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The emergence of IR hyperspectral sensors in recent years enables their use in remote environmental
monitoring of gaseous plumes. IR hyperspectral imaging combines the unique advantages of traditional
remote sensing methods such as multispectral imagery and nonimaging Fourier transform infrared
spectroscopy, while eliminating their drawbacks. The most significant improvement introduced by hy-
perspectral technology is the capability of standoff detection and discrimination of effluent gaseous
plumes without need for a clear reference background or any other temporal information. We introduce
a novel approach for detection and discrimination of gaseous plumes in IR hyperspectral imagery using
a divisive hierarchical clustering algorithm. The utility of the suggested detection algorithm is demon-
strated on IR hyperspectral images of the release of two atmospheric tracers. The application of the
proposed detection method on the experimental data has yielded a correct identification of all the releases
without any false alarms. These encouraging results show that the presented approach can be used as a
basis for a complete identification algorithm for gaseous pollutants in IR hyperspectral imagery without
the need for a clear background. © 2007 Optical Society of America

OCIS codes: 280.1120, 100.5010.

1. Introduction

Standoff detection of gaseous plumes by remote in-
frared technology is a vital technology in environ-
mental monitoring [1–4]. The technology employs the
unique spectral absorption spectra that characterize
a wide range of molecules in the vapor phase. It
delivers an accurate and fast identification and elim-
inates the need for point sampling in a harsh envi-
ronment and the inevitable associated risks.

Detection and discrimination methods can be clas-
sified by their mission goals. Monitoring smoke stack
emissions is aimed to extract quantitative data (usu-
ally concentration length) about the effluent gases. In
this standoff scenario, the location of the flow source
is known and it is continuous. There are numerous
measurements and extracting techniques, either
ground based or by airborne sensors [5–8]. Detecting
fugitive emissions is another application to identify a

leak inside large industrial facilities [9]. The most
challenging of all applications is the remote detection
of hazardous vapors. In this scenario, the sensor is
required to indicate the time and the location of a
plume in its field of regard without any previous
knowledge of when and where such an event will
occur.

Until recently, passive detection of gaseous plumes
in the atmosphere was only feasible using either non-
imaging Fourier transform infrared spectrometers
(FTIRs) [3,10] or multispectral imagers [11,12]. Both
technologies suffer from serious drawbacks that
degrade their performance. While the nonimaging
FTIRs allow high spectral resolution measurements,
they lack the spatial information that is crucial to
achieve reliable detection results. Moreover, the typ-
ical fields of view (FOVs) of nonimaging FTIRs are of
the order of 1.5°, which leads to low sensitivity at long
ranges due to weak signals. Multispectral imagers,
on the other hand, have a high spatial resolution but
lack a high spectral resolution, which leads to weak
spectral signals and difficulties in differentiation
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among gases. Therefore, algorithms for both sensing
technologies that enable the detection and identifica-
tion of gaseous plumes obtain reliable results only by
comparing the scene to a clear reference state. The
method of using a clean reference is a major disad-
vantage, since the sensor FOV must be set before the
gas release to allow the system to collect some clear
background data.

IR hyperspectral sensors [13–16] combine the
unique advantages of traditional remote sensing
methods, while eliminating their drawbacks. The
most significant improvement introduced by hyper-
spectral technology is the capability of standoff de-
tection and discrimination of effluent gaseous plumes
without requiring a clear reference background or
any other temporal information. Detection of gaseous
objects differs greatly from detection of hard targets
since the plume modifies the spectral signature of the
background according to its emission or absorption
spectrum. Thus, two pixels in the image that contain
the same gaseous plume could have a totally different
spectral signature. Furthermore, the gas might affect
the spectral signature of the background by either
absorption or emission. This complexity of measured
spectral signatures is demonstrated in Fig. 1.

The different spectra shown in the figure represent
three different background pixels that are overlaid
by the gas plume. The gas plume that propagates
over the sand and wall backgrounds appears as an
absorber, while over the cold sky it appears as an
emitter. Additionally, the spectrum of the gas affects
only the spectral range in which the gas has signifi-
cant absorption.

Some approaches to tackle this problem have been
suggested in the past, but they all bear significant
drawbacks. Matched filtering techniques such as or-
thogonal and oblique subspace projections [17,18]
that are routinely implemented, mainly for small tar-
get detection, need background estimation. However,
as mentioned before, gas plumes comprise a nonneg-
ligible portion of the FOV of the sensor and they are
not opaque, resulting in an inherent mixture of un-

known gas plume over the background scene. As a
result, estimating the pure background covariance is
problematic due to the contamination by the spectral
signature of the gas plume. Other detection methods
that rely on decomposition of the data cubes are also
deficient for the same reason [19]. Some detection
methods have been introduced to overcome this ill-
posed problem, with a noticeable improvement in the
detection performance for weak gas plumes [20–24].
Nevertheless, their performance is severely degraded
when intensive plumes are encountered. Clustering
was suggested in order to improve the matched filter
detection performance [25], with the intention of cre-
ating several covariance matrices of different areas
in the background, thus creating a matched filter for
every cluster. This technique improves the back-
ground estimation but inadvertently worsens the
effect of the gaseous plume on the background esti-
mation, raising the question of into how many clus-
ters the background should be split. In summary, we
look for a detection method that will efficiently detect
a semitransparent (either emitter or absorber) object
that can comprise a substantial portion of the field of
regard of the sensor without any a priori knowledge
about its location or intensity, and without using any
temporal information. Furthermore, we do not know
even if the gas plume is actually present in the FOV
of the sensor.

In this work we introduce a novel method used to
detect and identify gaseous plumes in hyperspectral
imagery without any clear background reference, or
assumptions about the background. This method is
aimed to overcome the difficulties that arise from the
inherent mixture of the background and the gas
plume spectra. We decompose the scene according to
the spectral-spatial information, and we use a phys-
ical model to extract the pure transmittance signa-
ture of the gas, thus avoiding the need to characterize
the background. Section 2 describes our experimental
data and setup used to gather the database for al-
gorithm development. The detection algorithm is
described in Section 3. We discuss our conclusions
in Section 4.

2. Experimental Data

A. Hyperspectral Sensor

The data were collected using the FIRST (Field-
Portable Imaging Radiometric Spectrometer Tech-
nology) hyperspectral imager manufactured by
TELOPS (Québec, Canada) [10]. The sensor couples a
Michelson-type interferometer and a mercury cad-
mium telluride (MCT) focal plane array and produces
high spatial-spectral resolution data cubes at a high
frame rate. The main features of the FIRST sensor
are listed in Table 1.

B. Field Measurements

A small scale field test was conducted to acquire hy-
perspectral data. The test site was located on a sandy
beach. The release point was located at a distance of
about 60 m from the imager’s observation point. The

Fig. 1. (Color online) Different background spectra with an SF6

plume. The SF6 transmittance spectrum is plotted in black.
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weather conditions, such as air temperature, wind
speed, and direction, were measured continuously ev-
ery second. CHF3 gas (DuPont, 99.995% purity) and
SF6 gas (Air Products and Chemicals, 99.99% purity)
were released at a steady flow of 1–2 kg�min. The
duration of each release was about 1 min, and 12
releases in total were conducted. The weather was
windy with partly cloudy skies. Data collection began
1 min prior to every release and lasted 1 min after its
end. Figure 2 shows the background scenes. The
backgrounds are complex and contain sky, concrete
walls, rocks, sand, and vegetation.

3. Detection Method

The formulation of the obtained radiance with the
presence of a gaseous plume in the instantaneous
field of view (IFOV) of an IR sensor has been exten-
sively studied in the past [1–4,26], and therefore we
introduce it very briefly. Atmospheric effects are ig-
nored in our equations, since typical detection ranges
are just a few kilometers. At medium spectral reso-
lution the main influence of the atmospheric path is
on the signal strength rather on the spectral signa-
ture.

The obtained radiance with the presence of a gas-
eous plume in the instantaneous field of regard of a
sensor can be expressed by

W(�) � B(�, Tbgd)exp���(�)�
0

R

C(r)dr�
� B(�, Tcld)�1 � exp���(�)�

0

R

C(r)dr��, (1)

where

B��, Tbgd� is the background radiance at a wave-
length of � and at a distance of R from the sensor.
Without a loss in generality we can treat the back-
ground as a blackbody radiator with effective tem-
perature Tbgd.

B��, Tcld� is Planck’s blackbody radiation, corre-
sponding to air temperature Tcld at a wavelength of �.

���� is the mass absorption coefficient of a specific
tracer gas at a wavelength of �.

C�r� is the concentration of the tracer gas along the
line of sight at a distance of r from the sensor.

We can denote ���� � exp	������0
R C�r�dr
 and can

express the obtained signal as a blackbody equiva-
lent, W��� � B��, Ts�, with a temperature of Ts
(Tair � Ts � Tbgd). Substituting the appropriate terms
and rearranging Eq. (1), we obtain

B(�, Ts) � B(�, Tcld) � �(�)[B(�, Tbgd) � B(�, Tcld)].
(2)

Since the temperature differences are small, we
can approximate Eq. (2) by linearization of Planck’s
blackbody radiation with respect to the temperature:

(Ts � Tcld)
�B
�T�Ts � �(�)(Tbgd � Tcld)

�B
�T�Tbgd. (3)

Since
�B
�T�Ts �

�B
�T�Tbgd and since all temperature

differences are fairly small, we can extract the gas
transmission in each wavelength by (other methods
to derive similar expression are described in [3,26])

�(�) �
Ts � Tcld

Tbgd � Tcld
. (4)

Equation (4) shows that, if Tcld is known, either by
measurement or by estimation, and Tbgd is deduced
from the scene, we can readily extract � without use
of temporal information; i.e., using the data cubes
acquired before the gas was released would yield Tbgd
for every pixel. However, the purpose of our algo-
rithm is to detect and identify a gaseous plume in a
scene, based on a single hyperspectral cube. Hence,
instead of using temporal information, Tbgd is ob-
tained from the scene under the assumption that, if
the gaseous plume covers some background object,
the same object will appear in the FOV, which is free
of gas as well. The algorithm does not use any prior
knowledge of the plume position or any preliminary
assumptions on the FOV. The only parameters used
by the algorithm are a set of spectral transmittance
signatures of several target gases that might be en-
countered in the scene and the air temperature as
measured in the field.

The algorithm has two stages. The first is a divisive
hierarchical spectral-spatial decomposition of the hy-
perspectral image into segments. The second is a
spectral analysis of the segments in the scene in order
to determine whether some segments contain any
gas.

Table 1. Technical Parameters of the FIRST Hyperspectral Sensor

Spectral range 8 	m–11.7 	m �850–1250 cm�1�
Spectral resolution 0.25–150 cm�1

Focal plane array 256 � 320 pixels
Single pixel FOV 0.35 mrad
Noise equivalent temperature 0.16 °C at 16 cm�1, with binning

to 128 � 128
Data rate �4 s�datacube at 8 cm�1, full

spatial resolution

Fig. 2. Backgrounds of the different scenes.
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A. First Stage—Divisive Hierarchical Spectral-Spatial
Decomposition

The decomposition stage assumes that a natural
scene tends to be composed of spatial segments con-
taining the same material. Thus we can compress the
hyperspectral cube into spectral-spatial segments
that represent the scene fairly. As a preprocessing
stage, we spatially smooth the hyperspectral image
using a two-dimensional (2D) median filter in each
spectral band. This procedure eliminates spikes in
the hyperspectral cube caused by either bad pixels or
imperfect NUC (nonuniformity correction). Then, we
decompose the scene by a divisive hierarchical algo-
rithm (Fig. 3): At first, we consider the whole data
cube as an input, and at every iteration we use
K-means [27] to separate a given area in the scene
into two clusters, using a correlation metric; i.e., if
T1 and T2 are any two spectral signatures acquired
by the sensor, the similarity measure between them
will be

dist(T1, T2) � 1 � corr(T1, T2)

� 1 �
E[(T1 � 	1)(T2 � 	2)]

E[(T1 � 	1)
2]E[(T2 � 	2)

2]
, (5)

where 	j is the mean value of Tj. Using this correla-
tion metric ensures that the clusters will be spec-
trally distinctive, since similar spectra will have
lower similarity measure. After each clustering iter-
ation, we spatially segment [28] each cluster: every
cluster is divided into spatial segments according to
their connectivity. Each of the spatial segments will
be given as input to the K-means method for the next
iteration. This recursive decomposition continues un-
til all the segments’ sizes are smaller than a certain
threshold determined by the user. An example of the
initial spectral-spatial decomposition step is given in
Fig. 4. Figure 4(a) shows the binary result of the first
spectral clustering by K-means (K � 2); Fig. 4(b)
shows the result of the spatial segmentation of the
first cluster in (a); Fig. 4(c) shows the result of the

spatial segmentation of the second cluster in Fig.
4(a).

Finally, for each segment the mean spectral signa-
ture is calculated. This enables us to consider the
scene as a set of segments, each with a unique spec-
tral signature. In Fig. 5, we present an example of
this procedure of spatial-spectral decomposition of
the scene shown on the right side of Fig. 2. The di-
visive hierarchical decomposition algorithm is pre-
sented in several different stages. One can observe
how the scene is separated into smaller segments
with every successive iteration.

Another example of the output of the spatial-
spectral procedure is shown in Fig. 6. The algorithm
has decomposed the scene shown on the left-hand
side of Fig. 2 into more than 1600 segments. The
spectral separation of the segments is demonstrated
in Fig. 7, where the cross-correlation matrix of the
spectral signatures of the segments is shown. The
(i, j) term in the matrix is given by

E[(Ti � 	i)(Tj � 	j)]

E[(Ti � 	i)
2]E[(Tj � 	j)

2]
, (6)

where Ti is the mean spectral signature of the ith
segment, and 	i is the mean of Ti. Our divisive
spectral-spatial decomposition algorithm ensures
that, even if some of the segments have spectral re-
semblance to each other (as shown by high values in
Fig. 7), they are spatially separated.

The next stage of the detection process is detecting
and identification the plume by analyzing the spatial-
spectral segments, as presented in Subsection 3.B.

Fig. 3. Our divisive hierarchical algorithm scheme.

Fig. 4. Example of the initial spectral-spatial decomposition step:
(a) The binary results of the first spectral K-means (K � 2). One
cluster is colored black and the other is colored white. (b) The result
of the spatial segmentation algorithm on the first spectral cluster
[black in (a)]. (c) The result of the spatial segmentation algorithm
on the second spectral cluster [white in (a)].
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B. Second Stage—Detection and Identification of the
Plume

Since no prior knowledge is used to analyze the scene,
every segment might contain a gas plume signature.
As stated earlier, instead of using temporal informa-
tion, we assume that, if the gaseous plume covers
some background object, the same object will appear

in the FOV, which is free of gas as well (or with
substantial different transmissions) as illustrated in
Fig. 8.

Therefore, every segment’s signature is used twice:
once as Ts and once as Tbgd [see Eq. (4)]. Figure 9
illustrates the scheme of the second stage of the al-
gorithm. In practice, we use each segment’s signature

Fig. 5. (Color online) Image segmentation after successive numbers of iterations of the divisive hierarchical spatial-spectral decompo-
sition algorithm.

Fig. 6. (Color online) Final result of the spatial-spectral decom-
position algorithm on one of the scenes.

Fig. 7. (Color online) Spectral cross-correlation matrix of the var-
ious segments. High correlation values indicate spectrally similar
segments, but our algorithm ensures they are spatially separated.
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as Ts and calculate the spectral transmittance when
Tbgd are all the other segments signatures. This step
produces n � 1 possible transmission spectra for each
segment, where n is the number of segments obtained
in the first step of the algorithm. The correlations (dot
product) between each calculated transmittance
spectrum and the spectral signatures of the target
gases compounds are calculated. For every segment
and for every target signature the maximum corre-
lation value is considered. At the end of this proce-
dure, every segment is attached with a correlation
value for each gas target. A correlation value higher
than a predefined threshold leads to classification of
the segment as containing a specific target gas. One
should notice that using Eq. 4 allows us to use simple
dot product for the classification of the gas, since the
produced transmission spectra (�) eliminate the back-
ground spectral features.

Figure 10 shows the result of the identification
process for CHF3 and SF6, which had been released
simultaneously. The algorithm was operated over 114
hyperspectral cubes, in two different backgrounds. As
mentioned in Section 2, some of the cubes did not
contain any plumes while others contained either
plumes of CHF3, SF6, or a mixture of both. Applying
the proposed detection method over the experimental
data yielded a correct identification in all the releases
without any false positives (i.e., indication of a plume

when it is not present in the FOV of the sensor).
Furthermore, the algorithm yielded identification of
both tracers whenever they were present as a mix-
ture. These encouraging results show that the pre-
sented approach can be used as a core for a complete
identification algorithm for gaseous pollutants in IR
hyperspectral imagery without the need for a clean
background. Further work over large databases at
various backgrounds and thermal contrasts is still
needed to verify and validate the proposed detection
and identification method. There is also a need for
appropriate quantitative metrics in order to evaluate
its performance as a function of the signal strength.

4. Conclusions

A novel algorithm for detection and classification of
gaseous plumes in hyperspectral images without re-
lying on clear reference background has been intro-
duced. This detection method does not use any
a priori assumption about the size or the position of
the gas plume. The proposed algorithm exploits the
high spectral and spatial resolution of the sensor to
decompose the hyperspectral cube into small seg-
ments, which are used to detect and classify the
plume. The detection algorithm overcomes the inher-
ent mixture of the plume and the background spectra,
which is considered the main obstacle for a reliable
detection scheme that does not use any ancillary
knowledge or assumptions (e.g., temporal data). Ap-
plying the proposed detection method over the exper-
imental data has yielded a correct identification in all
the releases without any misclassifications. Further
work over large databases at various backgrounds
and thermal contrasts is still needed to verify and
validate the proposed detection and identification
method. There is also need for an appropriate quan-
titative metric in order to evaluate its performance as
a function of the signal strength. Optimization of al-
gorithm performance in terms of run time versus
detection results is also needed.
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