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Magnetothermoelastic creep behavior of thick-walled spheres made of functionally graded
materials (FGM) placed in uniform magnetic and distributed temperature fields and sub-
jected to an internal pressure is investigated using method of successive elastic solution.
The material creep, magnetic and mechanical properties through the radial graded direc-
tion are assumed to obey the simple power law variation. Using equations of equilibrium,
stress–strain and strain–displacement a differential equation, containing creep strains, for
displacement is obtained. A semi-analytical method in conjunction with the Mendelson’s
method of successive elastic solution has been developed to obtain history of stresses
and strains. History of stresses, strains and effective creep strain rate from their initial elas-
tic distribution at zero time up to 55 years are presented in this paper. Stresses, strains and
effective creep strain rate are changing in time with a decreasing rate so that after almost
50 years the time-dependent solution approaches the steady state condition when there is
no distinction between stresses and strains at 50 and 55 years.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In modern technologies a new area concerning the interactions among stress, strain, temperature and electromagnetic
fields has been developed. This area which is called magnetothermoelasticity has attracted the researcher’s attention due
to wide application in geophysics, electrical power engineering, optics and plasma physics. In recent years functionally
graded materials are extensively used for structural components working in high temperature environments under mechan-
ical loading and electromagnetic fields. Such components are subjected to creep damage. Time-dependent stress and defor-
mation analysis of these components which gives the history of stresses and deformations is crucial for life assessment of
these components. Although in-service examinations of such components gives useful information about the material con-
dition, however history of stresses and deformations are crucial before these information can be used for prediction of the
future performance of the component. Therefore time-dependent stress and deformation analysis of such components is
very important.

Exact solution for magnetothermoelastic analysis of cylinders and spheres is available in the literature. Magnetothermo-
elastic problems of FGM cylinders and spheres are studied by Dai and Fu [1] and Ghorbanpour et al. [2]. The thermo-elastic
problem of FGM spheres, cylinders and disks has already been analytically studied by Tutuncu and Temel [3]. Yoshihiro and
Yoshinobu [4] reported the transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow
sphere.
. All rights reserved.
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Closed form solution for steady state creep problems of FGM cylinders and spheres can be found in the literature.
Creep deformation and stresses in thick-walled cylindrical vessels of FGM subjected to internal pressure was presented by

You et al. [5]. They obtained a closed form solution for steady state creep stresses in FGM cylinders. Thermal stresses were
not considered and stress redistributions were not presented. Effect of anisotropy on steady state creep in functionally
graded cylinders was investigated by Singh and Gupta [6].

Time-dependent creep stress and damage analysis of thick-walled spherical pressure vessels of constant material prop-
erties has been investigated by Loghman and Shokouhi [7]. They studied the creep stress and damage histories of thick-
walled spheres using the material constant creep and creep rupture properties defined by the Theta projection concept
[8]. Loading conditions included an internal pressure and a thermal gradient. Time and temperature dependent response
and relaxation of a soft polymer was investigated by Khan and Lopez [9]. Although intensive investigation considering creep
of thick-walled spheres and cylinders with constant material properties can be found in the existing literature, Loghman and
Wahab [10], Sim and Penny [11], however, little publication can be found dealing with time-dependent creep of FGM spheres
and cylinders. Time-dependent deformation and fracture of multi-material systems at high temperature was presented by
Xuan et al. [12]. They considered a thick-walled sphere of FGM material subjected to an internal pressure. Using Norton’s law
for material creep behavior and using equations of equilibrium, compatibility, stress–strain relations and considering the
Prandtl–Reuss relations, they obtained a differential equation for the radial stress rate. Radial and circumferential stress dis-
tributions with different material creep properties after two hundred hours were illustrated. Yang [13] presented a solution
for time-dependent creep behavior of FGM cylinders using Norton’s law for material creep constitutive model. Using equa-
tions of equilibrium, strain–displacement and stress–strain relations he obtained a differential equation for the displacement
rate. There was no exact solution of the equation, however with some simplifications and using Taylor expansion, he ob-
tained the displacement rate and then the stress rates were calculated. When the stress rates were known, the stresses at
any time were calculated iteratively.

Recently magnetothermoelastic creep analysis of FGM cylinders has been added to the literature by Loghman et al. [14].
However there is no solution for magnetothermoelastic creep behavior of FGM spheres in the existing literature. The main
objective of this paper is to present Time-dependent magnetothermoelastic creep modeling of FGM spheres. The present pa-
per can be used for damage analysis of FGM spheres.

2. Geometry, material properties and loading condition

A hollow FGM sphere with an inner radius ri and outer radius ro with perfect conductivity is considered. The sphere is
placed in a uniform magnetic field with magnetic intensity vector ~Hð0;0;H/Þ and subjected to an internal pressure P and
a distributed temperature field T = T0rb. Mechanical properties, except Poisson’s ratio, through the radial graded direction
are assumed to obey the same power law variation as E = E0rb and a = a0rb where E and a are radial dependent elastic mod-
ulus and coefficient of linear expansion and E0 and a0 are elastic constants. The radial dependent magnetic permeability, l(r)
is assumed the same power as mechanical properties l(r) = l0rb where l0 is magnetic permeability [H/m]. The uni-axial
creep constitutive model is the Norton’s law _ec

e ¼ BðrÞrnðrÞ
e where _ec

e and re are effective creep strain rate and the effective
stress respectively, r is the radial coordinate and B(r) and n(r) are the radial-dependent material creep parameters. In this
study BðrÞ ¼ b0rb1 and n(r) is considered to be a constant n(r) = n0. The following data for geometry, material properties
[1,5] and loading conditions are used in this study ro

ri
¼ 1:4; Eo ¼ 22 GPa, bo ¼ 0:11� 10�36, b1 ¼ �5;n0 ¼ 10, t ¼ 0:3,

ao ¼ 1:2� 10�6 1
�C, q ¼ 1

3, b ¼ 2;1;�1;�2, T0 ¼ 200 �C , Pi ¼ 100 MPa, l0 ¼ 4p� 10�7 H=m, H/ ¼ 2:23� 109 A=m.

3. Basic formulation for magnetothermoelastic creep analysis of FGM spheres

Consider a thick, hollow, FGM sphere with an inner radius ri and outer radius r0 subjected to an internal pressure P with
perfect conductivity placed in a uniform magnetic ~Hð0;0;H/Þ and a distributed temperature field.

Assuming total strains to be the sum of elastic, thermal and creep strains then the stress–strain relation for spherical sym-
metry may be written in terms of radial displacement as
rr ¼ c11
@u
@r
þ 2c12

u
r
� k1T � c11ec

r � 2c12ec
h; ð1aÞ

rh ¼ c12
@u
@r
þ ðc11 þ c12Þ

u
r
� k2T � c12ec

r � ðc11 þ c12Þec
h; ð1bÞ

k1 ¼ c11ar þ 2c12ah; ð1cÞ

k2 ¼ c12ar þ ðc11 þ c12Þah; ð1dÞ
where c11 ¼ ð1�tÞE
ð1þtÞð1�2tÞ and c12 ¼ tE

ð1þtÞð1�2tÞ and considering ar ¼ ah ¼ a then k1 ¼ k2 ¼ Ea
1�2t.

In which E, m and a are elastic modulus, Poisson’s ratio and coefficient of linear expansion respectively.The equilibrium
equation of the FGM sphere placed in a uniform magnetic field is
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drr

dr
þ 2ðrr � rhÞ

r
þ f/ ¼ 0; ð2Þ
where rr, rh and f/ are radial, circumferential stresses and the Lorentz’s force respectively.The governing electrodynamics
Maxwell equations for a perfectly conducting, elastic body [1] are given by
~J ¼ Curl~h; Curl~e ¼ �l @
~h
@t
; div~h ¼ 0; ~e ¼ �l @U

@t
� ~H

� �
; ~h ¼ Curlð~U � ~HÞ; ð3Þ
where~J,~e,~h and ~U are electric current density vector, perturbation of electric field vector, perturbation of magnetic field vec-
tor and displacement vector respectively.

Imposing a magnetic field vector ~H ¼ ð0;0;H/Þ in spherical coordinate (r, h, /) system to Eq. (3) yields
~U ¼ ðu;0;0Þ; ~e ¼ �lðrÞ 0;H/
@u
@t
; 0

� �
; ð4aÞ

~h ¼ ð0;0;h/Þ; ~J ¼ 0;� @h/

@r
;0

� �
; h/ ¼ �H/

@u
@r
;
2u
r

� �
: ð4bÞ
Then the Lorentz’s force can be written as
f/ ¼ lðrÞ � ð~J �~hÞ;

f/ ¼ lðrÞH2
/

@

@r
@u
@r
þ 2u

r

� �
; ð5Þ
where l(r) is the magnetic permeability. Substituting radial and circumferential stresses fromEqs. (1a) and (1b) and f/ from
Eq. (5) into equilibrium Eq. (2) the following differential equation is obtained
c1
@2u
@r2 þ c2

@u
@r
þ c3uþ c4 ¼ 0; ð6Þ
where coefficients c1, c2, c3 and c4 are written as follows:
c1 ¼ r2;

c2 ¼ ðJIÞr;
c3 ¼ KI;

c4 ¼ �IE0 3ð1þ tÞba0rbþ1T0 þ ð1� mÞr2 dec
r

dr
þ 2mr2 dec

h

dr
þ ðbð1� mÞ þ 2ð1� 2mÞÞrec

r þ ð2mðbþ 2Þ � 2Þrec
h

� �
;

I ¼ 1
E0ð1� mÞ þ l0H2

/ð1þ tÞð1� 2tÞ
;

J ¼ E0ð1� mÞðbþ 2Þ þ 2l0H2
/ð1þ tÞð1� 2tÞ;

K ¼ 2E0ðmðbþ 1Þ � 1Þ � 2l0H2
/ð1þ tÞð1� 2tÞ:

ð7Þ
ec
r and ec

h on the right hand side of the non-homogeneous coefficient c4 are time, temperature and stress dependent.

3.1. Magnetothermoelastic analysis of FGM spheres

Ignoring the creep strain terms in non-homogeneous coefficient c4 then differential Eq. (4) is a second order Ordinary dif-
ferential equation (ODE) with variable coefficients the solution of which gives the thermoelastic stresses. A semi-analytical
method [15] for solution of this differential equation has been employed. In this method the solution domain is divided into
some finite divisions as shown in Fig. 1.

The coefficients of Eq. (4) are evaluated at r(k), mean radius of kth division and the ODE with constant coefficients valid
only in kth sub-domain is rewritten as follows
CðkÞ1
d2

dr2 þ CðkÞ2
d
dr
þ CðkÞ3

 !
uðkÞ þ CðkÞ4 ¼ 0: ð8Þ
The coefficients of Eq. (8) are evaluated in each division in terms of constants and the radius of kth division.
The exact solution for Eq. (8) is written as follows
uðkÞ ¼ XðkÞ1 expðgðkÞ1 rðkÞÞ þ XðkÞ2 exp gðkÞ2 rðkÞ
� �

� CðkÞ4

CðkÞ3

; ð9Þ



Fig. 1. Dividing radial domain into some finite sub-domains.
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where
gðkÞ1 ;gðkÞ2 ¼
CðkÞ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCðkÞ2 Þ

2 � 4CðkÞ3 CðkÞ1

q
2CðkÞ1

; ð10Þ
It is noted that this solution for Eq. (8) is valid in the following sub-domain
rðkÞ � tðkÞ

2
6 r 6 rðkÞ þ tðkÞ

2
; ð11Þ
where t(k) is the thickness of kth division and XðkÞ1 , XðkÞ2 are unknown constants for kth division.
The unknowns XðkÞ1 and XðkÞ2 are determined by applying the necessary boundary conditions between two adjacent sub-

domains. For this purpose, the continuity of the radial displacement u as well as radial stress rr is imposed at the interfaces
of the adjacent sub-domains. These continuity conditions at the interfaces are
uðkÞ
		
r¼rðkÞþtðkÞ

2
¼ uðkÞ

		
r¼rðkþ1Þ�tðkþ1Þ

2
;

rðkÞr

		
r¼rðkÞþtðkÞ

2
¼ rðkÞr

		
r¼rðkþ1Þ�tðkþ1Þ

2
:

ð12Þ
And global boundary conditions are
rr ¼ �P at r ¼ ri;

rr ¼ 0 at r ¼ ro:
ð13Þ
The continuity conditions Eq. (12) together with the global boundary conditions Eq. (13) yield a set of linear algebraic equa-
tions in terms of XðkÞ1 and XðkÞ2 . Solving the resultant linear algebraic equations for XðkÞ1 and XðkÞ2 ; the unknown coefficients of Eq.
(9) are calculated. Then, the displacement component u and the stresses are determined in each radial sub-domain. Increas-
ing the number of divisions improves the accuracy of the results.

Thermo-elastic stresses obtained from this semi-analytical solution are shown in Figs. 2–4.
From thermo-elastic analysis the material identified by b ¼ 2 in which the maximum effective stress distribution will oc-

cur throughout the thickness of the FGM sphere is selected for time-dependent stress redistribution analysis. Time-depen-
dent solution can be done for all cases, however we have reported our results for the case b ¼ 2 in this study.

3.2. Time-dependent magnetothermoelastic creep modeling of FGM spheres

For time-dependent creep analysis the creep strains in coefficient C4 must be considered. Creep strains are time, temper-
ature and stress dependent. Creep strain increments are related to the current stresses and the material uni-axial creep
behavior by the well known Prandtl–Reuss relation. For problems of spherical symmetry these relations are
Dec
r ¼

Dec

re
½rr � rh�;

Dec
h ¼ Dec

/ ¼ �
Dec

r

2
;

ð14Þ



Fig. 2. Initial magnetothermoelastic radial stresses at zero time in the FGM sphere for b = �2, �1, 1, 2.

Fig. 3. Initial magnetothermoelastic circumferential stresses at zero time in the FGM sphere for b = �2, �1, 1, 2.

Fig. 4. Initial magnetothermoelastic effective stresses at zero time in the FGM sphere for b = �2, �1, 1, 2.
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where Dec
r and Dec

h;Dec
/ are radial and circumferential creep strain increments, Dec and re are equivalent creep strain incre-

ment and equivalent stress respectively. These equivalent or effective variables considering the spherical symmetry are de-
fined as follows:
Dec ¼ Dec
r

		 		;
re ¼ rr � rhj j;

ð15Þ
The material creep constitutive model is Norton’s law written as
_ec
e ¼ BðrÞrnðrÞ

e ;

BðrÞ ¼ b0rb1 :
ð16Þ
Eqs. (14)–(16) in conjunction with differential equation (6) are used in a numerical procedure based on the Mendelson’s
method of successive elastic solution [16] or Harry Kraus [17] method of initial strains, to obtain history of stresses and
deformations during creep evolution.

3.2.1. Numerical procedure to obtain history of stresses and strains
It was shown that creep strains and their derivatives are involved in non-homogenous part of differential Eq. (4) c4.

Immediately after loading the creep strains are zero and the solution is an elasticity problem. To solve differential Eq. (4)
for long time after loading, method of successive elastic solution is used. Step by step procedure is explained in details as
follows:

(1) An appropriate time increment must be selected for timing steps. In this study Dti ¼ 100000 Sec is selected. The total
time is the sum of time increments as the creep process progresses in time. For the ith timing step the total time is
ti ¼
Xi�1

k¼1

Dtk þ Dti: ð17Þ
(2) Initial values of Dec
r;ij ¼ �0:0001 are assumed at all division points ðjÞ for ith timing step. These are added to the accu-

mulated creep strains obtained from the previous timing step at all division points throughout the radius of the sphere
ec
r;ij ¼

Xi�1

k¼1

Dec
r;kj þ Dec

r;ij;

ec
h;ij ¼

Xi�1

k¼1

Dec
h;kj þ Dec

h;ij;

Dec
h;ij ¼ Dec

/;ij ¼ �
Dec

r;ij

2
;

ð18Þ
where incompressibility condition is used to obtain tangential creep strain increments.
(3) With the assumed distribution for creep strain increments differential equation (6) can now be solved like thermoelas-

tic solution and therefore the initial estimates of displacements and then current stresses are calculated.
(4) Effective Von Mises stresses are then calculated at all division points as
re;ij ¼ jrr;ij � rh;ijj: ð19Þ
(5) Effective creep strain increments are then calculated at all division points (j) for ith timing step using Norton’s creep
constitutive model as follows
Dec;ij ¼ BðrjÞrn0
e;ij

h i
Dti;

BðrjÞ ¼ b0rb1
j :

ð20Þ
(6) From Prandtl–Reuss equation new values of creep strain increments are obtained
Dec;new
r;ij ¼ Dec;ij

re;ij
½rr;ij � rh;ij�;

Dec;new
h;ij ¼ Dec;new

/;ij ¼ �
Dec;new

r;ij

2
:

ð21Þ
(7) These new obtained values for creep strain increments are then compared with the initial estimated values for the
convergence of the procedure. If convergence is satisfied, time is advanced one increment and the procedure is
repeated for the new time increment from step one. If convergence is not satisfied, these new obtained values of creep
strain increments will be considered as initial values and the procedure will be repeated from step 2 until convergence
is obtained.



Fig. 5. History of magnetothermoelastic creep radial stress in the FGM sphere from its initial elastic at zero time up to 55 years for the case b = 2.

Fig. 6. History of magnetothermoelastic creep circumferential stress in the FGM sphere from its initial elastic at zero time up to 55 years for the case b = 2.
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From the above numerical procedure history of stresses, strains and effective creep strain rates of FGM sphere are ob-
tained and illustrated in Figs. 5–10.
4. Results and discussion

Initial magnetothermoelastic radial stresses at zero time are shown in Fig. 2. The boundary conditions for radial stresses
at the inner and outer surfaces of the sphere are satisfied for all material properties. There are not significant differences
among radial stresses for all material properties therefore the material power index b has no significant effect on radial stres-
ses. Tangential magnetothermo-elastic stresses at zero time are shown in Fig. 3 for different material properties. They are
tensile throughout thickness and are increasing by increasing the material power index b. The material power index b
has a significant effect on circumferential stress distribution.

Fig. 4 shows the effective stress distribution throughout thickness for all cases of material properties. Since effective stres-
ses of Von Mises and Tresca are the same in spherical symmetry re;ij ¼ jrr;ij � rh;ijj and effective stresses are indeed twice as
the maximum shear stresses (re = 2smax) therefore it is clear from Fig. 4 that the material with b = 2 has the maximum shear
stress distribution throughout thickness. The minimum shear stress distribution belongs to material identified by b = �2.
History of stresses and strains during creep process is investigated for the material identified by b = 2.

History of creep stresses for material identified by b = 2 are shown in Figs. 5–7. Fig. 5 shows radial stress redistribution in
a FGM sphere from its initial elastic up to 55 years. It is clear from this figure that radial stress redistribution is not really
significant however it changes in time with a decreasing rate so that after 50 years it becomes steady so that no distinction
can be identified between radial stresses at 50 and 55 years. History of circumferential stress is shown in Fig. 6. Major redis-
tribution has occurred for circumferential stress. Circumferential stress is also increasing in time with a decreasing rate so



Fig. 7. History of magnetothermoelastic creep effective stress in the FGM sphere from its initial elastic at zero time up to 55 years for the case b = 2.

Fig. 8. History of radial creep strain in the FGM sphere from its initial elastic up to 55 years for the case b = 2.

Fig. 9. History of circumferential creep strain in the FGM sphere from its initial elastic up to 55 years for the case b = 2.
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that after 50 years it becomes steady so that no distinction can be identified between circumferential stresses at 50 and
55 years. Effective stress redistribution is shown in Fig. 7. Since the effective stress is twice as the maximum shear stress
at each point throughout thickness, therefore the maximum shear stress distribution is increasing with time throughout
thickness of the vessel during creep process. It can also been concluded from the history of effective stress that almost after
50 years time-dependent solution approaches to the steady state condition because no distinction can be reported between
effective stresses at 50 and 55 years. History of creep strains are shown in Figs. 8 and 9. The absolute value of radial and cir-
cumferential creep strains is increasing with a decreasing rate so that after almost 50 years they become steady and no dis-
tinction can be identified between creep strains at 50 and 55 years.

From Eq. (20) effective creep strain rate histories are shown in Fig. 10. It is clear that effective creep strain rates are chang-
ing with time with a decreasing rate and finally converge to the steady state condition. It is also concluded that the maxi-
mum effective creep strain rates are located at the inner surface of the sphere while the minimum rates are located at the
outer surface of the vessel.
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Fig. 11. Effect of mechanical, magnetic and thermal fields on radial stress considering geometry and material properties of Ref [1].
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There is no solution available in the literature for magnetothermoelastic creep analysis of spheres so we cannot validate
with other references. However considering geometry and material property of Ref. [1] the effect of mechanical, magnetic
and thermal field for elastic radial stress has been depicted in Fig. 11. It has been found that the minimum radial stress dis-
tribution belongs to mechanical loading. Adding magnetic and thermal loads will increase radial stress distribution. If we
ignore the effect of thermal field the result is validated with Ref. [1].

5. Conclusion

A semi-analytical solution in conjunction with the Mendelson’s method of successive elastic solution has been success-
fully employed to obtain history of magnetothermoelastic creep stresses, strains and effective creep strain rate. History of
stresses, strains and effective creep strain rate are presented from their initial elastic values at zero time up to 55 years.
It has been concluded from the history of stresses and strains that after almost 50 years the time-dependent solution ap-
proaches to the steady state condition when there is no distinction between stresses and strains at 50 and 55 years. It
has also been found that the maximum effective creep strain rates are located at the inner surface of the FGM sphere while
the minimum rates are located at the outer surface of the vessel. The results are validated for elastic radial stresses consid-
ering mechanical and magnetic fields.
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