The Software Architecture of a Virtual Distributed Computing
Environment*

Haluk Topcuoglu Salim Hariri

Wojtek Furmanski
Dongmin Kim Yoonhee Kim Xue Bing

Jon Valentei Ilkyeun Ra
Baoqing Ye

Department of Electrical Engineering and Computer Science
HPDC Laboratory
Syracuse University
Syracuse, NY 13244-4100.
{haluk, hariri}@cat.syr.edu

T Rome Laboratory, Rome NY

Abstract

The requirements of grand challenge problems and
the deployment of gigabit networks makes the net-
work computing framework an attractive and cost ef-
fective computing environment with which to intercon-
nect geographically distributed processing and storage
resources. Qur project, Virtual Distributed Computing
Environment (VDCE), provides a problem-solving en-
vironment for high-performance distributed computing
over wide area networks. VDCE delivers well-defined
library functions that relieve end-users of tedious task
wmplementations and also support reusability. In this
paper we present the conceptual design of VDCE soft-
ware architecture, which is defined in three modules:
a) the Application Editor, a user-friendly application
development environment that generates the Applica-
tion Flow Graph (AFG) of an application; b) the Ap-
plication Scheduler, which provides an efficient task-to-
resource mapping of AFG; and ¢) the VDCE Runtime
System, which s responsible for running and manag-
wing application execution and monitoring the VDCE
resources.

1. Introduction

Grand challenge problems have computational and
storage resource requirements that are beyond the ca-
pacities of a single computing environment. Addition-

*This research is supported by Rome Lab contract number
F30602-95-C-0104.

ally, emerging network technologies such as fiber-optic
transmission facilities and the Asynchronous Transfer
Mode (ATM) enable data to be transferred at the rate
of a gigabit per second (Gbps). A high-speed network
of geographically distributed heterogeneous resources
represents a cost-effective, network-based computing
environment for solving large-scale problems addressed
by grand and national challenges. New software devel-
opment models and problem solving environments are
being developed to utilize efficiently the network com-
puting environment.

The software development process of parallel and
distributed applications can be broadly described in
terms of three phases: a) application development and
specification, b) application scheduling and resource
configuration, and ¢) application execution and run-
time. Most of the related work so far has focused only
on one or two of these phases; only a very few projects
have completely addressed all phases of software devel-
opment.

The first phase, i.e, parallel and distributed ap-
plication development and specification phase, over-
whelms most users because of the difficulty of express-
ing communication and synchronization among compu-
tations [3]. Some text-based parallel programming en-
vironments support the data-parallel paradigm, which
requires advanced compilation techniques and compil-
ers. Most of the other environments require explicit
insertion of communication and synchronization prim-
itives within the programs, which makes programs dif-
ficult to understand. Over the last few years a number

of graph-based application development and represen-
tation tools have become available, including Code [1],
HeNCE [2], and Zoom [2, 4]. A graph-based pro-
gramming environment provides simple and easy-to-
use mechanisms for expressing the interaction of multi-
ple processes within a parallel /distributed program [3].
On the other hand, application development tools and
environments are being modified to support web-based
user interfaces since the World Wide Web is becom-
ing a low-cost, standard interface mechanism [19] with
which to access the computational resources that are
distributed all over the world.

After a parallel /distributed application is developed,
the tasks of the application are assigned at the sec-
ond phase to the existing resources. In the literature,
although the task scheduling (or resource allocation)
problem has been investigated extensively, most of the
algorithms and systems are valid only for specific ar-
chitectures and/or applications. There are also some
research projects that target application-level resource
allocation issues such as APPLeS [10] and MARS [9]
projects. The application execution and runtime phase
executes the developed and configured application and
produces the required output. This stage integrates
the assigned resources that will be involved in ex-
ecution, and supports inter-module communications,
which are based on either a message-passing tool such
as PVM [6], P4 [5], Express [8], MPI [7], and NCS [18]
or on a distributed shared memory (DSM) model. Dur-
ing the execution of the application, this stage accepts
data from different computing elements and combines
them for proper visualization. It intercepts the error
messages generated and provides proper interpretation.
The runtime system handles dynamic load-balancing,
application-level and resource-level fault tolerance ca-
pabilities.

In this paper we present our approach for devel-
oping a software environment, which we refer to as a
Virtual Distributed Computing Environment (VDCE).
VDCE provides a problem-solving environment for
high-performance distributed computing over high-
speed wide area networks, i.e, the NYNET Testbed in
New York state and the National Information Infras-
tructure (NIT). The main goal of the VDCE project is
to develop an easy-to-use, integrated software devel-
opment environment that provides software tools and
middleware software to handle all the issues related
to developing parallel and distributed applications,
scheduling tasks onto the best available resources, and
managing the Quality of Service (QoS) requirements.

VDCE software architecture consists of three sepa-
rate parts: Application Editor, Application Scheduler,
and VDCE Runtime System. The Application Edi-
tor is a web-based graphical user interface that helps
users to develop parallel and distributed applications.
In VDCE the application development process is based
on dataflow programming paradigm. The Application
Editor generates its output in terms of an Application
Flow Graph (AFG), in which the nodes represent task
computations, and links denote communication and/or
synchronization among the nodes (tasks). The Appli-
cation Editor provides menu-driven functional building
blocks of task libraries. A node of an AFG is a well-
defined function or a task selected from a given task
library. VDCE provides a large set of task libraries
grouped in terms of their functionality such as matrix
operations, Fourier analysis, C®I (command, control,
communication, and information) applications, etc.

VDCE provides a distributed runtime scheduler, the
Application Scheduler, which provides efficient task-to-
resource mapping of application flow graphs. The Ap-
plication Scheduler uses performance prediction of in-
dividual tasks to achieve efficient resource allocations.
The schedule decision is based on the task specifica-
tions (i.e., hardware/software requirements) in the ap-
plication flow graph, locations and the configurations
of the resources, and up-to-date resource loads. The
VDCE Runtime System consists of two managers: the
Control Manager and the Data Manager. The Con-
trol Manager is responsible for monitoring the VDCE
resources, setting up the execution environment for a
given application, monitoring the execution of the ap-
plication tasks on the assigned computers, and main-
taining the performance, fault tolerance, and quality
of service (QoS) requirements. The Data Manager is
responsible for providing low latency and high-speed
communication and synchronization services for inter-
task communications.

The rest of the paper is organized as follows. In
Section 2 we present the design and prototype imple-
mentation issues of the VDCE software architecture
including the three modules of the system. Concluding
remarks and future work are given in Section 3.

2. Overview of VDCE Software Architec-
ture

The main design philosophy of VDCE is to provide a
general software development environment in which to
build and execute large-scale applications on a network
of heterogeneous resources. VDCE is composed of geo-

graphically distributed computation sites, as shown in
Figure 1, each of which has one or more VDCE Servers.
At each site, the VDCE Server runs the server soft-
ware, called site manager, which handles the inter-site
communications and bridges the VDCE modules to the
web-based repository.

VDCE 3ite

Spedal Purpose:
Architecture

%

Figure 1. Virtual Distributed Computing Envi-
ronment (VDCE)

Storage Syem ypooE gite

Site repository, the web-based storage environ-
ment within a VDCE site, consists of four different
databases. User-accounts database is used to handle
the user authentication. In user-accounts database,
each VDCE wuser account is represented by a 5-
tuple: user name, password, user 1D, priority, and ac-
cess domain type. The resource-performance database
provides the resource (machine and network) at-
tributes/parameters. These attributes are grouped
into two parts: a) static attributes stored in the
database once during the initial configuration of VDCE
such as: host name, IP address, architecture type,
OS type, and total memory size; and b) dynamic at-
tributes that are updated periodically, such as recent
load measurement and available memory size. The
task-performance database provides performance char-
acteristics for each task in the system, and 1s used
to predict the performance of the task on a given re-
source. Each task implementation is specified by sev-
eral parameters such as computation size, communica-
tion size, required memory size, etc. In order to find
locations of a task’s executables, VDCE stores location
information of each task (i.e., the absolute path of the
task executable) for each host in the task-constraints
database. Due to specific library requirements, some
task executables may reside only on some of the hosts.

The software development cycle for network appli-

User .
Application Flow Graph (AFG)

Application
Editor
Application
Scheduler
VDCE
Runtime System

Figure 2. Interactions Among the VDCE Mod-
ules

Accounts

Resource

Performance

Task

Ressource Allocation Information
Performance

Site Manager

\\\\
N I
I

Task
Constraints

Site Repository

cations can be viewed in terms of three phases: ap-
plication development and specification phase, applica-
tion scheduling and configuration phase, and execution
and runtime phase. The functionality of these three
phases is handled by the Application Editor, Applica-
tion Scheduler, and VDCE Runtime System, respec-
tively. Figure 2 shows the interaction of the VDCE
modules within a site. In what follows we describe in
detail the design and prototype implementation issues
of the three software modules.

2.1. Application Editor

The Application Editor 1s a web-based graphical
user interface for developing parallel and distributed
applications. The end-user establishes a URL connec-
tion to the VDCE Server software within the site (the
Site Manager) which runs on a VDCE Server. The Site
Manager implementation is based on JAVA Web server
technology which uses servlets (i.e., server site JAVA
applets) that relive the startup overheads and run on
any platform. After user authentication, the Applica-
tion Editor, which was implemented in JAVA, will be
loaded into the user’s local web browser so that the
user can develop his/her application.

The Application Editor provides menu-driven task
libraries that are grouped in terms of their functional-
ity, such as the matrix algebra library, C*I (command
and control applications) library, etc. A selected task is
represented as a clickable and draggable graphical icon
in the active editor area. Each such icon includes the
task name and a set of markers for logical ports. Color
coding used in this visual representation helps to dis-
tinguish input ports from output ports. Operationally,
the Application Editor can be in task mode, link mode,
or run mode. In task mode, the user can select/add new
tasks, and/or click/drag icons to position them conve-
niently in the active editor area. In link mode, the user
can specify connections between tasks. In run mode,

Editor submits the graph for execution and visualizes
the performance and runtime characteristics of an on-
going computation.

[@] VDCE Application Design i

SYSTEM EDIT ENECUTE WISUALIZE

odule Elementary Special Matrix ata_fnalysis polynomial/inter

InputFile: A

Miscellaneous

InputFile: B

=i Unsigned Java Applet Window

Computation Type : +Sequential # Parallel

Machine Number

Machine Type

|5 |5
| m— (
A 9 A
QutputFile! X

oK | canel

7isgi Unsigned Java Applet Window

Figure 3. Building the Linear Equation Solver
Application with the Application Editor

The process of building an HPDC application with
the Application Editor can be divided into two steps:
building the application flow graph (AFG), and spec-
ifying the task properties of the application. The
Application flow graph is a directed acyclic graph,
G = (T,L), where T is the set of tasks in the ap-
plication and L is a set of directed links among tasks.
A directed link (7, j) between two tasks T; and Tj of
the application indicates that 7; must complete its ex-
ecution before T; begins to run. Figure 3 shows the
building of an application flow graph of a Linear Equa-
tion Solver with the help of Application Editor. In this
application the problem is to find the solution vector
x in an equation Ax = b, where A is a known N x N
matrix and b is a known vector. LU Decomposition is
one of the several methods for solving linear equations.
The nodes of this application, i.e, LU decomposition,
matrix inversion, matrix multiplication, etc., are se-
lected from the matrix operations menu and linked to
form the application flow graph.

After the application flow graph is generated, the
next step in the application development process is to
specify the properties of each task. A double click on
any task icon generates a popup panel that allows the
user to specify (optional) preferences such as compu-
tational mode (sequential or parallel), machine type,
and the number of processors to be used in a parallel
implementation of a given task (see the right part of

Figure 3). In this figure, for the LU Decomposition task
of Linear Equation Solver the user has selected paral-
lel execution mode using two nodes of Solaris machines
interconnected by an ATM network. When the task
properties are specified, the user may either submit
the application for execution in the VDCE or he/she
may store the application flow graph for future use.

2.2. Application Scheduler

The main function of the Application Scheduler
module in VDCE is to interpret the application flow
graph and to assign the current best available re-
sources for running the application tasks in order to
minimize the schedule length (total execution time)
in a transparent manner. We provide an application-
based scheduling framework that provides and guar-
antees Quality-of-Service (QoS) of a given application.
The Application Scheduler considers both software and
hardware requirements of an application before select-
ing the best schedule.

Our scheduling heuristic is based on list schedul-
ing [11, 12, 13]. In list scheduling, each node (task)
of the graph is assigned a priority before the schedul-
ing process. The first step of the scheduling process is
to select the node with the highest priority. The next
step 1s to select the best available processor to run the
selected task. These steps are repeated until all nodes
of the graph are covered.

The VDCE scheduling heuristic uses the level [11]
of each node to determine its priority. The node (task)
with a higher level value will have a higher priority for
scheduling. The level of a node in the graph is com-
puted as the largest sum of computation costs along a
path from the node to an exit node. The exit node is
the node that does not have a child node. For the com-
putation cost, the task (node) execution time on the
base processor, which 1s already measured and stored
in the task-performance database at site repository, is
used. In order to select a task for scheduling, the node
must be a ready node with the highest priority. A ready
node has no parent nodes, or its parent nodes were al-
ready scheduled. In VDCE the level of each node of an
application flow graph i1s determined before the execu-
tion of the scheduling algorithm.

2.2.1 Built-in Scheduling Algorithms

VDCE provides distributed scheduling in a wide-area
system, in which each site consists of its own Applica-
tion Scheduler running on the VDCE server. After the

best schedule of the whole application i1s determined
by the local site and a set of remote sites, the resource
allocation table is generated and transfered to the Site
Manager running on the VDCE server. The Appli-
cation Scheduler, which is based on [10, 14, 15], has
two built-in algorithms: Site Scheduler Algorithm, and
Host Selection Algorithm, as shown in Figure 4 and
Figure 5, respectively.

The Application Scheduler at the local site, i.e., the
site at which the VDCE receives the execution request
of an application, runs the site scheduler algorithm.
Once the application flow graph (AFG) is accessed by
the site scheduler algorithm, a subset of remote sites
is selected and the AFG is multicast to these sites, at
which the Application Schedulers will run the host se-
lection algorithm. In order to decrease the search space
for scheduling, only a subset of remote sites is selected.
Additionally, a site can be a local site for some of the
applications and 1t can be a remote site for some of the
others running in the VDCE system.

The built-in host selection algorithm at each remote
site determines the best available machine within the
site for each task, which minimizes the predicted exe-
cution time. Then each site sends the mapping infor-
mation of each task, i.e, machine name and predicted
execution time, to the local site. For the entry tasks
that have no parents, or the tasks that do not require
any input file for execution, the site scheduler algo-
rithm selects the site (the resource within the site) that
minimizes the prediction time for the task. For other
cases the local-site scheduler algorithm selects the best
site, based on the summation of predicted execution
time and transfer time of the task input files. The
site at which a parent task is scheduled, the parent’s
site, is determined to evaluate the transfer time. The
inter-task transfer time is based on the network trans-
fer time between a site and the parent’s site, and the
size of the transfer. The input size of the application
can be used for the transfer size parameter. If the site
is the same as the parent site, then the total inter-task
transfer time will be zero.

The idea behind this algorithm is to schedule the
application tasks within a site (or within the nearest
neighbor sites) to decrease the inter-task communica-
tion time. Although these built-in algorithms are de-
signed for application tasks that request a single ma-
chine, it 1s not difficult to extend the algorithm for
parallel tasks. For parallel tasks, the host selection al-
gorithm is updated to select the number of machines
required within the site. By scheduling the parallel

task execution within a site, the inter-site communica-
tion overhead for parallel tasks is removed.

The core of the given built-in scheduling algorithms
is the performance prediction phase. Since the het-
erogeneous nature of the resources and time-sharing
make the scheduling difficult, the performance predic-
tion of tasks guides the scheduler in finding the most
efficient resource allocations. As discussed in [16, 17],
the performance of the processors changes from one ap-
plication to another; i.e.; a processor may give the best
execution time for a specific application, but it may
give the worst time for another application. There-
fore, in VDCE we provide separate function evalua-
tions, Predict(task;, R;), to predict the performance
of each task, task;, on each resource, R;.

The performance prediction functions are based
on a combination of analytical modeling and mea-
surements of experimental runs. This provides an
accurate and fast approach to predict the perfor-
mance of a given task on a particular machine.
The input parameters of the prediction functions in-
clude: Measured Time(task;, Rpgse), which is the
execution time of task; on a dedicated base pro-
cessor, Rpase, for unit_size input; Weight(task;, R;),
which is the computing power weight [16, 17] of R;
with respect to the base processor, Rpqse, for task;;
Mem_Req(task;), which is the memory requirement
of task;; Memory_Avail(R;), which gives the avail-
able memory size on the machine; and C'PU _load(R;),
which is the current load on R;. The required pa-
rameters for prediction are stored at task-performance
and resource-performance databases. Trial runs are re-
quired to obtain the computing power weights of pro-
cessors for each task. The current workload parameters
are computed using forecasting techniques based on a
window of most recent workload measurements.

2.3. VDCE Runtime System

The VDCE Runtime System sets up the execution
environment for a given application and manages the
execution to meet the hardware/software requirements
of the application. The VDCE Runtime System sep-
arates control and data functions by allocating them
to the Control Manager and Data Manager, respec-
tively. The Control Manager measures the loads on
the resources (hosts and networks) periodically, and
monitors the resources for possible failures. The Con-
trol Manager daemons operate execution of the appli-
cation tasks on the assigned resources by maintaining
the performance and quality of service requirements.

. Multicast application flow graph to each S; in Sremote.

U W N =

pairs of all tasks, from each S; in Sremote.
. Initialize the set for the ready tasks :
7. For each task; in ready_tasks set:

o]

. Receive application flow graph (AFG) from local Application Editor.
. Select k nearest VDCE neighbor sites, Sremote = {51, 52, ..

., Sk}, for local site Siocai-

. Call Host_Selection_Algorithm (for local site and selected remote sites).
. Receive the outputs of Host_Selection Algorithm, i.e, the selected machine and performance prediction time

ready tasks = {task;|task; is an entry_node}.

If the task; is an entry task or task; does not require any input file from its parent node tasks,
Assign task; to the site S;, which minimizes Predict(task;, R;).

Else

Determine the site(s)7 Sparent, which is assigned for one or more of the parent nodes of task;.

For each site S; in Sremore evaluate:

Timeyorar(task:, S;) = trans fer_time(Sparent, S;) X file_size + Predict(task;, Ry)
Assign task; to the site Sj, which minimizes Time;orai(task;, Sy).
Set resource allocation table entry of the task; with the assigned resource.
Update the ready_tasks set by removing task;, and adding children nodes of task;.

Figure 4. Site Scheduler Algorithm

1. Retrieve task-specific parameters of AFG tasks from task-performance database.

2. Retrieve resource-specific parameters of a set of resources,

Rect ={R1,Ra, ...
3. Set task_queue = {task;|task; in AFG}.
4. For each task; in task_queue

, R}, from resource-performance database.

Evaluate the performance prediction time of the task;, Predict(task;, R;),

for every resource, R; in Rset.

Assign task; to the resource, R;, which minimizes the performance prediction time, Predict(task;, R;).

Figure 5. Host Selection Algorithm

The Data Manager provides low latency and high-
speed communication and synchronization services for
inter-task communications. The I/O and application
visualization (real-time or post-mortem visualizations)
services are provided by the Data Manager.

2.3.1 Control Manager

Functionally, the Control Manager services are grouped
into two modules: the Resource Controller, which man-
ages the VDCE resources, and the Application Con-
troller, which manages the application execution.

The Resource Controller. The Resource Con-
troller within a site contains three different processes: a
Site Manager, a Group Manager for each group leader
machine, and a Monitor daemon for each VDCE re-
source, as shown in Figure 6. The main functions of
the Resource Controller are:

e Retrieving Resource Performance Parameters.
VDCE resources are periodically monitored to col-
lect up-to-date values of processor and network
parameters. Each VDCE machine has a Monitor
daemon that periodically measures the up-to-date
processor parameters; i.e., CPU load and mem-
ory availability. The measured values are sent
to the group leader machine. The Group Man-
ager, shown in Figure 6, periodically receives the
up-to-date values from hosts. Group Manager
sends only the workloads of the resources that
have changed considerably from the previous mea-
surement to the Site Manager. The workload of a
resource is significantly changed if the up-to-date
measurement is higher or lower than the summa-
tion of the previous measurement and the width
of the confidence interval [20]. The Site Manager
stores/updates the relevant VDCE database with
the received values.

e Monitoring the VDCE Resources. 'The Group
Manager periodically checks to see if all hosts in
the group are alive by sending echo packets to
hosts and waiting for their responses. These pack-
ets are used to detect the node and network fail-
ures and to measure the network parameters, i.e.,
network latency and transfer rate within a group.
When a failure of a host is detected, the Group
Manager passes this information to the Site Man-
ager. Then the host is marked as “down” at the
site’s resource-performance database.

e Updating the Site Repository. As explained
above, the Site Manager periodically updates the
resource-performance database at the site repos-
itory with the monitoring information (i.e, the
workload measurement and failure detection infor-
mation of the resources). After an application exe-
cution is completed, the newly measured execution
time of each application task is stored in the task-
performance database. The Site Manager also up-
dates the site repository whenever a resource is
added or removed from the VDCE. The Applica-
tion Scheduler retrieves the required parameters
from databases through the Site Manager.

e Sending the Related Portion of the Resource Allo-
cation Table. After the resource allocation table is
generated by the Application Scheduler, the Site
Manager multicasts it to the Group Managers that
will be involved in the execution. If a machine in a
group is assigned for a task execution, the Group
Manager sends an execution request message and
related parts of the resource allocation table to the
Application Controller of the machine.

e Inter-site Coordination. As explained in Section
2.2, the Application Scheduler at the local site se-
lects a subset of remote sites and multicasts the
application flow graph to these sites. The remote
sites run the Host Selection Algorithm locally and
transfer the mapping decisions to the sender site.
The inter-site coordination and message transfer
are handled by Site Managers.

Application Controller. The execution environ-
ment setup and management services are provided by
the Application Controller by interacting with the Data
Manager.

e Initialize the Application Erecution Environment.
After the Application Controller receives an exe-
cution request message from the Group Manager,
it activates the Data Manager. The Data Man-
agers on the assigned machines set up the appli-

cation execution environment by starting the task
executions and creating point-to-point communi-
cation channels for inter-task data transfer. Fig-
ure 7 shows the part of the execution environ-
ment of the Linear Equation Solver application
discussed in Section 2.1. Machine 1 will execute
the LU_Decomposition task, which is followed by
execution of Matrix_Inversion tasks on Machine 2
and Machine 3. After the Application Executor
receives the acknowledgment from Data Manager
for the communication channel setup, it forwards
the acknowledgment to the Site Manager. When
all the required acknowledgments are received an
execution startup signal is sent to start the appli-
cation execution.

e Managing the application execution. The Applica-
tion Controller monitors the application execution
on the assigned machines and maintains the per-
formance, fault tolerance, and QoS requirements
of the application tasks. If the current load on
any of these machines is more than a predefined
threshold value, the Application Controller termi-
nates the task execution on the machine and sends
a task rescheduling request to the Group Manager.
If any assigned machine does not respond to the
keep-alive packets from the Group Manager, the
machine is marked as “down” and the Site Man-
ager 1s informed in order to prevent further task
mappings on the machine until it is up.

2.3.2 Data Manager

The VDCE Data Manager is a socket-based, point-to-
point communication system for inter-task communi-
cations. Therefore, any machine that supports socket
programming can be part of VDCE. As shown in Fig-
ure 7, the Data Manager activates the communication
proxy and sends the resource allocation information,
including the socket number, IP address for target ma-
chine, etc., that will be used for communication chan-
nel setup. After the setup is completed successfully,
the communication proxy sends an acknowledgment to
the Application Controller. The execution startup sig-
nal is sent to start the task executions.

On the other hand, for a thread-based program-
ming environment, the Data Manager consists of three
threads that are initiated by the communication proxy:
send thread, receive thread, and compute thread. After
the communication channel is established, the send and
receive threads are activated for data transfer and the
compute thread performs the task execution. The con-
trol transfer between the Application Controller and

VDCE SERVER MACHINE
(SYRACUSE SITE)

Application Application
Controller Controller

NODE A NODE B

VDCE SERVER MACHINE
(ROME SITE)

Site Manager

1. Retreieving the Resource Performance Parameters
2. Monitoring the VGCE Resources
3. Updating the Site Repository
4. Sending the Related Portion of
Resource Allocation Table

5. Inter-site Coordination

Figure 6. Interactions Among the Resource Controller Components

the Data Manager (or any other control transfer on
the same machine) are based on inter-process com-
munication mechanism (i.e., pipes, or shared-memory
paradigm). The data transfer among the communica-
tion proxies (or between send and receive threads for
multithreaded systems) uses a socket-based, message-
passing mechanism.

Since user tasks can be programmed in various
message-passing tools, the VDCE Runtime System
supports multiple message-passing libraries such as P4,
PVM, MPI, NCS. Additionally, the VDCE Runtime
System provides data conversions that might be needed
when an application execution environment includes
heterogeneous machines. The VDCE Runtime System
provides several user-requested services such as 1/0
service, console service, and visualization service. A
user can request these services while developing his/her
application with the Application Editor. I/O Service
provides either file /O or URL I/O for the inputs
of the application tasks. The user can suspend and
restart the application execution with the console ser-
vice. The VDCE visualization service provides both
real-time and post-mortem visualizations. There are

three types of visualizations provided in VDCE:

e Application Performance Visualization: The ex-
ecution time of tasks in application (or another
user-defined performance measure) is visualized.

e Workload Visualization: Up-to-date workload in-
formation on VDCE resources is visualized.

e Comparative Visualization: VDCE makes it pos-
sible for an end user to experiment and evaluate
his/her application for different combinations of
hardware and software medium by providing the
comparative performance visualization.

3. Conclusion

We have proposed a problem-solving environment
called Virtual Distributed Computing Environment
(VDCE) for high-performance, distributed computing
over wide-area networks. In this paper we provided the
software architecture for VDCE, which consists of three
main modules: Application Editor, Application Sched-
uler, and VDCE Runtime System. The Application
Editor provides users with all the software tools and li-

NODE 1 (running the LU Decomposition Task)

Application
Controller

Matrix
Inversion

Communication |,
Proxy

Figure 7. Setting Up the Applicati

brary functions required to develop an network applica-
tion. The major function of the Application Scheduler
is the initial task-to-resource mapping and any neces-
sary dynamic rescheduling. The VDCE Runtime Sys-
tem is based on two managers, the Control Manager
and the Data Manager. The Control Manager pro-
vides a seamless interconnection of the resources and
it monitors the resources. The Data Manager enables
a high-performance communication medium among the
application tasks.

We have successfully implemented on campus-wide
resources a proof-of-concept prototype that supports
all major components of the VDCE architecture.
We are improving the current implementation of the
VDCE so that it can support access to several geo-
graphically distributed sites. We are also implement-
ing a distributed shared memory model that will al-
low VDCE users to describe their applications using
shared-memory paradigm.

Acknowledgments

We would like to thank Kivanc Dincer for the discus-
sions on the design. We further thank Elaine Weinman
for proofreading this manuscript.

References

[1] P. Newton, J. C. Browne, “The CODE 2.0 Graph-

ical Parallel Programming Language,” Proceedings

NODE 3 (running the Matrix Inversion Task)

Application
Controller

Communication
Proxy

Matrix
Inversion

1. Activation of the Data Manager
2 Activation of the Communication Proxy and
Requesting the Communication Channel Setup

3 Acknowledgement of the Comm. Channel Setup
4 Task Execution Startup Signal
5 Socket-based Intertask Communcations

on Execution Environment

ACM International Conference on Supercomputing,
July 1992.

[2] R. Wolski, C. Anglano, J. Schopf, F. Berman,
“Developing Heterogeneous Applications Using Zoom
and HeNCE,” Proceedings of Heterogeneous Workshop
IPPS 95.

[3] J. C. Browne, S. Hyder, J. Dongarra, K. Moore,
P. Newton, “Visual Programming and Debugging for
Parallel Computing,” [EFE Parallel and Distributed
Technology, Spring 95.

[4] C. Angalano, J. Schopf, R. Wolski, F. Berman, “Zoom:
A Hierarchical Representation for Heterogeneous Ap-
plications,” UCSD CS Technical Report, CS95-451.

[5] R. Butler, and E. Lusk., “User’s Guide to the p4 Pro-
gramming System,” Mathematics and Computer Sci-
ence Division, Argonne National Laboratory.

[6] A. Beguelin, J. Dongara, A. Geist, R. Manchek , and
V. Sunderam, “User Guide to PVM,” Oak Ridge Na-
tional Laboratory, and Department of Mathematics
and Computer Science, Emory University, 1993.

[7] Message Passing Interface Forum. MPI: A message-
passing interface standard, version 1.0, May 1994.

[8] Parasoft Corporation, Pasadena, CA. Express user’s
guide, version 3.2.5, 1992.

[9] J. Gehring and A. Reinefeld, “MARS - A Framework
for minmimizing the job execution time in a metacom-

puting environment,” Future Generation Computing
Systems, 1996.

[10] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G.

Shao, “Application-Level Scheduling on Distributed
Heterogeneous Networks,” Proceedings of Supercom-
puting 96, November 1996.

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

T.L. Adam, K. Chandy, and J. Dickson, “A Compar-
ison of List Scheduling for Parallel Processing Sys-
tems,” Communication of ACM, Vol 17, no 12, pp
685-690, Dec 1974.

H. El-Rewimi, H. Ali, T. Lewis, “Task Scheduling in
multiprocessing systems,” IEEFE Computer, December
1995.

Y. Kwok, [. Ahmad, “Dynamic Critical-Path Schedul-
ing: An Effective Technique for Allocating Task
Graphs to Multiprocessors,” [IEEFE Transactions on
Parallel and Distributed Systems, Vol 7, pp 506-521,
1996.

H. G. Dietz, W. E. Cohen, B. K. Grant, “Would you
run it here... or there? (AHS: Automatic Heteroge-
neous Supercomputing,” 1993 International Confer-
ence on Parallel Processing, Vol 11, pp 217-221, 1993.

J. Weissman, A. Grimshaw, “A Federated Model
for Scheduling in Wide-Area-Systems,” Proceedings of
HPDCS5, pp 542-550, 1996.

Y. Yan and X. Zhang, “An Efficient and Practical
Performance Prediction Model for Parallel Computing
on Non-dedicated Heterogeneous NOW,” To appear in
Journal of Parallel and Distributed Computing.

M. Zaki, W. Li and M. Cierniak, “Performance Impact
of Processor and Memory Heterogeneity in a Network
of Machines,” Proceedings of 4th Heterogeneous Com-
puting Workshop, Santa Barbara, CA, April 1995.

S. Park, S. Hariri, Y. Kim, J.S. Harris, and R. Ya-
dav, “NYNET Communication System(NCS):A Mul-
tithreaded Message Passing Tool over ATM Network,”
Proceedings of the HPDC5, 1996.

K. Dincer and G. C. Fox, “Design Issues in Building
Web-based Programming Environments,” To appear
in Proceedings of HPDC6, 1997.

H. Casanova, J. Dongarra, “Netsolve: A Network
Server for Solving Computational Science Problems,”
Supercomputing 96, November 1996.

