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In this paper a new modified couple stress model is developed for the SainteVenant torsion problem of
micro-bars of arbitrary cross-section. The proposed model is derived from a modified couple stress
theory and has only one material length scale parameter. Using a variational procedure the governing
differential equation and the associated boundary conditions are derived in terms of the warping
function. This is a fourth order partial differential equation representing the analog of a Kirchhoff plate
having the shape of the cross-section and subjected to a uniform tensile membrane force with mixed
Neumann boundary conditions. Since the fundamental solution of the equation is known, the problem
could be solved using the direct Boundary Element Method (BEM). In this investigation, however, the
Analog Equation Method (AEM) solution is applied and the results are cross checked using the Method of
Fundamental Solutions (MFS). Several micro-bars of various cross-sections are analyzed to illustrate the
applicability of the developed model and to reveal the differences between the current model and an
existing one which, however, contains two additional constants related to the microstructure. Moreover,
useful conclusions are drawn from the micron-scale torsional response of micro-bars, giving thus a better
insight in the gradient elasticity approach of the deformable bodies.

� 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

In recent years a need has been raised in engineering practice to
predict accurately the response of micron-scale structures, which
can be either the components of microelectromechanical systems
(MEMS) or various other micro-featured materials (such as foams,
human bone, etc.) which show size-dependent mechanical
behavior at different length scales (see e.g. Lakes, 1983). The
behavior of such structures has been proven experimentally to be
size dependent in metals (see e.g. Fleck et al., 1994; Poole et al.,
1996) and in polymers (Lam and Chong, 1999; Chong and Lam,
1999). Thus, the utilization of strain gradient (higher order)
theories containing internal material length scale parameters is
inevitable. The couple stress theory is a special case of these higher-
order theories inwhich the effects of the dilatation gradient and the
deviatoric stretch gradient are assumed to be negligible. An analytic
presentation of the aforementioned theories can be found in
(Vardoulakis and Sulem, 1995; Exadaktylos and Vardoulakis, 2001;
Tsepoura et al., 2002; Lubarda, 2003). Although, the strain gradient
þ30 2107721655.
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theories encounter the physical problem in its generality, they
contain additional constantse besides the Lamé constantsewhich
must be determined through meticulous experiments at small
length scales (see, e.g. Lakes, 1995).

Thework that has been done on the solution of the SainteVenant
torsion problem of elastic micro-bars ‑ employing couple stress
theories ‑ is limited only to the work of Tong et al. (2004). In their
work the simplified couple stress model of Lam et al. (2003) with
three additional material length scale parameters is applied to the
torsion problem. Since the dilatational strain gradients vanish
identically, the particular model leads to the formulation of the
torsional equation in terms of the warping function which contains
only two material length scale parameters. Two formulations in
terms of pseudowarping function and stress function are presented.
However, the employed analytical solutions are restricted only to
simple geometric shapes. That is, closed-form solutions for circular
and thin-walled cross-section are presented while a series solution
for rectangular micro-bars is also introduced. Moreover, the two
additional constants, in this simplified couple stress model, are
difficult to determine (Lam et al., 2003). Therefore, gradient elastic
models of only one additional material constant are desirable.

Similar problems have been addressed for micropolar elastic
cylinders in the published book by Iesan (2008) and in the

mailto:gtsiatas@gmail.com
www.sciencedirect.com/science/journal/09977538
http://www.elsevier.com/locate/ejmsol
http://dx.doi.org/10.1016/j.euromechsol.2011.03.007
http://dx.doi.org/10.1016/j.euromechsol.2011.03.007
http://dx.doi.org/10.1016/j.euromechsol.2011.03.007


G.C. Tsiatas, J.T. Katsikadelis / European Journal of Mechanics A/Solids 30 (2011) 741e747742
exhaustive literature cited therein. In particular, Iesan (1982, 1986,
2007) formulated a method for the solution of SainteVenant
problems in micropolar beamwith arbitrary cross-section. Detailed
solution of the torsion problem for an isotropic micropolar beam
with circular cross-section can also be found in the papers of Reddy
and Venkatasubramanian (1976) and Gauthier and Jahsman (1975).

In this work the simplified couple stress theory of Yang et al.
(2002) is developed for the solution of the SainteVenant torsion
problem of micro-bars with arbitrary shape. Yang et al. modifying
the classical couple stress theory (e.g. Mindlin, 1964; Koiter, 1964)
proposed a modified couple stress model in which only one
material length parameter is needed to capture the size effect. This
simplified couple stress theory is based on an additional equilib-
rium relation which forces the couple stress tensor to be
symmetric. So far it has been developed for the static bending (Park
and Gao, 2006) and free vibration (Kong et al., 2008) problems of
a BernoullieEuler beam, for the static bending and free vibration
problems of a Timoshenko beam (Ma et al., 2008) and for the
solution of a simple shear problem (Park and Gao, 2008) after the
derivation of the boundary conditions and the governing differ-
ential equation of the theory in terms of the displacement. More-
over, the static bending problem of Kirchhoff isotropic plates was
studied by Tsiatas (2009) and of orthotropic plates by Tsiatas and
Yiotis (2010).

The governing equilibrium equation and the pertinent boundary
conditions in terms of the warping function are derived using the
minimum potential energy principle. The resulting boundary value
problem of the micro-bar is described by a fourth order partial
differential equation, which represents the analog of a Kirchhoff
plate under uniform tensile membrane force with mixed Neumann
type boundary conditions. Since the fundamental solution of the
equation is known, the problem could be solved using the direct
BEM for plates by establishing the integral representation via the
Betti’s reciprocal theorem. Nevertheless, the problem is solved
more efficiently using the AEM with the simple fundamental
solution of the biharmonic operator and the results are cross
checked using theMFS. The employed numerical method is capable
to handle micro-bars with complex geometries. Numerical results
are obtained and useful conclusions are drawn regarding the use of
either couple stress model as well as the size effect on the torsional
response of micro-bars, giving thus a better insight in the gradient
elasticity approach of the deformable bodies.

2. Problem formulation

2.1. Derivation of the governing equations

In the modified couple stress theory presented by Yang et al.
(2002), the strain energy density is a function of both strain
tensor and the symmetric part of the curvature tensor which are
conjugated with the stress tensor and the deviatoric part of the
couple stress tensor. Thus, for a deformable body the strain energy
density is given as

W ¼ 1
2
ðs : 3þm : cÞ (1)

where the strain tensor 3, the symmetric part of the curvature
tensor c, the stress tensor s and the deviatoric part of the couple
stress tensor m are defined as

3 ¼ 1
2
ðVuþ uVÞ (2a)

c ¼ 1
2
ðVqþ qVÞ (2b)
s ¼ lðtr 3ÞIþ 2m3 (2c)

m ¼ 2ml2c (2d)

with u being the displacement vector, q is the rotation vector
defined as (Yang et al., 2002)

q ¼ 1
2
curl u (3)

l, m are the Lamé constants and l is a material length scale
parameter. Note that the deviatoric part of the couple stress tensor
m defined in Eq. (2d) is symmetric due to the symmetry of c given
in Eq. (2b).

Thus, using Eq. (2) the strain energy density (1) takes the form

W ¼ 1
2
lðtr 3Þ2þm

�
3 : 3þ l2c : c

�
(4)

From the above relation it is readily proven that not only the strain
energy density is positive definite but also is a quadratic function of
both 3 and c (Grentzelou and Georgiadis, 2005).

Consider now an elastic bar of length L with arbitrary cross-
section occupying the two-dimensional domain U of arbitrary
shape in the x, y plane bounded by the curve G which may be
piecewise smooth, i.e. it may have a finite number of corners. The
cross-section is constant along the length of the bar and is twisted
by moments Mt applied at its ends. According to SainteVenant’s
torsion theory (e.g. Wagner and Gruttmann, 2001; Katsikadelis,
2002), the deformation of the bar consists of (a) rotations of the
cross-sections about an axis passing through the twist center of the
bar and (b) warping of the cross-sections, which is the same for all
sections. Choosing the origin of the coordinate system at the twist
center of an end section, the rotation at a distance z is wz, where w is
a constant expressing the rotation of a cross-section per unit length.
Assuming that this rotation is small, the displacement components
of an arbitrary point are (e.g. Wagner and Gruttmann, 2001;
Katsikadelis, 2002)

u ¼ �wzy (5a)

v ¼ wzx (5b)

w ¼ wfðx; yÞ (5c)

where fðx; yÞ is the warping function. Taking into account Eqs. (5)
and (3) the displacement and rotation vectors of the micro-bar
become, respectively,

u ¼ �wzye1 þ wzxe2 þ wfðx; yÞe3 (6a)

q ¼ 1
2
w
�
f;y �x

�
e1 �

1
2
wðf;x þyÞe2 þ wze3 (6b)

Substituting Eq. (5) into Eqs. (2a) and (2b) the nonzero
components of the strain and curvature tensor are written as

gxz ¼ wðf;x �yÞ (7a)

gxz ¼ w
�
f;y þx

�
(7b)

cx ¼ 1
2
w
�
f;xy�1

�
(8a)

cy ¼ �1
2
w
�
f;xy þ1

�
(8b)
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cz ¼ w (8c)

cxy ¼ 1
4
w
�
f;yy �f;xx

�
(8d)

respectively. Moreover, the nonzero components of the stress (2c)
and couple stress (2d) tensors, after the appropriate replacement of
the Lamé constants by the modulus of elasticity E and the Poisson’s
ratio n, take the following form

sxz ¼ Gwðf;x �yÞ (9a)

syz ¼ Gw
�
f;y þx

�
(9b)

mx ¼ l2Gw
�
f;xy �1

�
(10a)

my ¼ �l2Gw
�
f;xy þ1

�
(10b)

mz ¼ 2l2Gw (10c)

mxy ¼ 1
2
l2Gw

�
f;yy �f;xx

�
(10d)

where G ¼ E=2ð1þ nÞ is the shear modulus.
In the absence of body force and body couple and taking into

account that the cylindrical surface of the micro-bar is traction and
surface couple free, the first variation of the total potential energy
takes the form (Tsiatas, 2009)

dP ¼ 1
2

Z
V

ðs : d3þm : dcÞdV (11)

and using Eqs. (7)e(10) yields

dP ¼w

Z
U

�
sxzdf;x þsyzdf;y �1

2
mxydf;xx þ1

2
mxydf;yy

þ 1
2
�
mx �my

�
df;xy

�
dU ð12Þ

which, after the transformation of the domain integral using twice
the divergence theorem of Gauss, becomes

dP¼�w

Z
U

�
sxz;xþsyz;yþ1

2
�
mxy;xx�mxy;yyþmy;xy�mx;xy

��
dfdU

þw

Z
G

�
sxznxþsyznyþ1

2
�
mxy;xnx�mxy;ynyþmy;ynx�mx;xny

��

�dfds�w
1
2

Z
G

mnndf;n dsþw
1
2

Z
G

mndf;n ds ð13Þ

where

mn ¼ mxn2x þmyn2y þ 2mxynxny (14a)

mnv ¼ mxy

�
n2x � n2y

�
þ �my �mx

�
nxny (14b)

are the stress resultants; nðnx;nyÞ and tð�ny;nxÞ are the unit
(outward) vector normal to the boundary and the unit tangent to the
boundary, respectively, (nx ¼ cos a, ny ¼ sin awith a ¼ ;x;n).

The first line integral in Eq. (13) represents a line force term
along the boundary (the respective shearing force term in the plate
bending theory e.g. Katsikadelis and Armenakas, 1989). The last
integral in the same equation represents also a line force term and
must be converted in order to be inserted into the first line integral.
Noting that f;t ¼ f;s the integration by parts along the boundary G

of the aforementioned integral givesZ
G

mndf;s ds ¼
Z
G

ðmndfÞs ds�
Z
G

mn;sdf ds

¼
X
k

½mn�kdf�
Z
G

mn;sdf ds (15)

where ½mn�k is the jump of discontinuity of the twisting moment at
the k-th corner. Thus, Eq. (13) becomes

dP¼�w

Z
U

�
sxz;xþsyz;yþ1

2
�
mxy;xx�mxy;yyþmy;xy�mx;xy

��
dfdU

þw

Z
G

�
sxznxþsyznyþ1

2
�
mxy;xnx�mxy;ynyþmy;ynx�mx;xny

�

�1
2
mn;s

�
dfds�w

1
2

Z
G

mntdf;ndsþw
1
2

X
k

½mn�kdf ð16Þ

By applying the principle of total minimum potential energy, i.e.,
dP¼0 for the stable equilibrium and the fundamental lemma of the
calculus of variation (e.g. Reddy, 1999) the governing equilibrium
differential equation of the micro-bar is obtained as

sxz;x þ syz;y þ 1
2
�
mxy;xx �mxy;yy þmy;xy �mx;xy

� ¼ 0 in U (17)

together with the boundary conditions

sxznx þ syzny þ 1
2
�
mxy;xnx �mxy;yny þmy;ynx �mx;xny

�
� 1
2
mn;s ¼ 0 ð18aÞ

mnt ¼ 0 (18b)
on G andX
k

½mn�k ¼ 0 (18c)

at the k-th corner.
Eqs. (17), (18a) and (18b) can be also verified by substituting Eqs.

(7)e(10) into the general equilibrium equations

divsþ 1
2
curlðdivmþ cÞ þ b ¼ 0; in U (19)

produced by Park and Gao (2008), together with the boundary
conditions

snþ1
2
n�½divm�Vðm :n5nÞþc� ¼ ~T�1

2
n�V

�
~S$n

�
(20a)

mn� ðm : n5nÞn ¼ ~S�
�
~S$n

�
n (20b)

onG, of a three-dimensional deformablebody for themodifiedcouple
stress theory of Yang et al. (2002), in the absence of body force, body
couple, traction and surface couple. In Eq. (20) and in whichever
follows, the tilde over a symbol represents prescribed quantity.

Substituting Eqs. (9) and (10) into Eqs. (17) and (18) yields the
governing equation of the micro-bar in terms of the warping
function
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l2
V4f� V2f ¼ 0; in U (21)
4

and the boundary conditions

f;n �l2

4

h
V2f;n þ2ðf;ntÞ;s

i
¼ ynx � xny (22a)

f;tt �f;nn ¼ 0 (22b)

on G.
On the end cross-sections z ¼ 0 and z ¼ L, it is nx ¼ ny ¼ 0

and nz ¼ 1. Thus, the nonzero boundary conditions (20) are

Tx ¼ sxz � 1
2
�
mxy;x þmy;y

� ¼ Gw

 
f;x �yþ l2

4
V2f;x

!
(23a)

Ty ¼ syz þ 1
2
�
mx;x þmxy;y

� ¼ Gw

 
f;y þxþ l2

4
V2f;y

!
(23b)

Along the boundary G of the surface is also present a line force
with components

gx ¼ 1
2
ny
�
my �mx

�þ nxmxy

¼ Gw

"
� l2

�
nyf;xy �nxf;yy

�
� l2

2
nxV2f

#
(24a)

gy ¼ 1
2
nx
�
my �mx

�� nymxy

¼ Gw

"
� l2

�
nxf;xy �nyf;xx

�
� l2

2
nyV2f

#
(24b)

in the x and y direction, respectively.
We can readily prove that the stress resultants of the tractions

(23) and line forces (24) vanish. Namely,Z
U

Tx dUþ
Z
G

gx ds ¼ 0 (25a)

Z
U

Ty dUþ
Z
G

gy ds ¼ 0 (25b)

The moment resultant on the cross-section is going to be

Mt ¼
Z
U

�
xTy � yTx

�
dUþ

Z
G

�
xgy � ygx

�
ds (26)

which, after the substitution of Eqs. (23) and (24) takes the form

Mt ¼ Gw
Z
U

�
x2 þ y2 þ xf;y �yf;x

�
dUþ 3l2Gw (27)

Setting

It ¼
Z
U

�
x2 þ y2 þ xf;y �yf;x

�
dUþ 3l2 (28)

we arrive at

Mt ¼ GwIt (29)

The torsional constant It does not depend only on the shape of the
cross-section, as it happens in the classical Saint‑Venant theory, but
it depends also on the microstructure of the micro-bar.
The domain integral in Eq. (28) can be converted into
a boundary line integral (Katsikadelis, 2002). Thus, Eq. (28) finally
becomes

It ¼
Z
G

h�
xy2 � yf

�
nx þ

�
yx2 þ xf

�
ny
i
dsþ 3l2 (30)
2.2. The plate analog

The equation of a plate with bending stiffness D subjected to
a uniform tensile membrane force N in absence of external load, is
written as

DV4w� NV2w ¼ 0 in U (31)

Further, we consider the natural boundary conditions

Nw;n þVnðwÞ ¼ ynx � xny (32a)

MnðwÞ ¼ 0 (32b)

on G, where Vn and Mn are differential operators defined as

Vn ¼ �D

"
v

vn
V2 � ðn� 1Þ v

vs

 
v2

vnvt

!#
(33a)

Mn ¼ �D

"
V2 þ ðn� 1Þ v

2

vt2

#
(33b)

which represent the effective shear force and bending moment,
respectively, on the boundary.

It is apparent that Eqs. (21) and (22) can be obtained from Eqs.
(31) and (32) forw ¼ f, N ¼ 1, D ¼ l2=4 and n ¼ �1. Thus, in this
case the warping function represents the deflection of a plate
subjected to a uniform tensile membrane force N ¼ 1 with
bending stiffness D ¼ l2=4 and Poisson’s ratio n ¼ �1 in the
absence of external load. Note that, for D ¼ 0 it is Vn ¼ Mn ¼ 0
and Eqs. (31) and (32) give the membrane analog for the classical
SainteVenant problem introduced by Prandtl and others. It should
be mentioned that the deflection surface is not uniquely deter-
mined, since the boundary conditions permit a rigid body motion.
This, however, does not influence the deformation of the cross-
section (Katsikadelis, 2002).

2.3. The modified couple stress torsion model of Tong et al.

In the work of Tong et al. (2004), the couple stress model of Lam
et al. (2003) ‑ with three additional material length scale parame-
ters ‑ is applied to the SainteVenant torsion problem. Since the
dilatational strain gradients vanish identically, the torsion model
contains only two material length scale parameters, namely l1 and
l2. The governing equation of the micro-bar in terms of the warping
function is 
8l21
15

þ l22
4

!
V4f� V2f ¼ 0 in U (34)

and the boundary conditions are

f;n�
 
8l21
15

þ l22
4

!
V2f;n�

 
2l21
3

þ l22
2

!
ðf;ntÞs¼ ynx � xny (35a)

 
8l21
15

þ l22
4

!
V2f�

 
2l21
3

þ l22
2

!
f;tt ¼ 0 (35b)

on G. The boundary tractions on the end cross-sections are



Fig. 1. Normalized torsional constant versus the material length scale parameter of the
square micro-bar. Tong et al. model: l1 ¼ l2; proposed model: l1 ¼ 0, l2 ¼ l.
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Tx ¼ sxz�1
2
�
mxy;xþmy;y

�¼ Gw

"
f;x�y�

 
16l21
15

� l22
4

!
V2f;x

#

(36a)

Ty¼syzþ1
2
�
mx;xþmxy;y

�¼Gw

"
f;yþx�

 
16l21
15

�l22
4

!
V2f;y

#
(36b)

while the moment resultant on the cross-section takes the form

Mt ¼ Gw
Z
U

�
x2 þ y2 þ xf;y �yf;x

�
dUþ 3l22Gw (37)

Note that setting l1/0 and l2 ¼ l in the above equations yield Eqs.
(21)e(23) and (27) of the proposed model.

Eqs. (34) and (35) can be also obtained from Eqs. (31) and (32)
for w ¼ f, N ¼ 1 and

D ¼ 8l21
15

þ l22
4

(38a)

n ¼ 1�
 
2l21
3

þ l22
2

!, 
8l21
15

þ l22
4

!
(38b)

3. The numerical solution

Using the Betti’s reciprocal theorem for the plate equation, in
the absence of external load, we obtain the integral representation
of the solution as (Katsikadelis and Babouskos, 2009)

wðPÞ ¼
Z
G

�
vVnðwÞ �wVnðvÞ � vv

vn
MnðwÞ þ vw

vn
MnðvÞ

�
ds

�
X
k

�
vkTðwÞkk �wkTðvÞkk

�
(39)

where P : fx; yg˛U and v is the fundamental solution of Eq. (31), i.e.
a singular particular solution of the following equation

V4v� m2V2v ¼ dðP � QÞ (40)

given as

v ¼ 1
2pm2

½K0ðmrÞ � ln r� (41)

with K0 being the zero-ordermodified Bessel function of the second
kind and m2 ¼ N=D. T is a differential operator defined as

T ¼ Dð1� nÞ v2

vnvt
(42)

which represents the twisting momentMnt along the boundary and
kTðwÞkk its jump of discontinuity at the k-th corner.

Obviously, the boundary integral equations will result for
P/p˛G. Thus, the warping function can be established by devel-
oping the direct BEM.

However, in order to avoid rather complicated computations of
singular integrals, the problem is solved using the AEM (Tsiatas and
Yiotis, 2010) discretization which employs the simple fundamental
solution

v ¼ 1
8pD

r2ln r (43)

of the biharmonic equation. The results are cross checked using the
MFS as it was applied for plates (Tsiatas, 2009).
4. Numerical examples

On the base of the procedure described in previous section
a FORTRAN program has beenwritten for establishing the torsional
response of the micro-bars. In the MFS the source points are placed
equally on a virtual boundary e outside the domain e at a distance
20% greater than that of the actual one.

4.1. Square micro-bar

For reasons of comparisons a square micro-bar (a=b ¼ 1) was
first investigated employing both couple stress models. In Fig. 1 is
depicted the normalized torsional constant It=Ict (Ict is the torsional
constant of the classical SainteVenant theory) versus the material
length scale parameter l2. The results from the AEM and MFS
solution employing the Tong et al. model (l1¼ l2) are found to be in
excellent agreement with that obtained from their analytical
solution. We can also observe that the torsional constant estimated
by the proposed one-parameter model (l1/0, l2 ¼ l) is smaller as
the material length scale parameter increases to the value of
l2 ¼ 0:3, while, for greater values the difference between the two
models becomes negligible. The presented results indicate that
the torsional constant of the bar increases nonlinearly with the
increase of l2 in both models. Moreover, in Fig. 2 is depicted the
warping surface for the case l1 ¼ l2 ¼ 0:3.
Fig. 2. Warping surface of the square micro-bar.



Table 1
Torsional constant of the rectangular micro-bar.

l2 a=b ¼ 0:8 a=b ¼ 1:2

Tong et al.
model

Proposed
model

Tong et al.
model

Proposed
model

0.0 0.13724 0.13724 0.13838 0.13838
0.1 0.16153 0.15017 0.20210 0.16420
0.2 0.27064 0.24767 0.27822 0.25199
0.3 0.42939 0.40577 0.43386 0.40986
0.4 0.64353 0.62311 0.64604 0.62834

Fig. 3. Normalized torsional constant versus the material length scale parameter of the
rectangular micro-bars. Tong et al. model: l1 ¼ l2; proposed model: l1 ¼ 0, l2 ¼ l.

Fig. 5. Contours of the warping surface of the elliptical micro-bar.
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4.2. Rectangular micro-bars

Afterwards, two micro-bars with rectangular cross-sections of
width a and height b have been analyzed ðN ¼ 100Þ in order to
examine the influence of the micro-bar shape on the torsional
constant. The rectangular dimensions (a=b ¼ 0:894=1:118 ¼ 0:8
and a=b ¼ 1:095=0:913 ¼ 1:2) were chosen such as the area of the
cross-section was kept fixed A ¼ ab ¼ 1. In Table 1 results for the
torsional constant are presented for both models and aspect ratios.
In Fig. 3 is also depicted the normalized torsional constant It=Ict
versus the material length scale parameter l2. From this figure we
Fig. 4. Normalized torsional constant versus the material length scale parameter of the
circular and elliptical micro-bars. Tong et al. model: l1 ¼ l2; proposed model: l1 ¼ 0,
l2 ¼ l.
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can observe that, unlike the case of the square micro-bar, the
torsional constant estimated by the proposed one-parameter
model is always smaller as the material length scale parameter
increases. Moreover, from the same figure can be pointed out that,
beyond the value of l2 ¼ 0:3 the normalized torsional constant do
not depend on the dimensional aspect ratio in both models.

4.3. Circular and elliptical micro-bars

In order to investigate the micron-scale torsional response on
curved cross-sections a circular and an elliptical micro-bar have
been analyzed (N ¼ 100). In Fig. 4 the normalized torsional
constant It=Ict versus the material length scale parameter l2 is
shown for an elliptical cross-sectionwith semi axes a ¼ 1, b ¼ 1:2
and a circular cross-section of radius r ¼ a ¼ b ¼ 1. For the
circular cross-section the results from both models are identically
the samewhile for the elliptical one the difference between the two
models is very small. Moreover, the contours of thewarping surface
for the proposed model (l2 ¼ 0:4) are depicted in Fig. 5.

5. Conclusions

In this paper the SainteVenant torsion problem of micro-bars of
arbitrary cross-section was solved. The proposed model is derived
from the modified couple stress theory of Yang et al. (2002) and has
onlyonematerial length scaleparameter. Thegoverningequilibrium
equation and the associated boundary conditions of the micro-bar
are derived in terms of the warping function using the principle of
minimumpotential energy. The resultingboundary valueproblem is
of the fourthorderand it is solvedusing theAnalogEquationMethod
(AEM), while the results are cross checked using the Method of
Fundamental Solutions (MFS). The main conclusions that can be
drawn from this investigation are summarized as:

� Both SainteVenant torsion models are described by a fourth
order partial differential equation representing the analog of
a Kirchhoff plate having the shape of the cross-section and
subjected to a uniform tensile membrane force with mixed
Neumann boundary conditions.
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� The present model is derived from the modified couple stress
theory of Yang et al. and has only one material length scale
parameter, which, indeed, is easier to determine as compared
to Tong et al. model which contains two additional constants
related to the microstructure of the material.

� The obtained results from the AEM and MFS solution are found
to be in excellent agreement as compared with that obtained
from analytical solution.

� In all examples the torsional constant of the micro-bar
increases nonlinearly with the increase of the material length
scale l2 in both models. As well as, the torsional constant
estimated by the proposed one-parameter model is always
smaller compared to the Yang et al. model.

� For the examined micro-bar with square cross-section, the
torsional constant estimated by the proposed one-parameter
model is smaller as the material length scale parameter
increases to the value of l2 ¼ 0:3, while, for greater values the
difference between the two models becomes negligible.

� For the examinedmicro-bars with rectangular cross-section, the
normalized torsional constant beyond the value of l2 ¼ 0:3 do
not depend on the dimensional aspect ratio in both models.

� The normalized torsional constant from both models is iden-
tically the same for micro-bars with circular cross-section
while for those with elliptical one the difference between the
two models is very small.
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