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In this paper a new modified couple stress model is developed for the Saint—Venant torsion problem of
micro-bars of arbitrary cross-section. The proposed model is derived from a modified couple stress
theory and has only one material length scale parameter. Using a variational procedure the governing
differential equation and the associated boundary conditions are derived in terms of the warping
function. This is a fourth order partial differential equation representing the analog of a Kirchhoff plate
having the shape of the cross-section and subjected to a uniform tensile membrane force with mixed
Neumann boundary conditions. Since the fundamental solution of the equation is known, the problem
could be solved using the direct Boundary Element Method (BEM). In this investigation, however, the
Analog Equation Method (AEM) solution is applied and the results are cross checked using the Method of
Fundamental Solutions (MFS). Several micro-bars of various cross-sections are analyzed to illustrate the
applicability of the developed model and to reveal the differences between the current model and an
existing one which, however, contains two additional constants related to the microstructure. Moreover,
useful conclusions are drawn from the micron-scale torsional response of micro-bars, giving thus a better

insight in the gradient elasticity approach of the deformable bodies.

© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

In recent years a need has been raised in engineering practice to
predict accurately the response of micron-scale structures, which
can be either the components of microelectromechanical systems
(MEMS) or various other micro-featured materials (such as foams,
human bone, etc.) which show size-dependent mechanical
behavior at different length scales (see e.g. Lakes, 1983). The
behavior of such structures has been proven experimentally to be
size dependent in metals (see e.g. Fleck et al., 1994; Poole et al.,
1996) and in polymers (Lam and Chong, 1999; Chong and Lam,
1999). Thus, the utilization of strain gradient (higher order)
theories containing internal material length scale parameters is
inevitable. The couple stress theory is a special case of these higher-
order theories in which the effects of the dilatation gradient and the
deviatoric stretch gradient are assumed to be negligible. An analytic
presentation of the aforementioned theories can be found in
(Vardoulakis and Sulem, 1995; Exadaktylos and Vardoulakis, 2001;
Tsepoura et al., 2002; Lubarda, 2003). Although, the strain gradient
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theories encounter the physical problem in its generality, they
contain additional constants — besides the Lamé constants — which
must be determined through meticulous experiments at small
length scales (see, e.g. Lakes, 1995).

The work that has been done on the solution of the Saint—Venant
torsion problem of elastic micro-bars - employing couple stress
theories - is limited only to the work of Tong et al. (2004). In their
work the simplified couple stress model of Lam et al. (2003) with
three additional material length scale parameters is applied to the
torsion problem. Since the dilatational strain gradients vanish
identically, the particular model leads to the formulation of the
torsional equation in terms of the warping function which contains
only two material length scale parameters. Two formulations in
terms of pseudo warping function and stress function are presented.
However, the employed analytical solutions are restricted only to
simple geometric shapes. That is, closed-form solutions for circular
and thin-walled cross-section are presented while a series solution
for rectangular micro-bars is also introduced. Moreover, the two
additional constants, in this simplified couple stress model, are
difficult to determine (Lam et al., 2003). Therefore, gradient elastic
models of only one additional material constant are desirable.

Similar problems have been addressed for micropolar elastic
cylinders in the published book by Iesan (2008) and in the
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exhaustive literature cited therein. In particular, Iesan (1982, 1986,
2007) formulated a method for the solution of Saint—Venant
problems in micropolar beam with arbitrary cross-section. Detailed
solution of the torsion problem for an isotropic micropolar beam
with circular cross-section can also be found in the papers of Reddy
and Venkatasubramanian (1976) and Gauthier and Jahsman (1975).

In this work the simplified couple stress theory of Yang et al.
(2002) is developed for the solution of the Saint—Venant torsion
problem of micro-bars with arbitrary shape. Yang et al. modifying
the classical couple stress theory (e.g. Mindlin, 1964; Koiter, 1964)
proposed a modified couple stress model in which only one
material length parameter is needed to capture the size effect. This
simplified couple stress theory is based on an additional equilib-
rium relation which forces the couple stress tensor to be
symmetric. So far it has been developed for the static bending (Park
and Gao, 2006) and free vibration (Kong et al., 2008) problems of
a Bernoulli—Euler beam, for the static bending and free vibration
problems of a Timoshenko beam (Ma et al., 2008) and for the
solution of a simple shear problem (Park and Gao, 2008) after the
derivation of the boundary conditions and the governing differ-
ential equation of the theory in terms of the displacement. More-
over, the static bending problem of Kirchhoff isotropic plates was
studied by Tsiatas (2009) and of orthotropic plates by Tsiatas and
Yiotis (2010).

The governing equilibrium equation and the pertinent boundary
conditions in terms of the warping function are derived using the
minimum potential energy principle. The resulting boundary value
problem of the micro-bar is described by a fourth order partial
differential equation, which represents the analog of a Kirchhoff
plate under uniform tensile membrane force with mixed Neumann
type boundary conditions. Since the fundamental solution of the
equation is known, the problem could be solved using the direct
BEM for plates by establishing the integral representation via the
Betti’s reciprocal theorem. Nevertheless, the problem is solved
more efficiently using the AEM with the simple fundamental
solution of the biharmonic operator and the results are cross
checked using the MFS. The employed numerical method is capable
to handle micro-bars with complex geometries. Numerical results
are obtained and useful conclusions are drawn regarding the use of
either couple stress model as well as the size effect on the torsional
response of micro-bars, giving thus a better insight in the gradient
elasticity approach of the deformable bodies.

2. Problem formulation
2.1. Derivation of the governing equations

In the modified couple stress theory presented by Yang et al.
(2002), the strain energy density is a function of both strain
tensor and the symmetric part of the curvature tensor which are
conjugated with the stress tensor and the deviatoric part of the
couple stress tensor. Thus, for a deformable body the strain energy
density is given as

1
W =2
2(
where the strain tensor g the symmetric part of the curvature
tensor 7y, the stress tensor ¢ and the deviatoric part of the couple
stress tensor m are defined as

c:e+m:Y) (1)

g = %(Vu +uv) (2a)

y = %(ve +0V) (2b)

G = A(tr &)l +2ue (2¢)

m = 2ul%y (2d)

with u being the displacement vector, 0 is the rotation vector
defined as (Yang et al., 2002)

1
0 = icurlu 3)

A, u are the Lamé constants and [ is a material length scale
parameter. Note that the deviatoric part of the couple stress tensor
m defined in Eq. (2d) is symmetric due to the symmetry of y given
in Eq. (2b).

Thus, using Eq. (2) the strain energy density (1) takes the form

W = %A(tr 8)2+,1L(8 g4 Py x) (4)

From the above relation it is readily proven that not only the strain
energy density is positive definite but also is a quadratic function of
both € and y (Grentzelou and Georgiadis, 2005).

Consider now an elastic bar of length L with arbitrary cross-
section occupying the two-dimensional domain Q of arbitrary
shape in the x, y plane bounded by the curve I' which may be
piecewise smooth, i.e. it may have a finite number of corners. The
cross-section is constant along the length of the bar and is twisted
by moments M; applied at its ends. According to Saint—Venant’s
torsion theory (e.g. Wagner and Gruttmann, 2001; Katsikadelis,
2002), the deformation of the bar consists of (a) rotations of the
cross-sections about an axis passing through the twist center of the
bar and (b) warping of the cross-sections, which is the same for all
sections. Choosing the origin of the coordinate system at the twist
center of an end section, the rotation at a distance z is ¥z, where ¢ is
a constant expressing the rotation of a cross-section per unit length.
Assuming that this rotation is small, the displacement components
of an arbitrary point are (e.g. Wagner and Gruttmann, 2001;
Katsikadelis, 2002)

U= —vzy (5a)
v = 9zZX (5b)
w = 9¢(x,y) (5¢)

where ¢(x,y) is the warping function. Taking into account Egs. (5)
and (3) the displacement and rotation vectors of the micro-bar
become, respectively,

u = —Jzye; + Izxe, + IP(x,y)es (6a)

1 1
0 = 50(by—x) €1 — 50 +y)e; + vzes (6b)

Substituting Eq. (5) into Eqs. (2a) and (2b) the nonzero
components of the strain and curvature tensor are written as

Yxz = Hdx—Y) (7a)
T = 99y +%) (7b)
X = 39 (1) (8a)
Xy = *%0<¢7xy +l) (8b)
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Xz = (8¢)

Xy = 57 (637 b (8d)

respectively. Moreover, the nonzero components of the stress (2c)
and couple stress (2d) tensors, after the appropriate replacement of
the Lamé constants by the modulus of elasticity E and the Poisson’s
ratio », take the following form

xz = GO (Px —Y) (9a)
Bz = GO 9y +) (9b)
my = lzGﬂ<¢,xy71) (10a)
my = ~PGO($ay+1) (10b)
m, = 212Gy (10c)
My — %12&9((;5,” b (10d)

where G = E/2(1 + v) is the shear modulus.

In the absence of body force and body couple and taking into
account that the cylindrical surface of the micro-bar is traction and
surface couple free, the first variation of the total potential energy
takes the form (Tsiatas, 2009)

6H:%/(6:68+m:5x)dv (11)
v

and using Eqgs. (7)—(10) yields

1 1
oIl =v / {széqs,x +Tyzé¢7y —jmxyéd)»xx +§mxy5¢7yy
Q

+ %(mX - my)6¢>,xy} dQ (12)

which, after the transformation of the domain integral using twice
the divergence theorem of Gauss, becomes

1
ol =—v / {sz,x +Tyzy +§(mxy,,<x —Myy.yy +My xy — mx,xy)} 0pdQ
0

1
+9 / [sznx Thyzly +5 (My xTx— My y Ty + 1My YTy — mx,x”y)}

><6¢ds—z9%/m,w6¢,n ds +0%/m,15¢,y ds (13)
T T
where
mn = mxn)% + myn§ + zmxynxny (14&)
Mpy, = My (nf< - nf,) + (my — my)nxny (14b)

are the stress resultants; n(nx,ny) and t(—ny,ny) are the unit
(outward) vector normal to the boundary and the unit tangent to the
boundary, respectively, (ny = cosa,ny = sinawitha = xx,n).
The first line integral in Eq. (13) represents a line force term
along the boundary (the respective shearing force term in the plate
bending theory e.g. Katsikadelis and Armenakas, 1989). The last

integral in the same equation represents also a line force term and
must be converted in order to be inserted into the first line integral.
Noting that ¢ , = ¢ ; the integration by parts along the boundary I
of the aforementioned integral gives

/mné(b,s ds = /(mn(5¢

_ Z M) 09 — / M 506 ds (15)
J

/m,1 sO0¢ ds

where [my),, is the jump of discontinuity of the twisting moment at
the k-th corner. Thus, Eq. (13) becomes

1
ol =—v / [sz‘x +Tyzy +§(mxy>xx — My yy +My xy — mx_,xy)} opdQ
1
+0 [ |Txelx +Tyz1y +§(mxyﬁxnx — My ylly -+ My yTx — My xNy)

1 1 1
_imm} d9ds — 0 [ mudp.nds 0y mlde (16
J

By applying the principle of total minimum potential energy, i.e.,
0I1 =0 for the stable equilibrium and the fundamental lemma of the
calculus of variation (e.g. Reddy, 1999) the governing equilibrium
differential equation of the micro-bar is obtained as

1 .
Txzx + Tyzy +j(mxy_xx — Mxyyy + My xy — mx‘,xy) =0 inQ (17)

together with the boundary conditions

1
TxzMx + TyzNy + j(mxy,xnx — Myy yNy + My yNx — mx,xny)
1
_im”‘s =0 (18a)
my: =0 (18b)
on I' and
> [mal=0 (18¢)

k

at the k-th corner.
Eqgs. (17),(18a) and (18b) can be also verified by substituting Egs.
(7)—(10) into the general equilibrium equations

divcs+1 curldivm+c¢)+b = 0,

3 in Q (19)

produced by Park and Gao (2008), together with the boundary
conditions

0'n+%nx [divm—V(m:n®n)+| :T—%nxv<§-n> (20a)

mn— (m:nen)n = S — <§~n>n (20b)
on I, of a three-dimensional deformable body for the modified couple
stress theory of Yang et al. (2002), in the absence of body force, body
couple, traction and surface couple. In Eq. (20) and in whichever
follows, the tilde over a symbol represents prescribed quantity.

Substituting Eqgs. (9) and (10) into Egs. (17) and (18) yields the
governing equation of the micro-bar in terms of the warping
function
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12
4

and the boundary conditions

Vi —vZ¢p =0, in Q (21)

12
Gun—g |20 +2(Bne)s | = ynx - xmy (22a)
Gott —onn = 0 (22b)
onl.

On the end cross-sections z =0and z = L, itisny = ny = 0
and n, = 1. Thus, the nonzero boundary conditions (20) are

1 2
Ty = 1% — j(mxy,x +myy) = G <¢7X -y + sz(f’,x) (23a)

1
Ty = Tyz + j(mx,x + mxyy)

Gv (qb,y +x+iv2¢,y> (23b)

Along the boundary I of the surface is also present a line force
with components

1
8x = iny (my — mx) + NxMxy

12 |
=G| - (ny¢~,xy —Nxd,yy ) - Enxvz(ﬁ (24a)
1
&y = 5 (my — my) — nymyy
_ ) 2 . _

in the x and y direction, respectively.
We can readily prove that the stress resultants of the tractions
(23) and line forces (24) vanish. Namely,

/Tx dQ + /gx ds = 0 (25a)
Q I

/Ty 4o + /gy ds — 0 (25b)
Q r

The moment resultant on the cross-section is going to be

M~ / (XT, — yT,)dQ + / (xgy —yg)ds (26)
Q T

which, after the substitution of Eqgs. (23) and (24) takes the form

M = Go / (2 +5% + %9y ¥ )dQ +3PGv 27)
Q
Setting
I = /(x2 TV 4%y Y )dQ + 3P (28)
Q
we arrive at
M: = Gol, (29)

The torsional constant I; does not depend only on the shape of the
cross-section, as it happens in the classical Saint-Venant theory, but
it depends also on the microstructure of the micro-bar.

The domain integral in Eq. (28) can be converted into
a boundary line integral (Katsikadelis, 2002). Thus, Eq. (28) finally
becomes

I = /[(xyz —y¢) Ny + (yx2 +x¢> ny]ds + 3P (30)
r
2.2. The plate analog
The equation of a plate with bending stiffness D subjected to

a uniform tensile membrane force N in absence of external load, is
written as
DV*w —NV2w = 0 in Q (31)

Further, we consider the natural boundary conditions

Nw,, +Vp(w) = yny — xny, (32a)
Mp(w) = 0 (32b)
on I', where V,; and M, are differential operators defined as
Vo= p|2v o2 (2 (33a)
n on os \ anat
2 g
Mp, = -D|V - 1)— 33b
n + (v )6t2 (33b)

which represent the effective shear force and bending moment,
respectively, on the boundary.

It is apparent that Egs. (21) and (22) can be obtained from Egs.
(31)and (32)forw = ¢,N = 1,D = I2/4and v = —1. Thus, in this
case the warping function represents the deflection of a plate
subjected to a uniform tensile membrane force N = 1 with
bending stiffness D = [2/4 and Poisson’s ratio » = —1 in the
absence of external load. Note that, for D = 0itis V, = M, = 0
and Eqgs. (31) and (32) give the membrane analog for the classical
Saint—Venant problem introduced by Prandtl and others. It should
be mentioned that the deflection surface is not uniquely deter-
mined, since the boundary conditions permit a rigid body motion.
This, however, does not influence the deformation of the cross-
section (Katsikadelis, 2002).

2.3. The modified couple stress torsion model of Tong et al.

In the work of Tong et al. (2004), the couple stress model of Lam
et al. (2003) - with three additional material length scale parame-
ters - is applied to the Saint—Venant torsion problem. Since the
dilatational strain gradients vanish identically, the torsion model
contains only two material length scale parameters, namely [; and
L. The governing equation of the micro-bar in terms of the warping
function is

8t 5 v -VvZp =0 in Q (34)
15 74)Ve-Ve=01n

and the boundary conditions are

82 B\, (28 B
$on— 5% Vi — 3 Ty (font)s= ynx —xny (35a)

82 B\, (22 B
<ﬁ+z Vg — 3 t35 ¢ =0

on I'. The boundary tractions on the end cross-sections are

(35b)
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1 161% l% 5
Tx=fxz*§(mxy,x+my‘y)=cl9 Px—y— 95 4 Ved,x

(36a)

1612 12
Gy+x— (1—51—22)%1),4 (36b)

while the moment resultant on the cross-section takes the form

1
Ty=1y, +§ (mx,x + mxy,y) =Gv

M; = Go / (2 +5% + %9y v )dQ + 3BGo 37)
Q

Note that setting l; =0 and I, = [in the above equations yield Eqgs.
(21)—(23) and (27) of the proposed model.

Egs. (34) and (35) can be also obtained from Egs. (31) and (32)
forw = ¢, N =1and

812 2
D=1g+2 (38a)
28 B\ /(8B B
”—1<3+z 5% (38b)

3. The numerical solution

Using the Betti’s reciprocal theorem for the plate equation, in
the absence of external load, we obtain the integral representation
of the solution as (Katsikadelis and Babouskos, 2009)

w(P) = / {vVn (W) — WV (v) — g—:an (W) + 2—‘;1"1\/1”(1;) ds
r
= > (WITW)llx = wIT®)lli) (39)
k

where P : {x,y}e Q and v is the fundamental solution of Eq. (31), i.e.
a singular particular solution of the following equation

v — 12vi = 6(P - Q) (40)
given as

= L[K (ur) —Inr] (41)
v = ZTC,LLZ oM

with Ky being the zero-order modified Bessel function of the second
kind and u2 = N/D. T is a differential operator defined as

92
anat
which represents the twisting moment M, along the boundary and
[IT(w)]| its jump of discontinuity at the k-th corner.

Obviously, the boundary integral equations will result for
P—pel. Thus, the warping function can be established by devel-
oping the direct BEM.

However, in order to avoid rather complicated computations of
singular integrals, the problem is solved using the AEM (Tsiatas and
Yiotis, 2010) discretization which employs the simple fundamental
solution

T =D(1-») (42)

1 5
V=g pT Inr (43)

of the biharmonic equation. The results are cross checked using the
MES as it was applied for plates (Tsiatas, 2009).

|
0.8} 0 | =k
— — (=006 | I
=0.17 :

% 06 — —E>0_39 (& static) I
E s
© o4} )

K
02} ]
0

0 2 4 6 8 10 12 14 16 18
applied voltage (V)

Fig. 1. Normalized torsional constant versus the material length scale parameter of the
square micro-bar. Tong et al. model: Iy = l,; proposed model: I; = 0,1, = I

4. Numerical examples

On the base of the procedure described in previous section
a FORTRAN program has been written for establishing the torsional
response of the micro-bars. In the MFS the source points are placed
equally on a virtual boundary — outside the domain — at a distance
20% greater than that of the actual one.

4.1. Square micro-bar

For reasons of comparisons a square micro-bar (a/b = 1) was
first investigated employing both couple stress models. In Fig. 1 is
depicted the normalized torsional constant I;/If (If is the torsional
constant of the classical Saint—Venant theory) versus the material
length scale parameter l. The results from the AEM and MFS
solution employing the Tong et al. model (I; = I5) are found to be in
excellent agreement with that obtained from their analytical
solution. We can also observe that the torsional constant estimated
by the proposed one-parameter model (l; —0, I, = I) is smaller as
the material length scale parameter increases to the value of
I, = 0.3, while, for greater values the difference between the two
models becomes negligible. The presented results indicate that
the torsional constant of the bar increases nonlinearly with the
increase of I in both models. Moreover, in Fig. 2 is depicted the
warping surface for the case l; = I, = 0.3.

)
i
/

N T T T D TATTTT TS,
Elecitxode [ ]

al a2

Fig. 2. Warping surface of the square micro-bar.
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Table 1
Torsional constant of the rectangular micro-bar.
I a/b = 0.8 a/b =12
Tong et al. Proposed Tong et al. Proposed
model model model model
0.0 0.13724 0.13724 0.13838 0.13838
0.1 0.16153 0.15017 0.20210 0.16420
0.2 0.27064 0.24767 0.27822 0.25199
0.3 0.42939 0.40577 0.43386 0.40986
0.4 0.64353 0.62311 0.64604 0.62834

0 0.1 0.2 0.3 0.4 0.5 0.6
time (ms)

Fig. 3. Normalized torsional constant versus the material length scale parameter of the
rectangular micro-bars. Tong et al. model: [; = I,; proposed model: [; = 0,1, = I

4.2. Rectangular micro-bars

Afterwards, two micro-bars with rectangular cross-sections of
width a and height b have been analyzed (N = 100) in order to
examine the influence of the micro-bar shape on the torsional
constant. The rectangular dimensions (a/b = 0.894/1.118 = 0.8
anda/b = 1.095/0.913 = 1.2) were chosen such as the area of the
cross-section was kept fixed A = ab = 1. In Table 1 results for the
torsional constant are presented for both models and aspect ratios.
In Fig. 3 is also depicted the normalized torsional constant Ir/If
versus the material length scale parameter l,. From this figure we

0 0.1 0.2 0.3 0.4 0.5 0.6
time (ms)

Fig. 4. Normalized torsional constant versus the material length scale parameter of the
circular and elliptical micro-bars. Tong et al. model: I; = I,; proposed model: [; = 0,
L =1

1 T T T T T T
X ”
09k ¢=0.17 [{=033  {=0.39 |§=0.41 =042 | J
V=17 V=17.4 V=17.46 V=17.47 v=17.47
08 | =R 1
0.7 | £=0.06 | | -
V=16.5
0.6 / / -
/ /
© 05 - - B
___——__——_/__ - — -
0.4} - g
0.3} g
02} g
0.1H g
0 . . . . . .
0 0.05 0.1 0.15 0.2 0.25 0.3
time (ms)

Fig. 5. Contours of the warping surface of the elliptical micro-bar.

can observe that, unlike the case of the square micro-bar, the
torsional constant estimated by the proposed one-parameter
model is always smaller as the material length scale parameter
increases. Moreover, from the same figure can be pointed out that,
beyond the value of [, = 0.3 the normalized torsional constant do
not depend on the dimensional aspect ratio in both models.

4.3. Circular and elliptical micro-bars

In order to investigate the micron-scale torsional response on
curved cross-sections a circular and an elliptical micro-bar have
been analyzed (N = 100). In Fig. 4 the normalized torsional
constant I¢/If versus the material length scale parameter [ is
shown for an elliptical cross-section with semiaxesa = 1,b = 1.2
and a circular cross-section of radius r = a = b = 1. For the
circular cross-section the results from both models are identically
the same while for the elliptical one the difference between the two
models is very small. Moreover, the contours of the warping surface
for the proposed model (I, = 0.4) are depicted in Fig. 5.

5. Conclusions

In this paper the Saint—Venant torsion problem of micro-bars of
arbitrary cross-section was solved. The proposed model is derived
from the modified couple stress theory of Yang et al. (2002) and has
only one material length scale parameter. The governing equilibrium
equation and the associated boundary conditions of the micro-bar
are derived in terms of the warping function using the principle of
minimum potential energy. The resulting boundary value problemis
of the fourth orderand it is solved using the Analog Equation Method
(AEM), while the results are cross checked using the Method of
Fundamental Solutions (MFS). The main conclusions that can be
drawn from this investigation are summarized as:

e Both Saint—Venant torsion models are described by a fourth
order partial differential equation representing the analog of
a Kirchhoff plate having the shape of the cross-section and
subjected to a uniform tensile membrane force with mixed
Neumann boundary conditions.
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e The present model is derived from the modified couple stress
theory of Yang et al. and has only one material length scale
parameter, which, indeed, is easier to determine as compared
to Tong et al. model which contains two additional constants
related to the microstructure of the material.

e The obtained results from the AEM and MFS solution are found

to be in excellent agreement as compared with that obtained

from analytical solution.

In all examples the torsional constant of the micro-bar

increases nonlinearly with the increase of the material length

scale I, in both models. As well as, the torsional constant
estimated by the proposed one-parameter model is always
smaller compared to the Yang et al. model.

e For the examined micro-bar with square cross-section, the
torsional constant estimated by the proposed one-parameter
model is smaller as the material length scale parameter
increases to the value of [, = 0.3, while, for greater values the
difference between the two models becomes negligible.

o For the examined micro-bars with rectangular cross-section, the
normalized torsional constant beyond the value of I, = 0.3 do
not depend on the dimensional aspect ratio in both models.

e The normalized torsional constant from both models is iden-
tically the same for micro-bars with circular cross-section
while for those with elliptical one the difference between the
two models is very small.
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