VEGF levels and TAM density than did those without re-
currence. Because the TAM count correlated well with
microvessel density, angiogenesis was thought to be the main
mechanism of tumor progression.77 Gene expression analysis
of RCC revealed negative correlations of CD68 and FOXP3
(a regulatory T cell marker) with survival.78

In our analysis of macrophage phenotypes, CD163+ M2-
TAM density correlated better than CD68+ TAM density with
poor prognosis.79 Similar results were reported for CD206, an-
other M2 macrophage marker.80 The expression of M2-TAM-
related genes such as those encoding CD163, IFN regulatory
factor 4, and fibronectin 1 correlated with large tumor size and
poor outcome, whereas expression of the iNOS gene, an M1-
TAM-related gene, showed an inverse correlation.78 We dem-
onstrated expression of T-cell immunoglobulin and mucin
domain-containing molecule-3 (TIM-3) on tumor cells and a
positive correlation of CD204+ TAMs with shorter PFS in pa-
tients with RCC,81 and we suggested that TIM-3 is implicated
in resistance to antitumor therapy.

Urothelial cell carcinoma of the bladder

TAM infiltration in this carcinoma is related to poor prognosis, as
in many other cancers. CD68+ TAM density was significantly
higher in invasive bladder cancer than in superficial bladder
cancer, and TAM density was related to microvessel density.82

These authors noted that cases with high TAM density mani-
fested frequent distant metastasis and that their 5-year survival
rate was significantly low. Another study also reported a signif-
icant correlation between TAM density and microvessel density
as well as poor prognosis.83 With regard to bacille de Calmette
et Guérin (BCG) therapy, which is the gold standard of bladder
cancer treatment, a high infiltration of CD68+ TAMs was related

to an increased risk of recurrence in patients with non-muscle-
invasive urothelial cancer before BCG immunotherapy.84 Anal-
ysis of patients with bladder carcinoma in situ who received
BCG therapy indicated frequent recurrences in patients with a
high density of CD68+ TAMs.85

Subtype analysis of macrophages showed that the density of
CD204+ stromal macrophages predicted poor prognosis and
had a positive association with tumor size and stage, nodal me-
tastasis, and histological grade.86

Endometrial cancer

Many studies reported that patients with endometrial cancer
showed a correlation of dense infiltration of TAMswith poor out-
come. Intratumoral density of CD68+ TAMs was significantly
associated with FIGO stage, histological grade, Ki-67 expres-
sion, and intratumoral expression of Ki-67 and p53.87 High
CD68+ TAM counts were also related to reduced survival.87 An-
other study also found positive links between CD68+ TAMs at
the invasive margin and FIGO stage, histological grade,
microvessel density, myometrial invasion, and lymph node me-
tastasis.88 Patients with high numbers of CD68+ TAMs at the in-
vasive margin had significantly worse PFS and OS than did
those with low marginal CD68+ TAM numbers.88 In contrast,
certain other studies failed to demonstrate significant correla-
tions between CD68+ TAM density and prognosis,89 although
they did find associations with myometrial invasion and
microvessel density.89

In a macrophage phenotype analysis, CD163+ M2-TAM den-
sity correlated significantly with myometrial invasion,
microvessel density, and regional lymph node metastasis,90

but a correlation with prognosis was not described.

Epithelial ovarian cancer

Although ovarian cancer manifests many kinds of histological
subtypes, we discuss only epithelial ovarian cancer here be-
cause most studies of TAMs focused on epithelial-type can-
cers. Our analysis confirmed that macrophages represent the
most abundant infiltrating immune cells in human epithelial
ovarian cancer, although various immune cells occur in the
stroma, as is the case for other solid tumors.91 However, most
reports analyzingCD68+ TAMs failed to demonstrate significant
associations with prognosis.92 In contrast, CD163+ M2-TAM
density correlated significantly with poor prognosis. PFS and
OS were significantly higher in the low-CD163 expression
group than in the high-CD163 expression group.92 The expres-
sion of CSF-1, a cytokine that inducesM2 differentiation ofmac-
rophages, was high in malignant ovarian tumors compared with
borderline and benign tumors is noteworthy.93 In contrast, a
high M1/M2 ratio of TAMs was associated with extended sur-
vival in ovarian cancer patients.94 These reports thus indicate

496 M. Takeya and Y. Komohara

© 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd



that M2-TAMs were related to poor prognosis in epithelial ovar-
ian cancer but that the total number of CD68+ TAMs were not.

Uterine cervical cancer

Infection with human papillomavirus (HPV) has a strong associ-
ation with the development of uterine cervical cancer. HPV is
responsible for almost all cervical cancer cases, and HPV-
associated inflammation and consequent immune reaction
influence disease progression.95 HPV-specific T cells report-
edly infiltrated cervical cancer tissues, but HPV-specific T-cell
responses were detected in only half of patients with cervical
cancer or high-grade squamous intraepithelial lesions.95

CD68+ macrophage infiltration was also found in cervical can-
cer tissues, and high numbers of stromal CD68+ TAMswere re-
lated to tumor size.96 In a comparative study of the normal
cervix, low-grade squamous intraepithelial lesions, high-grade
squamous intraepithelial lesions, and cervical cancer, CD68+

macrophage counts increased linearly with disease progres-
sion.97 The number of CD68+ TAMs in the tumor stroma corre-
lated significantly with lymphatic vessel density and lymphatic
metastasis.98 However, these studies did not address a link be-
tween CD68+ TAMs and prognosis.
In analysis of macrophage phenotypes, CD14+CD33�

CD163� M1-TAMs showed a correlation with a large influx of
intraepithelial T lymphocytes, improved disease-specific sur-
vival, and served as an independent prognostic factor for sur-
vival in patients with cervical cancer. In locally advanced
cervical cancer, polarization of TAMs to M2 macrophages cor-
related with poor responses to chemoradiation therapy and re-
duced survival.99 One study introduced a new double
immunohistochemical approach for identifyingM1 andM2mac-
rophages, and CD163+pSTAT1+ TAMs and CD68+pSTAT1+

TAMs were defined as M1-TAMs, whereas CD163+CMAF+

TAMs and CD68+CMAF+ TAMs were defined as M2-TAMs.100

Esophageal cancer

Many studies of esophageal squamous cell cancer reported an
association between TAM density and poor prognosis.101–103

Significantly higher CD68+ TAM counts were detected in pa-
tients with lymph node metastasis than in those without metas-
tasis, and such counts were an independent prognostic factor
for survival.101

Concerning macrophage phenotypes, CD204+ M2-TAMs
were significantly related to poor prognosis for patients.102 A
comparative analysis of CD163+ M2-TAMs and CD204+ M2-
TAMs found that a high density of CD204+M2-TAMswas signif-
icantly associated with features indicating greater malignancy,
including depth of tumor invasion, lymph and blood vessel inva-
sion, and lymph node metastasis, as well as clinical stage,
whereas CD163+ M2-TAMs had no correlation with these clini-
copathological features except for depth of tumor invasion and

blood vessel invasion.102 In this report, patients with high
CD204+ TAM counts had poor DFS.

In esophageal adenocarcinoma without neoadjuvant treat-
ment, an increased number of CD163+ M2-TAMs and poor sur-
vival were correlated. The M2(CD163+)/M1(CD40+) ratio was
significantly higher in node-positive esophageal adenocarci-
nomas than in node-negative esophageal adenocarcinomas
and was inversely correlated with OS.103

ROLE OF TAMS IN NON-EPITHELIAL TUMORS

Glioma

TAM density in gliomas increases in association with a higher
grade.104 CCL2 and other chemoattractants including GM-
CSF and VEGF are believed to be responsible for macrophage
infiltration into gliomas.105,106 In fact, glioblastoma cell line-
derived protein was used for initial purification of CCL2.107

In the brain, microglial cells, which are macrophages in the
central nervous system, constitute 5–20% of the glial cell popu-
lation.108 It is indicated that microglial cells originate from fetal
macrophages, but not monocytes.8 Although differentiating
microglial cells frommonocyte-derivedmacrophages is difficult,
there is a good possibility that microglial cells, as well as
monocyte-derived macrophages, influence tumor progression.

A number of authors reported a positive association between
TAM density and microvessel density, and angiogenic factors
such as VEGF and TP109,110 were reportedly responsible for
this result. Microglial cells promoted invasion of glioblastoma
cells through signaling pathways involving EGF receptor and
CSF-1 receptor.111

Although densities of both CD68+ TAMs and CD163+ M2-
TAMs as well as CD204+ TAMs increased in association with
grade, CD163+ M2-TAMs and CD204+ TAMs increased more
than did CD68+ TAMs.104 A positive correlation between densi-
ties of CD163+ M2-TAMs and CD204+ TAMs and poor progno-
sis was observed, but no such correlation was found for CD68+
TAMs.104

Unlike the situation in other tumors such as breast cancer,
NSCLC,andHCC, thedegreeofTAM infiltrationdidnotdifferbe-
tween central and marginal areas of gliomas.112 Close cell–cell
communications between macrophages and tumor cells exist
in gliomas.Co-culture ofmacrophagesandgliomacells resulted
inactivationofSTAT3 inbothcell types.25Thesereports together
show that TAMs in gliomas increased microvessel density and
promoted tumor growth and tumor cell invasion. TAMs have
emerged asexciting targets for therapeutic intervention, and fur-
ther investigationmay yield new glioma treatment strategies.

Melanoma

Melanoma is a high-grade tumor showing high invasive and
metastatic capacity. Different kinds of immune cells infiltrated
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the melanoma stroma, and the increased number of macro-
phages was associated with local progression of primary mela-
nomas.113 TAM density was significantly higher in thick
melanomas than in thin melanomas and was positively corre-
lated with melanoma invasiveness and metastasis.114 Dense
CD163+ M2-TAM infiltration in tumor stroma and CD68+ TAM
infiltration at the invasive front were related to poor OS.115

These authors indicated that both serum levels of soluble
CD163 and the presence of CD68+ TAM infiltration at the inva-
sive tumor front were independent predictors of survival in stage
I/II melanoma.

For melanoma at special sites, intratumoral CD68+ TAM den-
sity was associated with tumor thickness and with OS in
sinonasal melanoma of stages I and II.116 In uveal melanoma,
high CD163+ M2-TAM density correlated with increased
microvessel density and worse prognosis.117

Hodgkin lymphoma

Although the presence of macrophages in tumor tissues of
Hodgkin lymphoma has long been known,118 their role in dis-
ease progression received little attention until Steidl et al.119

demonstrated the association of TAMs with poor prognosis in
this lymphoma. They studied gene expression profiles via
fresh-frozen tissues of Hodgkin lymphoma obtained during di-
agnostic lymph node biopsy and found a significant association
of the gene signature of TAMs with primary treatment failure. In
a parallel examination of paraffin-embedded materials via
CD68 immunohistochemistry, they found strong correlations
between CD68+ TAM density and a shortened PFS and
disease-specific mortality rate and concluded that TAM density
predicts treatment outcome. Most subsequent studies by other
groups demonstrated the positive relationship between densi-
ties of CD68+ TAMs and/or CD163+ M2-TAMs and poor out-
come,120–123 although several studies failed to demonstrate
the correlation between either CD68+ TAMs or CD163+ M2-
TAMs with prognosis.124

In a comparative analysis of CD68 and CD163, several stud-
ies indicated the superiority of CD163 compared with CD68 for
predicting poor prognosis.120,122,123

Barros et al.125 introduced a new immunohistochemical ap-
proach for identifying M1 and M2 macrophages in an analysis
of pediatric Hodgkin lymphoma. By using double immunohisto-
chemical staining combining CD68 or CD163 with pSTAT1
(M1-like) or CMAF (M2-like),100 they found better OS in cases
with higher numbers of CD163+pSTAT1+M1-like macrophages
but worse PFS in cases with higher numbers of CD163+CMAF+

M2-like macrophages.125

B-cell non-Hodgkin lymphoma

In follicular lymphoma, gene expression profiling of tumor bi-
opsy specimens from untreated patients indicated an important

role of non-malignant tumor-infiltrating cells for predicting the
outcome of patients.126 In this study, most genes associated
with poor prognosis were those preferentially expressed in
macrophages, dendritic cells, or both. Ensuing immunohisto-
chemical studies usingCD68and/orCD163 reported significant
relationships between TAM density and poor prognosis.127–130

Studies evaluating the influence of rituximab (anti-CD20 anti-
body) therapy found that high TAM content correlated with lon-
ger survival129,130 or that the correlation between TAMs and
poor prognosis was abrogated.128

With respect to diffuse large B-cell lymphoma, associations
between CD68+ TAMs and prognosis varied. Some studies re-
ported a significant link between CD68+ TAM density and poor
outcome,131,132 whereas others reported no association with
prognosis.133,134 In contrast, the number of CD163+ TAMs
and the CD163/CD68 ratio showed significant correlations with
a poor clinical course in most studies.132,134,135 An interesting
finding was that CD68+ TAM numbers were associated with a
favorable prognosis when patients received rituximab together
with multi-agent chemotherapy,135 as in follicular lym-
phoma.128–130 Such an inverse effect of M2-TAMs associated
with rituximab therapymay be related to the fact that M2macro-
phages phagocytose rituximab-opsonized lymphoma cells
more efficiently than do M1 macrophages.136 In B-cell lym-
phoma, different therapeutic regimens are thought to influence
the role of TAMs. Reverse correlations between M2-TAM den-
sity and prognosis were observed in two groups of patients re-
ceiving different therapeutic regimens.137

T-cell non-Hodgkin lymphoma

Our studies of adult T-cell leukemia/lymphoma showed that an
increased percentage of CD163+ macrophages among total
TAMs was significantly associated with a poor clinical progno-
sis, although the numbers of TAMs positive for CD68, CD204,
or CD206 had no correlation with outcome.138,139 A study of
angioimmunoblastic T-cell lymphoma found that a higher ratio
of CD163+ M2-TAMs to CD68+ TAMs had a significant correla-
tion with worse OS.140

In a study of cutaneous T-cell lymphoma, a high number of
CD163+ M2-TAMs was linked to a poor clinical prognosis.141

The serum soluble CD163 level correlated with soluble IL-2 re-
ceptor and CCL17 levels and was associated with disease pro-
gression.141 Two studies of natural killer/T-cell lymphoma
demonstrated an association of CD68+ TAM number with poor
prognosis.142,143

DISCUSSION AND FUTURE PERSPECTIVES

Tables 1 and 2 summarize the roles of TAMs in epithelial tu-
mors and non-epithelial tumors, respectively. In many epithelial
tumors including breast cancer, lung cancer, gastric cancer,
pancreatic cancer, cholangiocarcinoma, renal cell carcinoma,
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urothelial cell carcinoma of the bladder, endometrial cancer, ep-
ithelial ovarian cancer, and esophageal cancer, TAMs are

thought to contribute tumor progression and correlate with poor
prognosis of patients (Table 1). M2-TAMs are linked to poor

Table 1 Roles of TAMs in human epithelial tumors

Tumor type
Link of TAMs to tumor

progression and prognosis Comments

Breast cancer Poor prognosis (invasive ductal
carcinoma)

High TAM density correlated with tumor progression with
or without link to poor prognosis in invasive ductal
cancer29–32 and triple-negative cancer,33 but not in
invasive lobular carcinoma.32

M2-TAMs were related to poor prognosis more closely
than were total TAMs.34

Stromal TAMs linked to poor prognosis more closely than
were intratumoral TAMs.35,36

Lung cancer Poor prognosis (non-small
cell lung cancer)

TAM density correlated with increased vascularization as
well as poor prognosis.37

No relationship (small cell
lung cancer)

Stromal TAM density was an independent predictor of
reduced survival, whereas TAM density in the tumor islets
correlated with good prognosis in non-small cell lung
cancer.38

No relationship between TAMs and prognosis of patients
was found in small cell lung cancer.44

Hepatocellular carcinoma Relatively poor prognosis Several reports indicated a link between TAMs and poor
prognosis,45–47 but a study reported an opposite link.48

Sites of TAM infiltration in HCC influenced prognosis
differently.45,46

Effect of TAM phenotypes was not clear.
Colorectal cancer Better prognosis High TAM density at the tumor invasive front correlated

with favorable prognosis.51

Gastric cancer Poor prognosis High CD68+ TAM density correlated with tumor
progression with or without link to poor prognosis.56

Pancreatic cancer Poor prognosis (ductal carcinoma) M2-TAMs were related to poor prognosis more closely
than were total TAMs.60–62

Prostate cancer Relatively poor prognosis Many reports indicated a link between TAMs and poor
prognosis,63,64 but not a few studies reported an opposite
link.65

Thyroid cancer Not clear Dense TAM infiltration was observed in poorly
differentiated carcinoma69 as well as in advanced thyroid
cancer.70

Relationship between TAM density and prognosis of
patients was not clear.

Cholangiocarcinoma Poor prognosis High TAM density correlated with poor prognosis.22,72

TAM density was associated with microvessel density and
the number of FOXP3+ regulatory T cells.22

Renal cell carcinoma Poor prognosis High TAM density correlated with tumor progression with
or without link to poor prognosis.76–81M2-TAMs were
related to poor prognosis more closely than were total
TAMs.79,80

Urothelial cell carcinoma
of the bladder

Poor prognosis High TAM density correlated with tumor progression with
or without link to poor prognosis.82–86

Recurrence after BCG therapy occurred frequently in
patients with a high density of TAMs.84,85

Endometrial caner Poor prognosis High TAM density correlated with tumor progression with
or without link to poor prognosis.87–90

M2-TAMs but not total TAMs correlated with poor
prognosis.90

Epithelial ovarian cancer Poor prognosis High density of M2-TAMs but not total TAMs correlated with
tumor progression with or without link to poor prognosis.92

Uterine cervical cancer Not clear No association between CD68+ TAMs and prognosis.96,98

Esophageal cancer Poor prognosis High TAM density linked to poor prognosis.101–103

M2-TAMs were related to poor prognosis more closely
than were total TAMs.103

BCG, bacille de Calmette et Guérin; FOXP3, forkhead box P 3; HCC, hepatocellular carcinoma; RCC, renal cell carcinoma;. TAM, tumor-associated
macrophage.
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prognosis more than are total TAMs in breast cancer, pancre-
atic cancer, renal cell carcinoma, endometrial cancer, epithelial
ovarian cancer, and esophageal cancer. In inflammation-
related cancers such as HCC and uterine cervical cancer, the
influence of TAMs on tumor progression is limited partly be-
cause of the different balance of tumor M1- and M2-TAMs. As
already indicated, TAM density in colorectal cancer correlated
with favorable prognosis.50 Because the large intestine is an or-
gan exposed to continuous inflammatory stimuli from bacterial
flora and digested materials, M1-TAM functions may dominate
over M2-TAM functions.50 The histological features of tumors
and infiltration sites of macrophages also influences the role
of TAMs. In breast and lung cancers, stromal TAM density cor-
related more closely with poor prognosis than did intratumoral
TAM density.35,38 For non-epithelial tumors such as glioma,
melanoma, and lymphoma, most reports indicated a significant
relationship between TAM density and poor prognosis (Table 2
). Close associations including direct contact between tumor
cells and TAMs exist in non-epithelial tumors. Such cell-to-cell
interaction is believed to promote M2 polarization of macro-
phages and proliferation of tumor cells via activation of
STAT3.25

Most human studies today have used CD68 as a pan-
macrophage marker, and CD163, CD204, and/or CD206 as
M2 phenotype markers to compare total TAMs and M2-TAMs.
In most papers referred to in this review, CD163 was mainly
used to detect M2-TAMs. Certain studies compared CD163+

TAMs and CD204+ TAMs. In esophageal squamous cell carci-
noma, a high density of CD204+ TAMs correlated with more
malignant phenotypes, whereas a high density of CD163+

TAMs did not.102 In glioma104 and pancreatic ductal carci-
noma,60 both CD163+ TAMs andCD204+ TAMs correlated with
poor prognosis of patients. In clear cell renal cell carcinoma79

and adult T-cell leukemia/lymphoma,138,139 in contrast,

CD163+ TAMs correlated with poor prognosis but CD204+

TAMs did not. These differences between CD163+ and
CD204+ TAMs indicate that CD163 and CD204 are differently
induced in M2 macrophages in a manner that depends on tu-
mor type and tumor-specific microenvironments. For example,
the matricellular protein cysteine-rich angiogenic inducer 61,
which is enriched in tissues of esophageal squamous cell carci-
noma, is believed to induce CD204 expression in infiltrated
macrophages.144 The molecular functions of CD163 and
CD204 themselves are also suggested directly influence the
function of M2-TAMs. CD163 is a membrane protein belonging
to the scavenger receptor cysteine-rich domain family and acts
as an endocytic receptor for a hemoglobin-haptoglobin (Hb-Hp)
complex.145 Binding of this Hb-Hp complex to CD163 elicits a
direct anti-inflammatory effect via secretion of IL-10.145 CD204
is a class A scavenger receptor that recognizes various nega-
tively charged macromolecules, including modified low-density
lipoproteins and apoptotic cells.146 CD204 suppresses the
TLR4-mediated inflammatory response by inhibiting the binding
of LPS to TRL4 in a competitive manner.146 Because both mol-
ecules possess some kind of anti-inflammatory function,
CD163 and CD204 may be directly involved in the functions
of M2-TAMs.

For determining macrophage phenotypes in tumor tissue
specimens, currently used immunohistochemical methods
have limitations to discriminate M1 and M2 macrophages. Be-
cause M1 and M2 stimuli do not exist alone in tumor tissues,
TAMs are activated variously by multiple stimuli. Each of
CD163, CD204, or CD206 recognizes different spectrums of
macrophages stimulated toward M2 phenotype. Another prob-
lem is that no suitable immunohistochemical markers exist to
detect M1 macrophages. Several recent studies introduced
double immunohistochemical methods using a macrophage-
specific molecule and molecules associated with functions of

Table 2 Roles of TAMs in human non-epithelial tumors

Tumor type
Link of TAMs to tumor

progression and prognosis Comments

Glioma Poor prognosis High TAM density correlated with tumor progression with
or without link to poor prognosis.104,112

M2-TAMs were related to poor prognosis more closely than
were total TAMs104

Melanoma Poor prognosis High TAM density correlated with tumor progression with or
without link to poor prognosis.113–117

Hodgkin lymphoma Poor prognosis High TAM density linked to poor prognosis.119–123

M2-TAMs were related to poor prognosis more closely than
were total TAMs.120,122,123

B-cell non-Hodgkin lymphoma Poor prognosis High TAM density linked to poor prognosis.127–132,134,135

M2-TAMs were related to poor prognosis more closely than
were total TAMs.132,134,135

High TAM density correlated with longer survival in rituximab-
treated patients.129,130,135

T-cell non-Hodgkin lymphoma Poor prognosis M2-TAMs were related to poor prognosis more closely than
were total TAMs.138–142

TAM: tumor-associated macrophage.
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M1 or M2 macrophages that are not necessarily specific for
macrophages. For example, Ohri et al.39 used CD68/HLA-DR
as an M1 marker and CD68/CD163 as an M2 marker. Barros
et al.100 used CD68/STAT1 and CD163/STAT1 as M1 markers
and CD68/CMAF and CD163/CMAF as M2 markers. Although
these trials produced new findings, more specific immunohisto-
chemical markers to differentiate M1 and M2 macrophages are
needed.
Accumulated data indicate the close association of TAMs

and poor prognosis in many human cancers, and TAMs, espe-
cially M2-TAMs, are thought to be a new therapeutic tar-
get.21,147 Resetting macrophages phenotypes by exposing
M2 macrophages to M1 stimuli, or vice versa, can re-polarized
already differentiated macrophages.148 For example, treat-
ments have attempted to re-polarized M2 TAMs in loco by sup-
pressing the molecules implicated in M2 differentiation
including nuclear factor-κB, STAT3, STAT6, and IFN regulatory
factor 4.148–150 Further clarification of TAM phenotypes and
their role in individual human malignancy will provide valuable
data for developing new therapeutic strategies.
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