
The Software Architecture of a Virtual Distributed ComputingEnvironment�Haluk Topcuoglu Salim Hariri Wojtek Furmanski Jon Valentey Ilkyeun RaDongmin Kim Yoonhee Kim Xue Bing Baoqing YeDepartment of Electrical Engineering and Computer ScienceHPDC LaboratorySyracuse UniversitySyracuse, NY 13244-4100.fhaluk, haririg@cat.syr.eduy Rome Laboratory, Rome NYAbstractThe requirements of grand challenge problems andthe deployment of gigabit networks makes the net-work computing framework an attractive and cost ef-fective computing environment with which to intercon-nect geographically distributed processing and storageresources. Our project, Virtual Distributed ComputingEnvironment (VDCE), provides a problem-solving en-vironment for high-performance distributed computingover wide area networks. VDCE delivers well-de�nedlibrary functions that relieve end-users of tedious taskimplementations and also support reusability. In thispaper we present the conceptual design of VDCE soft-ware architecture, which is de�ned in three modules:a) the Application Editor, a user-friendly applicationdevelopment environment that generates the Applica-tion Flow Graph (AFG) of an application; b) the Ap-plication Scheduler, which provides an e�cient task-to-resource mapping of AFG; and c) the VDCE RuntimeSystem, which is responsible for running and manag-ing application execution and monitoring the VDCEresources.1. IntroductionGrand challenge problems have computational andstorage resource requirements that are beyond the ca-pacities of a single computing environment. Addition-�This research is supported by Rome Lab contract numberF30602-95-C-0104.

ally, emerging network technologies such as �ber-optictransmission facilities and the Asynchronous TransferMode (ATM) enable data to be transferred at the rateof a gigabit per second (Gbps). A high-speed networkof geographically distributed heterogeneous resourcesrepresents a cost-e�ective, network-based computingenvironment for solving large-scale problems addressedby grand and national challenges. New software devel-opment models and problem solving environments arebeing developed to utilize e�ciently the network com-puting environment.The software development process of parallel anddistributed applications can be broadly described interms of three phases: a) application development andspeci�cation, b) application scheduling and resourcecon�guration, and c) application execution and run-time. Most of the related work so far has focused onlyon one or two of these phases; only a very few projectshave completely addressed all phases of software devel-opment.The �rst phase, i.e, parallel and distributed ap-plication development and speci�cation phase, over-whelms most users because of the di�culty of express-ing communicationand synchronization among compu-tations [3]. Some text-based parallel programming en-vironments support the data-parallel paradigm, whichrequires advanced compilation techniques and compil-ers. Most of the other environments require explicitinsertion of communication and synchronization prim-itives within the programs, which makes programs dif-�cult to understand. Over the last few years a number



of graph-based application development and represen-tation tools have become available, including Code [1],HeNCE [2], and Zoom [2, 4]. A graph-based pro-gramming environment provides simple and easy-to-use mechanisms for expressing the interaction of multi-ple processes within a parallel/distributed program [3].On the other hand, application development tools andenvironments are being modi�ed to support web-baseduser interfaces since the World Wide Web is becom-ing a low-cost, standard interface mechanism [19] withwhich to access the computational resources that aredistributed all over the world.After a parallel/distributed application is developed,the tasks of the application are assigned at the sec-ond phase to the existing resources. In the literature,although the task scheduling (or resource allocation)problem has been investigated extensively, most of thealgorithms and systems are valid only for speci�c ar-chitectures and/or applications. There are also someresearch projects that target application-level resourceallocation issues such as APPLeS [10] and MARS [9]projects. The application execution and runtime phaseexecutes the developed and con�gured application andproduces the required output. This stage integratesthe assigned resources that will be involved in ex-ecution, and supports inter-module communications,which are based on either a message-passing tool suchas PVM [6], P4 [5], Express [8], MPI [7], and NCS [18]or on a distributed shared memory (DSM) model. Dur-ing the execution of the application, this stage acceptsdata from di�erent computing elements and combinesthem for proper visualization. It intercepts the errormessages generated and provides proper interpretation.The runtime system handles dynamic load-balancing,application-level and resource-level fault tolerance ca-pabilities.In this paper we present our approach for devel-oping a software environment, which we refer to as aVirtual Distributed Computing Environment (VDCE).VDCE provides a problem-solving environment forhigh-performance distributed computing over high-speed wide area networks, i.e, the NYNET Testbed inNew York state and the National Information Infras-tructure (NII). The main goal of the VDCE project isto develop an easy-to-use, integrated software devel-opment environment that provides software tools andmiddleware software to handle all the issues relatedto developing parallel and distributed applications,scheduling tasks onto the best available resources, andmanaging the Quality of Service (QoS) requirements.

VDCE software architecture consists of three sepa-rate parts: Application Editor, Application Scheduler,and VDCE Runtime System. The Application Edi-tor is a web-based graphical user interface that helpsusers to develop parallel and distributed applications.In VDCE the application development process is basedon dataow programming paradigm. The ApplicationEditor generates its output in terms of an ApplicationFlow Graph (AFG), in which the nodes represent taskcomputations, and links denote communication and/orsynchronization among the nodes (tasks). The Appli-cation Editor provides menu-driven functional buildingblocks of task libraries. A node of an AFG is a well-de�ned function or a task selected from a given tasklibrary. VDCE provides a large set of task librariesgrouped in terms of their functionality such as matrixoperations, Fourier analysis, C3I (command, control,communication, and information) applications, etc.VDCE provides a distributed runtime scheduler, theApplication Scheduler, which provides e�cient task-to-resource mapping of application ow graphs. The Ap-plication Scheduler uses performance prediction of in-dividual tasks to achieve e�cient resource allocations.The schedule decision is based on the task speci�ca-tions (i.e., hardware/software requirements) in the ap-plication ow graph, locations and the con�gurationsof the resources, and up-to-date resource loads. TheVDCE Runtime System consists of two managers: theControl Manager and the Data Manager. The Con-trol Manager is responsible for monitoring the VDCEresources, setting up the execution environment for agiven application, monitoring the execution of the ap-plication tasks on the assigned computers, and main-taining the performance, fault tolerance, and qualityof service (QoS) requirements. The Data Manager isresponsible for providing low latency and high-speedcommunication and synchronization services for inter-task communications.The rest of the paper is organized as follows. InSection 2 we present the design and prototype imple-mentation issues of the VDCE software architectureincluding the three modules of the system. Concludingremarks and future work are given in Section 3.2. Overview of VDCE Software Architec-tureThe main design philosophy of VDCE is to provide ageneral software development environment in which tobuild and execute large-scale applications on a networkof heterogeneous resources. VDCE is composed of geo-



graphically distributed computation sites, as shown inFigure 1, each of which has one or more VDCE Servers.At each site, the VDCE Server runs the server soft-ware, called site manager, which handles the inter-sitecommunications and bridges the VDCE modules to theweb-based repository.
Figure 1. Virtual Distributed Computing Envi-
ronment (VDCE)Site repository, the web-based storage environ-ment within a VDCE site, consists of four di�erentdatabases.User-accounts database is used to handlethe user authentication. In user-accounts database,each VDCE user account is represented by a 5-tuple: user name, password, user ID, priority, and ac-cess domain type. The resource-performance databaseprovides the resource (machine and network) at-tributes/parameters. These attributes are groupedinto two parts: a) static attributes stored in thedatabase once during the initial con�guration of VDCEsuch as: host name, IP address, architecture type,OS type, and total memory size; and b) dynamic at-tributes that are updated periodically, such as recentload measurement and available memory size. Thetask-performance database provides performance char-acteristics for each task in the system, and is usedto predict the performance of the task on a given re-source. Each task implementation is speci�ed by sev-eral parameters such as computation size, communica-tion size, required memory size, etc. In order to �ndlocations of a task's executables, VDCE stores locationinformation of each task (i.e., the absolute path of thetask executable) for each host in the task-constraintsdatabase. Due to speci�c library requirements, sometask executables may reside only on some of the hosts.The software development cycle for network appli-

  Task ID Option  1 Option  2

Performance

Task

Resource

Performance

Accounts

User 

Task

Constraints

  Editor
Application

Application Flow Graph  (AFG)

Application
Scheduler

Site Repository

S
ite

   
 M

an
ag

er
  

Ressource Allocation Information

Runtime  System
VDCE

Figure 2. Interactions Among the VDCE Mod-
ulescations can be viewed in terms of three phases: ap-plication development and speci�cation phase, applica-tion scheduling and con�guration phase, and executionand runtime phase. The functionality of these threephases is handled by the Application Editor, Applica-tion Scheduler, and VDCE Runtime System, respec-tively. Figure 2 shows the interaction of the VDCEmodules within a site. In what follows we describe indetail the design and prototype implementation issuesof the three software modules.

2.1. Application EditorThe Application Editor is a web-based graphicaluser interface for developing parallel and distributedapplications. The end-user establishes a URL connec-tion to the VDCE Server software within the site (theSite Manager) which runs on a VDCE Server. The SiteManager implementation is based on JAVA Web servertechnology which uses servlets (i.e., server site JAVAapplets) that relive the startup overheads and run onany platform. After user authentication, the Applica-tion Editor, which was implemented in JAVA, will beloaded into the user's local web browser so that theuser can develop his/her application.The Application Editor provides menu-driven tasklibraries that are grouped in terms of their functional-ity, such as the matrix algebra library, C3I (commandand control applications) library, etc. A selected task isrepresented as a clickable and draggable graphical iconin the active editor area. Each such icon includes thetask name and a set of markers for logical ports. Colorcoding used in this visual representation helps to dis-tinguish input ports from output ports. Operationally,the Application Editor can be in task mode, link mode,or run mode. In task mode, the user can select/add newtasks, and/or click/drag icons to position them conve-niently in the active editor area. In link mode, the usercan specify connections between tasks. In run mode,



Editor submits the graph for execution and visualizesthe performance and runtime characteristics of an on-going computation.
Figure 3. Building the Linear Equation Solver
Application with the Application EditorThe process of building an HPDC application withthe Application Editor can be divided into two steps:building the application ow graph (AFG), and spec-ifying the task properties of the application. TheApplication ow graph is a directed acyclic graph,G = (T; L), where T is the set of tasks in the ap-plication and L is a set of directed links among tasks.A directed link (i; j) between two tasks Ti and Tj ofthe application indicates that Ti must complete its ex-ecution before Tj begins to run. Figure 3 shows thebuilding of an application ow graph of a Linear Equa-tion Solver with the help of Application Editor. In thisapplication the problem is to �nd the solution vectorx in an equation Ax = b, where A is a known N � Nmatrix and b is a known vector. LU Decomposition isone of the several methods for solving linear equations.The nodes of this application, i.e, LU decomposition,matrix inversion, matrix multiplication, etc., are se-lected from the matrix operations menu and linked toform the application ow graph.After the application ow graph is generated, thenext step in the application development process is tospecify the properties of each task. A double click onany task icon generates a popup panel that allows theuser to specify (optional) preferences such as compu-tational mode (sequential or parallel), machine type,and the number of processors to be used in a parallelimplementation of a given task (see the right part of

Figure 3). In this �gure, for the LU Decomposition taskof Linear Equation Solver the user has selected paral-lel execution mode using two nodes of Solaris machinesinterconnected by an ATM network. When the taskproperties are speci�ed, the user may either submitthe application for execution in the VDCE or he/shemay store the application ow graph for future use.
2.2. Application SchedulerThe main function of the Application Schedulermodule in VDCE is to interpret the application owgraph and to assign the current best available re-sources for running the application tasks in order tominimize the schedule length (total execution time)in a transparent manner. We provide an application-based scheduling framework that provides and guar-antees Quality-of-Service (QoS) of a given application.The Application Scheduler considers both software andhardware requirements of an application before select-ing the best schedule.Our scheduling heuristic is based on list schedul-ing [11, 12, 13]. In list scheduling, each node (task)of the graph is assigned a priority before the schedul-ing process. The �rst step of the scheduling process isto select the node with the highest priority. The nextstep is to select the best available processor to run theselected task. These steps are repeated until all nodesof the graph are covered.The VDCE scheduling heuristic uses the level [11]of each node to determine its priority. The node (task)with a higher level value will have a higher priority forscheduling. The level of a node in the graph is com-puted as the largest sum of computation costs along apath from the node to an exit node. The exit node isthe node that does not have a child node. For the com-putation cost, the task (node) execution time on thebase processor, which is already measured and storedin the task-performance database at site repository, isused. In order to select a task for scheduling, the nodemust be a ready node with the highest priority. A readynode has no parent nodes, or its parent nodes were al-ready scheduled. In VDCE the level of each node of anapplication ow graph is determined before the execu-tion of the scheduling algorithm.2.2.1 Built-in Scheduling AlgorithmsVDCE provides distributed scheduling in a wide-areasystem, in which each site consists of its own Applica-tion Scheduler running on the VDCE server. After the



best schedule of the whole application is determinedby the local site and a set of remote sites, the resourceallocation table is generated and transfered to the SiteManager running on the VDCE server. The Appli-cation Scheduler, which is based on [10, 14, 15], hastwo built-in algorithms: Site Scheduler Algorithm, andHost Selection Algorithm, as shown in Figure 4 andFigure 5, respectively.The Application Scheduler at the local site, i.e., thesite at which the VDCE receives the execution requestof an application, runs the site scheduler algorithm.Once the application ow graph (AFG) is accessed bythe site scheduler algorithm, a subset of remote sitesis selected and the AFG is multicast to these sites, atwhich the Application Schedulers will run the host se-lection algorithm. In order to decrease the search spacefor scheduling, only a subset of remote sites is selected.Additionally, a site can be a local site for some of theapplications and it can be a remote site for some of theothers running in the VDCE system.The built-in host selection algorithm at each remotesite determines the best available machine within thesite for each task, which minimizes the predicted exe-cution time. Then each site sends the mapping infor-mation of each task, i.e, machine name and predictedexecution time, to the local site. For the entry tasksthat have no parents, or the tasks that do not requireany input �le for execution, the site scheduler algo-rithm selects the site (the resource within the site) thatminimizes the prediction time for the task. For othercases the local-site scheduler algorithm selects the bestsite, based on the summation of predicted executiontime and transfer time of the task input �les. Thesite at which a parent task is scheduled, the parent'ssite, is determined to evaluate the transfer time. Theinter-task transfer time is based on the network trans-fer time between a site and the parent's site, and thesize of the transfer. The input size of the applicationcan be used for the transfer size parameter. If the siteis the same as the parent site, then the total inter-tasktransfer time will be zero.The idea behind this algorithm is to schedule theapplication tasks within a site (or within the nearestneighbor sites) to decrease the inter-task communica-tion time. Although these built-in algorithms are de-signed for application tasks that request a single ma-chine, it is not di�cult to extend the algorithm forparallel tasks. For parallel tasks, the host selection al-gorithm is updated to select the number of machinesrequired within the site. By scheduling the parallel

task execution within a site, the inter-site communica-tion overhead for parallel tasks is removed.The core of the given built-in scheduling algorithmsis the performance prediction phase. Since the het-erogeneous nature of the resources and time-sharingmake the scheduling di�cult, the performance predic-tion of tasks guides the scheduler in �nding the moste�cient resource allocations. As discussed in [16, 17],the performance of the processors changes from one ap-plication to another; i.e., a processor may give the bestexecution time for a speci�c application, but it maygive the worst time for another application. There-fore, in VDCE we provide separate function evalua-tions, Predict(taski; Rj), to predict the performanceof each task, taski, on each resource, Rj.The performance prediction functions are basedon a combination of analytical modeling and mea-surements of experimental runs. This provides anaccurate and fast approach to predict the perfor-mance of a given task on a particular machine.The input parameters of the prediction functions in-clude: Measured T ime(taski; Rbase), which is theexecution time of taski on a dedicated base pro-cessor, Rbase, for unit size input; Weight(taski; Rj),which is the computing power weight [16, 17] of Rjwith respect to the base processor, Rbase, for taski;Mem Req(taski), which is the memory requirementof taski; Memory Avail(Rj ), which gives the avail-able memory size on the machine; and CPU load(Rj),which is the current load on Rj. The required pa-rameters for prediction are stored at task-performanceand resource-performance databases. Trial runs are re-quired to obtain the computing power weights of pro-cessors for each task. The current workload parametersare computed using forecasting techniques based on awindow of most recent workload measurements.
2.3. VDCE Runtime SystemThe VDCE Runtime System sets up the executionenvironment for a given application and manages theexecution to meet the hardware/software requirementsof the application. The VDCE Runtime System sep-arates control and data functions by allocating themto the Control Manager and Data Manager, respec-tively. The Control Manager measures the loads onthe resources (hosts and networks) periodically, andmonitors the resources for possible failures. The Con-trol Manager daemons operate execution of the appli-cation tasks on the assigned resources by maintainingthe performance and quality of service requirements.



1. Receive application ow graph (AFG) from local Application Editor.2. Select k nearest VDCE neighbor sites, Sremote = fS1; S2; : : : ; Skg, for local site Slocal.3. Multicast application ow graph to each Si in Sremote.4. Call Host Selection Algorithm (for local site and selected remote sites).5. Receive the outputs of Host Selection Algorithm, i.e, the selected machine and performance prediction timepairs of all tasks, from each Si in Sremote.6. Initialize the set for the ready tasks : ready tasks = ftaskijtaski is an entry nodeg.7. For each taski in ready tasks set:If the taski is an entry task or taski does not require any input �le from its parent node tasks,Assign taski to the site Sj, which minimizes Predict(taski;Rj).Else Determine the site(s), Sparent, which is assigned for one or more of the parent nodes of taski.For each site Sj in Sremote evaluate:Timetotal(taski; Sj) = transfer time(Sparent; Sj)� file size+ Predict(taski;Rj)Assign taski to the site Sj , which minimizes Timetotal(taski; Sj).Set resource allocation table entry of the taski with the assigned resource.Update the ready tasks set by removing taski, and adding children nodes of taski.
Figure 4. Site Scheduler Algorithm1. Retrieve task-speci�c parameters of AFG tasks from task-performance database.2. Retrieve resource-speci�c parameters of a set of resources,Rset = fR1;R2; : : : ; Rmg, from resource-performance database.3. Set task queue = ftaskijtaski in AFGg.4. For each taski in task queueEvaluate the performance prediction time of the taski, Predict(taski;Ri),for every resource, Ri in Rset.Assign taski to the resource, Rj , which minimizes the performance prediction time, Predict(taski;Rj).
Figure 5. Host Selection AlgorithmThe Data Manager provides low latency and high-speed communication and synchronization services forinter-task communications. The I/O and applicationvisualization (real-time or post-mortem visualizations)services are provided by the Data Manager.2.3.1 Control ManagerFunctionally, the Control Manager services are groupedinto two modules: the Resource Controller, which man-ages the VDCE resources, and the Application Con-troller, which manages the application execution.The Resource Controller. The Resource Con-troller within a site contains three di�erent processes: aSite Manager, a Group Manager for each group leadermachine, and a Monitor daemon for each VDCE re-source, as shown in Figure 6. The main functions ofthe Resource Controller are:

� Retrieving Resource Performance Parameters.VDCE resources are periodically monitored to col-lect up-to-date values of processor and networkparameters. Each VDCE machine has a Monitordaemon that periodically measures the up-to-dateprocessor parameters, i.e., CPU load and mem-ory availability. The measured values are sentto the group leader machine. The Group Man-ager, shown in Figure 6, periodically receives theup-to-date values from hosts. Group Managersends only the workloads of the resources thathave changed considerably from the previous mea-surement to the Site Manager. The workload of aresource is signi�cantly changed if the up-to-datemeasurement is higher or lower than the summa-tion of the previous measurement and the widthof the con�dence interval [20]. The Site Managerstores/updates the relevant VDCE database withthe received values.



� Monitoring the VDCE Resources. The GroupManager periodically checks to see if all hosts inthe group are alive by sending echo packets tohosts and waiting for their responses. These pack-ets are used to detect the node and network fail-ures and to measure the network parameters, i.e.,network latency and transfer rate within a group.When a failure of a host is detected, the GroupManager passes this information to the Site Man-ager. Then the host is marked as \down" at thesite's resource-performance database.� Updating the Site Repository. As explainedabove, the Site Manager periodically updates theresource-performance database at the site repos-itory with the monitoring information (i.e, theworkload measurement and failure detection infor-mation of the resources). After an application exe-cution is completed, the newly measured executiontime of each application task is stored in the task-performance database. The Site Manager also up-dates the site repository whenever a resource isadded or removed from the VDCE. The Applica-tion Scheduler retrieves the required parametersfrom databases through the Site Manager.� Sending the Related Portion of the Resource Allo-cation Table. After the resource allocation table isgenerated by the Application Scheduler, the SiteManager multicasts it to the GroupManagers thatwill be involved in the execution. If a machine in agroup is assigned for a task execution, the GroupManager sends an execution request message andrelated parts of the resource allocation table to theApplication Controller of the machine.� Inter-site Coordination. As explained in Section2.2, the Application Scheduler at the local site se-lects a subset of remote sites and multicasts theapplication ow graph to these sites. The remotesites run the Host Selection Algorithm locally andtransfer the mapping decisions to the sender site.The inter-site coordination and message transferare handled by Site Managers.Application Controller. The execution environ-ment setup and management services are provided bythe Application Controller by interacting with the DataManager.� Initialize the Application Execution Environment.After the Application Controller receives an exe-cution request message from the Group Manager,it activates the Data Manager. The Data Man-agers on the assigned machines set up the appli-

cation execution environment by starting the taskexecutions and creating point-to-point communi-cation channels for inter-task data transfer. Fig-ure 7 shows the part of the execution environ-ment of the Linear Equation Solver applicationdiscussed in Section 2.1. Machine 1 will executethe LU Decomposition task, which is followed byexecution of Matrix Inversion tasks on Machine 2and Machine 3. After the Application Executorreceives the acknowledgment from Data Managerfor the communication channel setup, it forwardsthe acknowledgment to the Site Manager. Whenall the required acknowledgments are received anexecution startup signal is sent to start the appli-cation execution.� Managing the application execution. The Applica-tion Controller monitors the application executionon the assigned machines and maintains the per-formance, fault tolerance, and QoS requirementsof the application tasks. If the current load onany of these machines is more than a prede�nedthreshold value, the Application Controller termi-nates the task execution on the machine and sendsa task rescheduling request to the Group Manager.If any assigned machine does not respond to thekeep-alive packets from the Group Manager, themachine is marked as \down" and the Site Man-ager is informed in order to prevent further taskmappings on the machine until it is up.2.3.2 Data ManagerThe VDCE Data Manager is a socket-based, point-to-point communication system for inter-task communi-cations. Therefore, any machine that supports socketprogramming can be part of VDCE. As shown in Fig-ure 7, the Data Manager activates the communicationproxy and sends the resource allocation information,including the socket number, IP address for target ma-chine, etc., that will be used for communication chan-nel setup. After the setup is completed successfully,the communication proxy sends an acknowledgment tothe Application Controller. The execution startup sig-nal is sent to start the task executions.On the other hand, for a thread-based program-ming environment, the Data Manager consists of threethreads that are initiated by the communication proxy:send thread, receive thread, and compute thread. Afterthe communication channel is established, the send andreceive threads are activated for data transfer and thecompute thread performs the task execution. The con-trol transfer between the Application Controller and



Group  Manager

Application
Controller

Application
Controller

Application
Controller

Monitor

Site  Repository

Site  Manager

Site  Repository

Site  Manager

Monitor Monitor

Group Leader

1

1

3

Scheduler
Application

(ROME   SITE)

5

4

1.
2.

3.
4. 

3

Scheduler
Application

(SYRACUSE   SITE)

Updating the Site Repository

Inter-site Coordination

Sending the Related Portion of 
Resource Allocation Table 

5.

Monitoring the VGCE Resources
1 2 4 2 4

41&2

NODE  A   NODE   B    

Retreieving the Resource Performance Parameters

VDCE  SERVER  MACHINE

VDCE  SERVER  MACHINE

Figure 6. Interactions Among the Resource Controller Componentsthe Data Manager (or any other control transfer onthe same machine) are based on inter-process com-munication mechanism (i.e., pipes, or shared-memoryparadigm). The data transfer among the communica-tion proxies (or between send and receive threads formultithreaded systems) uses a socket-based, message-passing mechanism.Since user tasks can be programmed in variousmessage-passing tools, the VDCE Runtime Systemsupports multiple message-passing libraries such as P4,PVM, MPI, NCS. Additionally, the VDCE RuntimeSystem provides data conversions that might be neededwhen an application execution environment includesheterogeneous machines. The VDCE Runtime Systemprovides several user-requested services such as I/Oservice, console service, and visualization service. Auser can request these services while developing his/herapplication with the Application Editor. I/O Serviceprovides either �le I/O or URL I/O for the inputsof the application tasks. The user can suspend andrestart the application execution with the console ser-vice. The VDCE visualization service provides bothreal-time and post-mortem visualizations. There are
three types of visualizations provided in VDCE:� Application Performance Visualization: The ex-ecution time of tasks in application (or anotheruser-de�ned performance measure) is visualized.� Workload Visualization: Up-to-date workload in-formation on VDCE resources is visualized.� Comparative Visualization: VDCE makes it pos-sible for an end user to experiment and evaluatehis/her application for di�erent combinations ofhardware and software medium by providing thecomparative performance visualization.3. ConclusionWe have proposed a problem-solving environmentcalled Virtual Distributed Computing Environment(VDCE) for high-performance, distributed computingover wide-area networks. In this paper we provided thesoftware architecture for VDCE, which consists of threemain modules: Application Editor, Application Sched-uler, and VDCE Runtime System. The ApplicationEditor provides users with all the software tools and li-



Application
Controller

Data
Manager

1 3 4

1 3 4

1 3 4

 Communication

Proxy

 Communication

Proxy

Decomposition
LU

 Communication

Proxy

Inversion
Matrix

3

4

2 Application
Controller

Data
ManagerMatrix

Inversion

1. Activation of the Data Manager
2

NODE  1   (running the LU Decomposition Task)

NODE  2   (running the Matrix Inversion Task)

NODE  3   (running the Matrix Inversion Task)

4

3

Requesting the Communication Channel Setup

Acknowledgement of the Comm. Channel Setup

Application
Controller

Data
Manager

Socket-based Intertask Communcations5
3

4

2

2

3

4

5

5

Activation of the Communication Proxy and 

Task Execution Startup Signal

Figure 7. Setting Up the Application Execution Environmentbrary functions required to develop an network applica-tion. The major function of the Application Scheduleris the initial task-to-resource mapping and any neces-sary dynamic rescheduling. The VDCE Runtime Sys-tem is based on two managers, the Control Managerand the Data Manager. The Control Manager pro-vides a seamless interconnection of the resources andit monitors the resources. The Data Manager enablesa high-performance communicationmediumamong theapplication tasks.We have successfully implemented on campus-wideresources a proof-of-concept prototype that supportsall major components of the VDCE architecture.We are improving the current implementation of theVDCE so that it can support access to several geo-graphically distributed sites. We are also implement-ing a distributed shared memory model that will al-low VDCE users to describe their applications usingshared-memory paradigm.AcknowledgmentsWe would like to thank Kivanc Dincer for the discus-sions on the design. We further thank Elaine Weinmanfor proofreading this manuscript.References[1] P. Newton, J. C. Browne, \The CODE 2.0 Graph-ical Parallel Programming Language," Proceedings

ACM International Conference on Supercomputing,July 1992.[2] R. Wolski, C. Anglano, J. Schopf, F. Berman,\Developing Heterogeneous Applications Using Zoomand HeNCE," Proceedings of Heterogeneous WorkshopIPPS 95.[3] J. C. Browne, S. Hyder, J. Dongarra, K. Moore,P. Newton, \Visual Programming and Debugging forParallel Computing," IEEE Parallel and DistributedTechnology, Spring 95.[4] C. Angalano, J. Schopf, R. Wolski, F. Berman, \Zoom:A Hierarchical Representation for Heterogeneous Ap-plications," UCSD CS Technical Report, CS95-451.[5] R. Butler, and E. Lusk., \User's Guide to the p4 Pro-gramming System," Mathematics and Computer Sci-ence Division, Argonne National Laboratory.[6] A. Beguelin, J. Dongara, A. Geist, R. Manchek , andV. Sunderam, \User Guide to PVM," Oak Ridge Na-tional Laboratory, and Department of Mathematicsand Computer Science, Emory University, 1993.[7] Message Passing Interface Forum. MPI: A message-passing interface standard, version 1.0, May 1994.[8] Parasoft Corporation, Pasadena, CA. Express user'sguide, version 3.2.5, 1992.[9] J. Gehring and A. Reinefeld, \MARS - A Frameworkfor minimizing the job execution time in a metacom-puting environment," Future Generation ComputingSystems, 1996.[10] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G.Shao, \Application-Level Scheduling on DistributedHeterogeneous Networks," Proceedings of Supercom-puting 96, November 1996.



[11] T.L. Adam, K. Chandy, and J. Dickson, \A Compar-ison of List Scheduling for Parallel Processing Sys-tems," Communication of ACM, Vol 17, no 12, pp685-690, Dec 1974.[12] H. El-Rewini, H. Ali, T. Lewis, \Task Scheduling inmultiprocessing systems," IEEE Computer, December1995.[13] Y. Kwok, I. Ahmad, \Dynamic Critical-Path Schedul-ing: An E�ective Technique for Allocating TaskGraphs to Multiprocessors," IEEE Transactions onParallel and Distributed Systems, Vol 7, pp 506-521,1996.[14] H. G. Dietz, W. E. Cohen, B. K. Grant, \Would yourun it here... or there? (AHS: Automatic Heteroge-neous Supercomputing," 1993 International Confer-ence on Parallel Processing, Vol II, pp 217-221, 1993.[15] J. Weissman, A. Grimshaw, \A Federated Modelfor Scheduling in Wide-Area-Systems," Proceedings ofHPDC5, pp 542-550, 1996.[16] Y. Yan and X. Zhang, \An E�cient and PracticalPerformance Prediction Model for Parallel Computingon Non-dedicated Heterogeneous NOW," To appear inJournal of Parallel and Distributed Computing.[17] M. Zaki, W. Li and M. Cierniak, \Performance Impactof Processor and Memory Heterogeneity in a Networkof Machines," Proceedings of 4th Heterogeneous Com-puting Workshop, Santa Barbara, CA, April 1995.[18] S. Park, S. Hariri, Y. Kim, J.S. Harris, and R. Ya-dav, \NYNET Communication System(NCS):A Mul-tithreaded Message Passing Tool over ATM Network,"Proceedings of the HPDC5, 1996.[19] K. Dincer and G. C. Fox, \Design Issues in BuildingWeb-based Programming Environments," To appearin Proceedings of HPDC6, 1997.[20] H. Casanova, J. Dongarra, \Netsolve: A NetworkServer for Solving Computational Science Problems,"Supercomputing 96, November 1996.


