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INTRODUCTION 

This chapter explores key methodological and analytical considerations for the study of adult 

development and aging. In particular, we focus on central themes that are routinely encountered in 

conducting current aging research. We address a range of topics, from design selection and sampling 

considerations (including novel developmental research designs) to key considerations regarding 

missing data as well as the impact of attrition and retest on statistical parameter estimates. Given recent 

advances in research design and statistical modeling of developmental phenomena and their application 

to the study of the psychology of aging, we overview several analytic procedures and approaches that 

help to efficiently characterize aging-related change for various phenomena. In particular, we 

summarize several models for measuring change, explore multivariate approaches for examining 

correlated and coupled change, as well as compare alternative metrics for parameterizing developmental 

time. Finally, we conclude by highlighting emerging methodological trends in the study of adult 

development and aging, including recent emphasis on integrated data analysis and harmonization, as 

well as adopting an intraindividual variability approach for informing dynamic aging-related processes. 

RESEARCH DESIGNS AND SAMPLING CONSIDERATIONS FOR THE 

STUDY OF ADULT DEVELOPMENT AND AGING 

This section overviews two classic research designs for the psychology of aging, contrasts their relative 

strengths and weaknesses, and concludes with a thorough overview of a specific subtype of longitudinal 

design (the measurement burst design) and its merits for studying select developmental phenomena. 

Cross-Sectional Versus Longitudinal Designs 

The theoretical focus of any study, as well as its corresponding research questions, helps to predetermine 

selection of the most suitable research design. Research designs for studies of adult development and 

aging reflect a combination of age, cohort, and period effects. Further, for any study of the psychology 

of aging and underlying developmental processes, it is essential to distinguish between age-related 

differences and aging-related changes. The following section briefly addresses these issues; rather than 

an exhaustive overview of possible research designs, we focus in particular on crosssectional versus 

longitudinal approaches to the study of adult developmental and aging. 

Age Differences Versus Change 

Age differences are indexed using cross-sectional research designs and reflect differences in constructs 

(e.g., cognitive function, wellbeing) across age-heterogeneous groups or samples of individuals 

measured at a single point in time. Comparisons across these individuals or groups would afford insight 



into age differences in level(s) of cognitive function or wellbeing, but provide no information about 

how these constructs may be changing over time. In contrast, the study of aging-related change is the 

province of longitudinal research designs. Such designs index changes in constructs by testing a group 

of individuals over multiple occasions of assessment. By studying the same individuals over time, we 

are able to derive within-person estimates for the direction and rate of change.  

Relative Advantages Versus Disadvantages 

Cross-sectional studies offer a number of advantages including efficiency (e.g., less time required to 

collect data) as well as avoiding select confounds such as retest effects. However, with regard to the 

study of adult development and aging, notable weaknesses of cross-sectional designs include an 

overestimation of age-related performance differences due to cohort effects, as well as an inability to 

address arguably the most important aim of aging research—whether agingrelated change is occurring. 

As cross-sectional assessments are conducted at a single point in time, such designs necessarily 

confound age and cohort effects. Consequently, it is not possible to differentiate whether observed 

group differences are due to developmental age processes or to shared experiences characterizing cohort 

effects. In contrast, longitudinal studies facilitate the direct estimation of within-person change, as well 

as the possibility of investigating individual differences in change. Most if not all research questions 

and theories in adult development and aging are interested in such effects. To be sure, longitudinal 

designs also entail a number of limitations including the cost (both in terms of added expense for 

longitudinal collections and the time required to conduct repeated assessments to study aging processes 

that typically span years rather than months), as well as design considerations and analytic complexities. 

Furthermore, longitudinal designs confound age and time of measurement—observed changes in 

outcomes of interest may be due to age- and/or cohortrelated processes (if an age-heterogeneous cohort 

is being studied longitudinally), or to events at the time of measurement that exerted a pervasive 

influence on all individuals. When contrasting patterns and magnitude of effects, decades of research 

have demonstrated differences in results between cross-sectional (i.e., age-related differences) and 

longitudinal (i.e., aging-related changes) designs. More specifically, estimates of longitudinal aging-

related changes are routinely smaller than estimates of cross-sectional age-related differences. 

Crosssectional age-related differences are often greatly influenced by cohort effects between the age 

groups under study, such as societal shifts in formal education and the corresponding impact on 

cognitive performance. Longitudinal aging-related changes are often influenced by selective attrition 

from longitudinal follow-up (e.g., more frail individuals discontinue participation), as well as practice 

or retest effects (with repeated exposure/assessments tending to obscure true age-related decline). The 

topics of attrition and retest are reviewed in detail in the subsequent section concerning key 

methodological considerations for the study of aging. 

Which Design Is Best Suited for the Study of Aging? 

A recent special issue in Neurobiology of Aging (Volume 30, 2009) focused on an enduring question in 

research on the psychology of aging—“When does age-related cognitive decline begin?” Perhaps better 



than any description we can offer, this collection of articles directly addresses the conundrum regarding 

whether cross-sectional versus longitudinal designs are best suited for the study of aging. Despite 

consistently reported negative associations between age and cognitive function in cross-sectional 

studies, many theorists and methodologists alike posit that the study of agingrelated change necessitates 

longitudinal data. Indeed, Molenaar (2004) has forcefully argued that inferences about longitudinal 

aging-related change can only be drawn from studies of cross-sectional age-related differences when 

very strict (and often unrealistic) assumptions are met. Similarly, Hofer and Sliwinski (2001) contend 

that aging is a within-person phenomenon, and that longitudinal research designs are requisite for 

evaluating aging-related theories and propositions in particular. A central tenet of their argument is that 

the study of aging is a process that transpires within-persons over time, and can only be observed 

through the study of change. Moreover, as findings have clearly shown, the correspondence between 

age-cognition trends for betweenperson versus within-person variance and covariance estimates is often 

modest at best. One might question the relative importance of this issue and why it matters. To address 

this, consider an example regarding the process of forgetting from the episodic memory literature, where 

for decades, general consensus was that rates of forgetting were invariant across persons, despite known 

individual differences in encoding and retrieval processes. The generally accepted interpretation was 

that rates of acquisition and forgetting are asymmetrical, rather than processes anchoring disparate ends 

of a memory continuum. However, a competing explanation as to why individual differences in 

forgetting were rarely identified may be based upon this literature’s more typical reliance on betweenas 

opposed to within-person designs and estimates. With regard to forgetting, it is tenuous to assume that 

mean group differences will exhibit identical patterns to individual differences. For example, a negative 

correlation between learning and forgetting reported at the between-participants level (those individuals 

who learned more will also forget less) does not guarantee that a similar negative association will be 

observed at the within-person level (for any given individual, learning information at a faster rate will 

be associated with a slower rate of forgetting over time). Such discrepancies have been long described 

by the ecological fallacy, stating that mean (group-level) findings can differ in both magnitude and 

valence relative to individual results. Of direct relevance to the question regarding which research 

design is best suited to the study of aging, the aggregation bias just described represents perhaps the 

most critical weakness of cross-sectional designs. Specifically, due to considerable between-subject age 

heterogeneity (e.g., samples that span 50–90 years of age) at the single point of assessment, associations 

between measures (e.g., memory and sensory function) observed in cross-sectional designs are 

positively biased due to the confounding influence of population average age trends. Virtually any 

variables that exhibit cross-sectional age differences on average (e.g., poorer memory function and 

auditory acuity for those in the ninth versus seventh decades of life) will result in a positively biased 

association at the betweenperson level even if corresponding withinperson associations for rates of 

change for the very same measures are nonsignificant or inversely associated (for further discussion, 

see Hofer & Sliwinski, 2001). This bias introduced in cross-sectional studies due to population mean 



confounds is particularly troubling for hypotheses and theories predicated largely upon cross-sectional 

data. For example, evidence from cross-sectional studies consistently provided strong support for the 

processing speed hypothesis, indicating that age-related differences in higher order cognitive function 

could be explained by age-related decreases in processing speed. However, when examined using 

longitudinal data, evidence for this hypothesis was modest at best. Whereas crosssectional studies 

routinely reported that greater than 90% of age-related differences in cognitive function could be 

accounted for by processing speed, the use of identical constructs and measures in longitudinal designs 

found that change in perceptual speed accounted for only 20% (or less) of change variance in other 

cognitive outcomes. Such a discrepancy provides an important example of the cross-sectional fallacy—

within-person aging-related changes spanning longitudinal segments of time cannot be necessarily 

inferred from cross-sectional agerelated differences indexed at any single point in time. 

Summary 

Beyond the mere passage of time, understanding how the aging process unfolds requires research 

designs that incorporate between-person differences, within-person rates of change, as well as 

individual differences in change. There is a long history in the study of human development, and 

adulthood development and aging in particular, advocating for longitudinal designs in keeping with key 

foci including the study of performance change over time as well as an idiographic emphasis. With 

regard to the study of aging-related change, we side with many other aging scholars who advocate for 

the use of longitudinal designs. 

Longitudinal Designs: Select Subtypes 

Whereas longitudinal designs provide a vehicle for directly examining aging-related changes, simply 

collecting longitudinal (or repeated measures data), without consideration of the temporal cadence of 

the phenomena under study, may offer relatively limited theoretical and empirical yield. For example, 

whether one’s focus concerns ontogenetic versus microgenetic forms of within-person change will 

necessitate selection of a specific subtype of longitudinal design. Thus, if the focus concerns aging-

related changes in cognitive function, such characteristically slow(er) and more enduring within-person 

change reflects processes that transpire across months, years, or decades, with a typically employed 

longitudinal design characterized by single assessments separated by months or years. In contrast, more 

labile (i.e., transient, fluctuating) phenomena (e.g., neuroendocrine or emotional responses to stressful 

experiences, trial-to-trial variability in response times (RTs)) require indexing change across much 

shorter time periods (e.g., seconds, minutes, days, or weeks). Failure to consider the (hypothesized) 

temporal interval of the process or phenomena of interest and design a longitudinal study accordingly 

could lead to results and conclusions that are misaligned with theory and process. Employing 

longitudinal research designs (e.g., multiple time points with well-reasoned retest intervals) and 

corresponding analytic techniques (e.g., linear mixed models) represent critical considerations when 

attempting to study processes in their appropriate time courses in service of the study of aging. In 



particular, the measurement burst design facilitates the study of dynamic aging processes that unfold 

across distinct temporal intervals. The following subsection briefly overviews the longitudinal intensive 

measurement burst design and its utility for studying select aging processes. 

Intensive Measurement Burst Design 

The measurement burst design incorporates data sampling across distinct temporal intervals: bursts of 

intensive repeated assessments within a relatively short duration (e.g., spanning hours, days, or weeks), 

with these bursts repeated longitudinally across longer temporal intervals (e.g., months, years). A cross-

sectional study conducting assessment for a single point in time confounds trait-like (e.g., stable 

characteristics of a person such as intelligence or personality), state-like (e.g., a person’s momentary 

state characterized by stress, fatigue, or anger), and developmental (e.g., developmental metastates such 

as pre- vs. postretirement, pre- vs. postdisease state) influences. Single assessment designs simply 

cannot distinguish among these competing sources of variance. By blending intensive repeated 

measures designs (e.g., ecological momentary assessment, daily diaries) within traditional longitudinal 

designs (e.g., annual retests), the measurement burst design attempts to address these shortcomings. 

There are numerous advantages of the measurement burst design, including: (i) the use of multiple 

assessments within a short period of time offering improved measurement properties of variables and 

for the detection of change, (ii) the ability to disambiguate shorter-term and transient fluctuations (i.e., 

intraindividual variability) from longer-term and durable changes (i.e., intraindividual change), and (iii) 

the ability to formally examine how faster-moving processes, reflected in intraindividual variability, 

influence slower-moving processes reflected in intraindividual change. Of particular note is the third 

point above— that the measurement burst design represents an invaluable methodological tool for the 

study of dynamic processes that unfold across both near- and long-term intervals, as well as how these 

processes influence one another (see related discussion in later section on intraindividual variability). 

As with standard longitudinal studies, the sampling timescale of the measurement burst design must be 

carefully matched to the particular aging process under study. However, in contrast to traditional 

longitudinal designs that only need to consider the interval between successive assessments, 

measurement burst designs require consideration of the temporal interval of the intensive burst of 

assessments, as well as the temporal interval over which these successive bursts of assessments will be 

repeated. Such decisions should be informed on both theoretical and empirical grounds. For example, 

for cognitive processes like memory, a well-suited decision might entail a series of short-term 

assessments spanning days or weeks as well as longer-term follow-up assessments spanning years, with 

the former elucidating intraindividual variability in memory processes (e.g., learning) and the latter 

informing more durable, developmental change. In contrast, processes such as emotional reactivity to 

stressors that transpire over much shorter timescales will need to consider the appropriate interval of 

assessment and design accordingly. By conducting assessments within (e.g., ecological momentary 

assessment) and/or across (e.g., daily diary designs) days, such designs are particularly effective at 

capturing dynamic processes. In some instances, employing variation in the spacing of assessments may 



be particularly advantageous, both within bursts (e.g., random or event contingent sampling for 

ecological momentary assessment) as well as across bursts (e.g., more frequent assessments for at-risk 

populations— such as 6-month retests for those in the early stages of dementia versus every few years 

for otherwise healthy older adults). To be sure, it should be emphasized that different timescales are not 

necessarily interchangeable, and that variance in processes observed across these distinct timescales is 

not necessarily a function of the same causes or correlates. 

KEY THREATS TO THE VALIDITY OF LONGITUDINAL DESIGNS 

Although longitudinal designs have many definitive advantages for addressing central research 

questions in the study of adult development and aging, to be sure, there are some notable limitations 

that must be considered including attrition, retest effects, and missingness. In this section, we provide 

an overview of these limitations, as well as offer some basic guidelines for researchers to consider when 

analyzing data influenced by these factors. 

Attrition 

Selection processes including non-representative initial sampling and attrition pose important concerns 

for drawing inferences from our data. The potential impact of incomplete data is invariably first 

encountered during the participant recruitment phase. At this initial stage, attrition due to refusal to 

participate or failure to respond to the invitation is often discounted as an important source of sampling 

bias. However, to the extent that the initial sample in a longitudinal study is less or non-representative 

of the target population, then parameter estimates and corresponding inferences drawn about 

longitudinal change may be biased or inaccurate. Participant attrition in a longitudinal study may be 

due to illness (self or other), lack of interest, adverse reactions to testing, relocation, or death. In 

addition, it is not uncommon for participants to selectively complete certain tasks in the measurement 

battery, and to avoid attempting others. Such observed attrition within a longitudinal study represents 

an internal validity threat to the research study design. Of even greater concern is the issue of whether 

attrition is non-random. If there is a systematic relationship between attrition, missing an entire retest 

assessment, or failing to complete specific measures, such non-random or selective attrition is likely to 

systematically bias patterns or rates of change, with the most pronounced effects of attrition usually 

occurring between the first and second measurement occasions. Individuals who remain in longitudinal 

studies often tend to be more select, exhibiting better health and cognitive functioning. In addition to 

threatening internal validity, attrition may also result in diminished statistical power. Longitudinal 

studies provide opportunity to explore the impact of a given selection process (e.g., dropout, death) as 

well as to incorporate such processes into the model to improve our inferences about change based on 

tenable assumptions regarding the underlying attrition process. 

Retest Effects 

For some time, practice or retest effects have been recognized as a threat to the internal validity of 

longitudinal studies. In the case of cognitive function, the process under study (e.g., episodic memory) 



may be directly influenced by repeated exposure to memory tasks, thereby benefitting performance on 

subsequent occasions. Any systematic association between the process under study (i.e., aging-related 

declines in episodic memory) and the repeated longitudinal assessment (i.e., retest or practice-related 

improvements) exert opposing influences on performance and (potentially) bias observed 

developmental trajectories. The degree of retest effect bias is influenced by several determinants 

including the amenability of the construct under study to practice, the length of time spanned by the 

retest interval, and the number of longitudinal assessments. Certain attributes such as measures of 

biological function (e.g., markers of blood chemistry, pulmonary function) can remain largely 

uninfluenced by repeated assessments, whereas other abilities are far more amenable to practice (e.g., 

developing strategies for successfully completing cognitive tasks). In the study of adult development 

and aging, cognitive functions are putatively the most susceptible to retest effects. Similarly, longer 

retest intervals (e.g., >5 years between retest intervals) are suggested to exert a more modest effect on 

patterns of change, with the most marked retest effects observed between the first two repeated 

assessments and the positive benefits of retest diminishing for three or more assessments. Concerns 

about retest effects in longitudinal studies include the possibility that they mask aging-related declines 

due to the benefits conferred by prior test experience, and may in part account for the oft-reported 

discrepancies between trends reported in cross-sectional versus longitudinal studies. Retest effects may 

result in the systematic underestimation of rates of aging-related change, or may even enhance 

performance, for various reasons including recall of the correct response when exposed to the very same 

task, the reflection upon and development of generalized strategies for completing tasks, or the 

diminishment of anxiety during follow-up testing occasions. In order to have confidence in such 

inferences drawn, it is necessary to disambiguate estimates of change by attempting to differentiate 

sources due to developmental shifts versus retest effects. 

Assessing the Impact of Repeated Practice on Trajectories of Age-Related Change 

Gauging the impact of retest effects is commonly accomplished in one of several traditions, either via 

the sampling approach (research design) or quantitative model parameterization (statistical control). 

The sampling approach involves retaining a randomly sampled select subset of participants who are not 

administered any measures that are to be assessed for retest effects. Other than not being tested on the 

target measures that represent the focus of study for assessing practice effects, this reserve sample is 

identical to the parent longitudinal sample. The magnitude of practice effects are evidenced by 

comparing the time 2 performance of the longitudinal sample (tested on two occasions) to the time 2 

performance of the reserve sample (tested only at time 2), with observed performance differences 

between groups reflecting retest effects. Problems with this approach include: (i) attrition in the 

longitudinal sample that may positively bias both individual differences and change in performance; as 

well as (ii) the fact that the refreshment sample is drawn at a different time of measurement and is thus 

subject to changes over time in selection effects including population change, sampling methods, and 

volunteering behaviors. Recent research using an age-heterogeneous sample and sampling- based 



approach revealed very modest evidence for retest effects on performance level for two of five cognitive 

outcomes assessed. Thus, sampling-based approaches to assessing retest effects can provide invaluable 

insights, but can be time-consuming and expensive. Many longitudinal studies of aging do not include 

reserve or refreshment samples, but rather conduct repeated longitudinal assessments for a single 

cohort. As such, quantitative modeling approaches have been developed to distinguish the effects of 

withinperson change from repeated exposure. Ferreret al. (2004), for example, employed a statistical 

approach to estimate separate effects for retest and within-person age-related change for select measures 

of cognitive function. Of particular note, when analyses were conducted that excluded the 

parameterization for practice effects, the estimates for age-related cognitive decline were 

underestimated. However, a profound issue related to quantitative modeling approaches for assessing 

retest effects involves estimating the separate effects of retest and within-person developmental change 

in the same model. This requires the inclusion of specific time parameterizations—one per effect. 

However, the time structures underlying processes of retest and change (maturation) are not 

independent. In order for such models to converge and provide estimates for both retest and 

developmental change, it has been suggested that they rely upon between-person age differences to 

estimate effects of repeated testing, and as such are susceptible to population mean confounds discussed 

earlier. In concluding this subsection, it should be noted that retest effects are not solely applicable to 

longitudinal studies. Cross-sectional studies that employ testing batteries comprised of multiple 

indicators of the same construct (e.g., various measures of executive function) are also susceptible to 

retest, and may require counterbalancing the order of task administration. Further, regardless of whether 

a design-based or quantitative approach is adopted for indexing retest effects, additional confounds may 

influence estimates. For example, with either the design-based or statistical approach, cohort effects 

(e.g., historygraded influences) may bias retest estimates as it is assumed that the groups being 

compared differ primarily in terms of the number of repeated assessments. If the samples also differ as 

a function of cohort effects, this confounds interpretation of any observed retest effect differences. 

Missingness: Causes, Consequences, and Potential Solutions 

As first introduced in the section on participant attrition, missing data due to various sources—from 

initial sampling selectivity, to dropout, to non-random completion of tasks in the test battery—can 

adversely bias parameter estimates, particularly in studies of adult development and aging. This section 

overviews how patterns of missingness are classified, the corresponding implications, and outlines 

approaches for effectively addressing missingness. 

Classifications of Missingness 

Prior to analyzing data, it is imperative for the adult development and aging researcher to assess whether 

data missingness, due in particular to non-random factors, is present. A greater degree of non-random 

dropout begetsgreater concern about the representativeness of a given sample. The nature of 

missingness can exert influences ranging from the relatively benign (reducing statistical power) to those 



eliciting great concern (e.g., resulting in the substantial bias of parameter estimates). This awareness 

led to formal classifications identifying three distinct patterns or classes of missingness, each with 

different implications for interpreting one’s data: missing completely at random (MCAR), missing at 

random (MAR), and missing not at random (MNAR). Each class refers to the probability of missing 

data values given information about the dependent variable(s) of interest, other associated predictor 

variables under study, and the hypothetical mechanism thought to underlie the missing data. Data are 

classified as MCAR if the missing data occur by virtue of a random process. In such instances, the 

reason for the missing data is unrelated to observed or unobserved variables in a study, the mechanism 

underlying missingness is ignorable, and the missing data can be safely ignored. Data are classified as 

MAR if the missing data for a given variable occur by virtue of a random process after taking other 

observed variables in the study into account. That is, the mechanism of underlying missingness has 

been accounted for based on associations with other measured variables and any potential threat has 

been negated. Data are classified as MNAR if the reason for the missing data on a particular variable is 

directly attributable to the construct that variable reflects. That is, data are missing because the variable 

(or outcome) of interest carries information about why the variable is missing in the first place. These 

three distinct classes or mechanisms reflect the degree to which missingness may bias any statistical 

analysis; from MNAR through MAR to MCAR, in order of greatest to least concern. The missing data 

mechanism is considered ignorable for MCAR or MAR, but is nonignorable for MNAR. In actual 

practice, data are rarely MCAR, with the primary distinction between MAR and MCAR reflecting 

whether additional variables under study are associated with missing data for a given variable; it is 

difficult to distinguish between MAR and MNAR. Fortunately, considerable advancements have been 

made with respect to statistical analysis in the presence of missing data. 

Approaches for Dealing with Missing Data: A Brief Overview 

Methodologists have developed modern statistical approaches that facilitate obtaining unbiased model 

estimates for incomplete datasets. Over the past few decades, imputation approaches have emerged as 

a popular approach for addressing missingness. Initially, approaches like mean or regression-based 

imputation were adopted. Mean imputation entails replacing a missing observation for a given variable 

with the sample mean, or with a person level mean if longitudinal data are available. Although often 

employed, there are many concerns with this approach including the systematic reduction of observed 

variance for the mean-imputed variable, as well as biased parameter estimates. Although regression-

based substitution represented an improvement, it is still a single imputationprocedure that 

systematically underestimates variance. Such limitations led to the development of multiple imputation 

(MI) approaches that replace missing data with multiple possible values (5–10 or more; Schafer, 1999). 

There are many advantages to the MI approach including unbiased and precise estimation of parameters 

as well as its easy implementation in many modern statistical software packages. In contrast to single 

imputation approaches, the MI approach entails generating a distribution of estimates to replace missing 

values. The optimal number of MI estimates ranges from 3 to 10, with the estimates iteratively derived 



based on observed betweenand within-person sources of variance. For example, if ten new estimates 

are derived via MI to replace missing values for a variable, then a corresponding number of new datasets 

(i.e., 10) is generated—one new dataset per imputed value. Analyses of interest are then computed for 

each of these imputed datasets, with the corresponding parameter estimates obtained subsequently 

combined to derive a single best estimate. Whereas single imputation approaches tend to reduce 

variance in the observed variable and underestimate standard errors for parameter estimates, the 

multiple estimates involved in the MI approach permit more accurate estimates of standard errors and 

reduce Type I errors. Another approach for analyzing incomplete data involves likelihood-based 

estimation procedures, such as full information maximum likelihood (FIML) estimation. Unlike 

imputation-based approaches, FIML derives parameter estimates based upon all available information 

as opposed to complete (e.g., listwise deleted) or imputed data. Further, FIML will preferentially weight 

cases with greater numbers of observations (less missing data). Benefitting from a number of desirable 

statistical properties, maximum likelihood estimates are known to be consistent (are unbiased and 

converge on unknown true values of population parameters) and efficient (yield smaller standard 

errors), with normally distributed sampling distributions (Singer & Willett, 2003). In contrast however 

to MI approaches, likelihood- based approaches do require a correctly specified model to explain the 

structure of the data, and are most appropriately employed on larger sample sizes. Despite the presence 

of missing data, approaches such as FIML use all available data (including all partial data) to produce 

estimates for various population parameters that maximize the probability of having observed patterns 

(e.g., aging-related rates of change in cognitive function) for the given sample under study. Maximum 

likelihood derived estimates of population parameters require the computation of a likelihood function 

to characterize the probability of observing associations in the sample data as a function of unknown 

model parameters. The process proceeds iteratively, with competing estimates compared until estimates 

are identified that maximize the log-likelihood function (i.e., the final estimates yield the greatest 

probability of having been observed given the sample data under study). When the difference between 

competing successive estimates is sufficiently small (i.e., the model converges), the final model 

estimates are identified. FIML assumes that missing data are MCAR or MAR, and thus requires valid 

inferences about the reasons for missingness. Thus, it is critical to examine differences between those 

individuals with complete versus missing data. Key questions to be addressed include whether any 

observed group differences are systematically related to variables under study. Further, regardless of 

whether an MI or FIML approach is employed, the inclusion of auxiliary variables can reduce: (i) bias 

by facilitating a closer approximation of the MAR assumption, (ii) marked variability in the imputed 

values, and (iii) standard errors of estimates derived for the final model. Auxiliary variables are not 

intended for inclusion in the final model, but are rather selected based upon their association with 

model-based variables with missing data. By including auxiliary variables in the imputation or modeling 

process, the resulting imputation or model-based estimates are conditioned upon the reasons for 

missingness (i.e., the auxiliary variables are associated with other variables under study that are related 



to missingness), thereby increasing the tenability of the MAR assumption and improving the quality of 

parameter estimates. Virtually all quantitative analysis software packages include likelihood-based 

estimation algorithms, which make them an accessible and attractive option for researchers. Because 

longitudinal studies on adult development and aging typically involve attrition and missing data, both 

imputation- and likelihood- based estimation procedures are frequently employed. Either modern 

approach has proven superior to more traditional methods of listwise deletion or single imputation 

regression methods. However, although both MI and likelihood-based approaches benefit from similar 

statistical properties and make similar assumptions, some important differences should be noted. 

Allison (2012), for example, notes that MI approaches yield a distribution of results predicated upon 

the multiple random draws that are central to the MI process. How varied this distribution of results is 

depends upon the number of new MI datasets created. Whereas MI requires a decision about the number 

of random draws to be made, the maximum likelihood approach yields a single deterministic result. MI 

also requires a logical consistency between your analysis model and your imputation model; nuances 

in one model (e.g., interaction terms, transformed variables) should be reflected in the other. In contrast, 

FIML employs a single model, which may improve generalizability of findings. 

Planned Missingness 

To this point, we have introduced some of the analytic-based solutions for dealing with missing data 

from longitudinal studies that have already been conducted. Recently, Little and Rhemtulla (2013) have 

offered a design-based complement for missing data in longitudinal studies. Planned missingness 

designs involve the a priori specification of a study design such that participant data will be incomplete 

or “missing,” but this missingness is determined in an a priori fashion and controlled by the researcher. 

Such designs are attractive as they reduce participant burden as well as the total volume of data 

collection and resources needed to field longitudinal studies. Recent research has provided empirical 

support for the successful use of planned missingness designs in developmental research with minimal 

loss of fidelity or statistical efficiency. Combined with the contemporary and advanced analytic 

techniques for accommodating missing data (e.g., MI and maximum likelihood approaches), planned 

missingness designs can be a powerful, efficient and attractive option for longitudinal research in aging 

and human development in general. 

Section Summary: Key Methodological Considerations for Incomplete Data 

To summarize, reasons for missingness range from sampling selectivity during initial recruitment to 

attrition in longitudinal studies due to health or mortality. In order to minimize threats to internal 

validity, as well as to maximize both efficiency and consistency in the computation of model-based 

parameter estimates, the analyst should attend to several basic considerations. A step that is often 

ignored involves assessing patterns of missingness in one’s data, as well as contemplating the feasibility 

of MCAR and MAR assumptions visà- vis the appropriateness of a specific analytic technique. With 

regard to assumptions regarding missingness classifications, some statistical packages (e.g., SAS, 



SPSS) have incorporated basic statistical tests, such as Little’s (1998) MCAR test. A significant chi-

square value associated with Little’s test indicates that the data are not MCAR. Imputing missing data 

using MI approaches requires careful consideration of the imputation model and its correspondence 

with the planned statistical model. Similarly, likelihood-based approaches require that the model be 

appropriately specified and based upon a sufficient number of cases to yield consistent and efficient 

estimates. 

MODELING CHANGE IN STUDIES OF AGING 

As a corollary to the discussion on longitudinal research designs, a corresponding increase in attention 

has been devoted to accompanying statistical models that examine the dynamic nature of both growth 

and decline associated with various aging processes. In the following section, we overview some basic 

analytic approaches for modeling both continuous and categorical outcomes, differentiate correlated 

from coupled change as foci in developmental analyses, and discuss the modeling of change based upon 

alternative parameterizations of developmental time. 

Select Statistical Models for Change 

Multilevel and Latent Growth Curve Approaches for Continuous Outcomes 

Until several decades ago, most studies of developmental change for longitudinal panel data employed 

balanced research designs and general linear model (GLM) approaches such as repeated measures 

ANOVA. The experimental tradition at the time often resulted in longitudinal studies that failed to 

detect change due to limited sample size, the inclusion of few measurement occasions, compromised 

statistical power for detecting differences, and a differential focus on between-group differences as 

opposed to within-participant change. Among the shortcomings, these initial GLM approaches for 

assessing change focused on mean estimates aggregated across individuals, with the assumption that all 

individuals from a specific group were characterized by the very same pattern of (mean) change over 

time, and any deviation from this average assumed to reflect error. Several vastly improved approaches 

are now typically employed to analyze change for continuous outcomes in adult development and aging 

(e.g., aging-related change in cognitive function). Both multilevel or linear mixed models of change  as 

well as latent growth curve approaches are commonly employed. These approaches consider both 

intraindividual change over time and interindividual differences in change over time. In addition to the 

linear analysis of continuous change, multilevel and growth curve models are also particularly well 

suited to the study of discontinuous developmental processes. For example, in research on aging, it is 

of particular theoretical interest to contrast patterns of change both prior to and following critical events, 

such as the onset of menopause to gauge the impact of estrogen depletion on cognitive function, to 

differentiate normal from pathological cognitive aging by identifying the inflection point thought to 

indicate the onset of the prodromal phase of dementia, or to disambiguate rates of longitudinal change 

in outcomes attributable to aging- versus mortality-, disease-, or disablement-related processes. Patterns 

of change prior to and following such critical events might be characterized quite differently, with both 



differences in the magnitude of change as well as the transition point for such differences of particular 

research interest. Thus, contemporary modeling frameworks provide considerable flexibility for 

examining developmental and other time-dependent processes. Modern approaches have notable 

statistical advantages for the assessment of change. First, they do not assume equality of slopes across 

individuals, but rather empirically test this notion by including variance terms for various fixed effects 

(including change slopes) in the model. Another advantage is the ability to examine change despite 

heterogeneity in retest schedules. Further, both the multilevel and LGC approaches yield parameter 

estimates using FIML based upon all available information, assuming that missing data are MAR. The 

mutlilevel and LGC approaches are similar in that both provide estimates of individual differences and 

change in performance, and indeed can be structured to be equivalent and to yield identical estimates. 

However, important differences should also be noted. For example, time is treated differently between 

the multilevel and LGC models, introduced as a level 1 predictor yielding a fixed effect in the former 

case, and incorporated into the model via the factor loadings for the latent slope variable for the latter. 

This represents a fundamental distinction: the treatment of time is univariate for multilevel models (time 

is parameterized as distinct observations for the same variable) versus multivariate for LGC models 

(each time point represents a distinct variable; Stoel, Van den Wittenboer, & Hox, 2003). Other 

advantages of LGC models including more flexible specifications of residual covariance structures, as 

well as simple extensions of LGC estimates of change to other outcomes within a broader SEM 

framework. In contrast, multilevel models are advantageous for incorporating higher levels of nested 

structures (e.g., three-level structures common in measurement burst designs such as weekly sessions 

within annual retests within persons). On balance, the differences between the multilevel and LGC 

approaches are modest, with many modern software packages seamlessly estimating both statistical 

models of change. 

Generalized Linear Mixed and Survival Models for Categorical Outcomes 

Research applications for the psychology of aging are also based upon longitudinal responses that are 

not continuous (e.g., presence or absence of a disease process over time, counts of specific event 

occurrences such as stressors, etc.). As such, this requires separate models including generalized linear 

mixed effects models as well as survival models. Generalized linear mixed effects models represent an 

extension to linear mixed models of continuous data where longitudinal categorical outcomes can be 

examined by transforming the mean response using a link function and then relating the transformed 

outcome to predictors. Appropriate selection of the link function transformation of the non-normal 

outcome depends upon the distribution of the outcome data (e.g., a logit transform for binary data 

characterized by a Bernoulli distribution). The transformed outcome can then be predicted by covariates 

of interest using the familiar GLM; effectively, continuous models with normal distributions are simply 

special cases of GLMs. Survival (or event history) analysis models the risk of a particular event 

occurrence (e.g., disease onset, death) as a function of specific predictors in your model. In a 

longitudinal analysis, this risk of event occurrence is referred to as a hazard—the probability that an 



individual will experience the event within a period of time. A key feature of survival models is the 

ability to consider both event occurrence and time-to-event occurrence. In psychological aging research, 

survival models have been commonly used for the study of disease risk, as well as for the study of 

terminal decline that examines an accelerated decline or drop in cognitive function in proximity to 

death. The terminal decline hypothesis has been examined using both conventional survival methods, 

as well as modern analytic approaches that combine the statistical analysis of change (e.g., linear mixed 

models) with survival models. Such joint modeling approaches have also been employed to examine 

how individual differences in levels and rates of change in cognitive function from LGCs are related to 

onset of Alzheimer’s disease. 

Correlated and Coupled Change 

The analysis of change goes beyond a simple decision regarding which type of analytic approach to 

employ. Indeed, the primary research question itself has an important bearing on the nature of change 

examined. Multilevel and LGC approaches offer flexibility for examining change in one outcome, and 

potential moderators or sources of individual or group differences in rates of change (i.e., interindividual 

differences in intraindividual change). However, such approaches can be expanded to consider 

scenarios where researchers might be interested in how two or more variables may be changing together 

over time. As such, multivariate approaches allow the consideration of how variables and rates of 

change in these variables are related over time. To facilitate a more stringent test of a developmental 

hypothesis, a researcher might be interested in examining whether two processes (cognitive and 

physiological function) change together within an individual over time. In order to examine the time-

varying covariation between these two processes, a researcher could explore either correlated or 

coupled change between physiological and cognitive function. These two approaches actually address 

disparate questions. By way of example, one could correlate two separate slopes of aging-related 

change—one for cognitive and one for physiological function. Such an analysis would yield insight 

regarding correlated change—the extent to which individuals’ whose cognitive function is changing at 

a faster rate is also exhibiting faster rates of change in physiological function. Alternatively, one could 

examine the time-varying covariation of cognitive and physiological function after taking the 

longitudinal trends for each into account. Such an analysis would yield insights into coupled change—

the extent to which an individual’s level of cognitive function at a particular sampling occasion is related 

to their level of physiological function at the same sampling occasion. Here, it is important to note that 

correlated change involves the examination of individual differences (or between-person associations), 

whereas coupled change involves the examination of intraindividual differences (or within-persons 

associations). The approaches often yield similar estimates, but may diverge due to aggregation bias in 

longitudinal research. Although analyses of correlated and coupled change address complementary 

questions about how variables are related over time, such approaches are ultimately correlational and 

preclude inferences about causation or lead or lagged effects. Models such as the bivariate dual change 

score model represent an analytic alternative that incorporates both the longitudinal modeling of two 



variables, as well as lead and lag parameters to allow for the rate of change in one variable to be 

prospectively predictive in the other variable (and vice versa). Such an approach affords researchers the 

ability to examine individual differences in and correlations between rates of change among variables, 

as well as how individual differences in rates of change among variables can be antecedent to each other 

to reveal unidirectional and/or bidirectional causal influence among variables. 

Developmental Parameterizations of Time 

A critical issue for longitudinal studies on adult development and aging concerns how we define the 

time continuum used for characterizing change. In this section, we highlight examples from the 

literature that demonstrate how employing various parameterizations of time can influence results 

observed in longitudinal investigations. 

Is Chronological Age the Only Metric? 

Despite considerable advances in research designs (Stawski et al., in press) and statistical procedures 

for the study of the psychology of aging, chronological age perseveres as arguably the most used 

predictor and developmental time metric for charting performance differences and changes. Despite this 

popularity, the weaknesses of age as a developmental index have been well documented. Specifically, 

rather than a causal mechanism underlying cognitive and functional decline, chronological age is said 

to merely reflect a temporal dimension along which causal factors (e.g., biological, environmental, 

health, and neurological) operate. Consequently, observing that chronological age is associated with 

performance decline (e.g., in cognition) does not inform the specific or general mechanisms underlying 

age-related cognitive impairment—rather, age is likely an indirect reflection (i.e., a proxy) of true 

mechanistic changes (e.g., accumulated biological and environmental factors) that influence cognition 

across time. Beyond these theoretical concerns with the use of chronological age as the primary 

developmental time metric for charting change, the selection of a specific time parameterization is 

known to influence the interpretation of results in longitudinal studies. In particular, for longitudinal 

studies characterized by considerable age heterogeneity in the sample at baseline assessment, opting to 

model long-term change using chronological age as the time basis without accounting for differences 

in age at study entry (i.e., different age cohorts were sampled) assumes the equivalence (or convergence) 

of cross-sectional and longitudinal aging effects. The advantage of such a model is that a single 

trajectory of change spanning the entire observed age range (e.g., 60–90 years) can be estimated—a 

combination of age information spanning various cohorts that is much larger than the range measured 

over the longitudinal follow-up (e.g., three retests spanning a 6-year period; cf. Singer & Willett, 2003). 

Of course, such failures of age convergence—the assumption that cross-sectional age differences and 

longitudinal age changes converge onto a common trajectory—are well documented in the adult 

development and aging literature. The impact that between-person difference in age at baseline can 

exert upon appropriate inferences regarding within-person change has led researchers to consider 

additional parameterizations of developmental time. 



Alternative Parameterizations of Time 

In reviewing recent literature in adult development and aging, it is not uncommon to observe the use of 

various time parameterizations for modeling within-person change in various aging processes. Most 

longitudinal research parameterizes developmental time using three time basis structures: chronological 

age (e.g., years since birth), measurement occasion (e.g., 0, 1, 2), and time in study (years from baseline 

assessment). The age-as-time parameterization estimates within-person change as a function of 

chronological age. However, as mentioned in the preceding section, such an approach not only assumes 

age convergence, but may also fail to capture important sources of heterogeneity. Variance due to 

underlying health conditions such as cardiovascular disease, for example, may be misattributed to 

chronological age. Additionally, using age-as-time can reveal complex non-linear trends that potentially 

reflect cross-sectional mean differences introduced by heterogeneity in age at baseline. Employing 

measurement occasion as a time basis is common, but this approach fails to capture important individual 

differences in time sampling. Specifically, such an approach fails to capture important variation in 

individual retest intervals; regardless of whether the first retest interval spanned 6 months for some 

individuals versus 16 months for others, the time as measurement occasion parameterization would treat 

these as equivalent. Such an assumption may be entirely reasonable for certain processes and 

populations under study, but may be grossly inefficient in other contexts. When examining changes in 

cognitive function during the prodromal phase of dementia, for example, changes across even relatively 

short retest intervals can be meaningful (i.e., individual differences of even several months matter). To 

improve precision, many opt to parameterize time using a time-in-study metric. This approach charts 

time elapsed from the beginning of the study, including a precise incorporation of individual differences 

in retest intervals. Morrell et al. (2009) directly compared such competing time parameterizations, and 

report that accurate inference about within-person change in longitudinal studies is best accomplished 

by parameterizing time as time-in-study as well as by including a between-subject term indexing age 

heterogeneity at entry into the study (baseline assessment). Moreover, this approach allows for explicit 

examination of whether rates of aging-related longitudinal change vary as a function of cross-sectional 

age-related differences at baseline (e.g., is the rate of decline in memory faster among individuals who 

were older upon entry into the study?). Recently, time-to-event (or time-as-process) parameterizations 

have been proposed as another promising developmental metric for indexing change. A time-to-event 

approach indexes change in relation to the onset of central events or processes. Biological age represents 

one such alternative marker of developmental time, with recent empirical findings and theorizing 

linking biological processes (e.g., vascular health) to age-related cognitive decline. Other examples 

include examining change in cognitive function in relation to specific processes including dementia 

progression or menopause. For the former, one recent study explored within-person change in cognition 

as a function of years following dementia diagnosis (MacDonald et al., 2011)—understanding why 

some individuals progress through the dementia stages more rapidly than others could inform efforts to 

lessen caregiver burden or to target effective drug trials. For the latter, another study examined cognitive 



change as a function of time prior to and following menopause (Thilers et al., 2010). Structuring 

cognitive change in relation to the menopause event failed to support claims that estrogen depletion for 

postmenopausal women leads to cognitive decline. Beyond cognitive domains, time-to-event 

approaches have been employed to examine longitudinal changes in mental and physical health with 

respect to disablement- (Fauth et al., 2014), and mortality- (Gerstorf et al., 2013) related processes. 

Echoing the findings of terminal decline in cognitive function using time-to-event approaches, these 

recent research findings indicate that mental and physical health exhibit accelerated decline proximal 

to specific health-related events. This suggests that time-to-event-based examinations are incredibly 

valuable for articulating processes other than aging that impact mental, physical and cognitive health 

during the later years, and there is considerable promise for applying such approaches for understanding 

multiple dimensions and processes in the context of later life. 

EMERGING METHODOLOGICAL TRENDS FOR THE STUDY OF AGING 

In this final section, we overview several trends that are exerting considerable influence on the current 

scope of adult development and aging research—the integrated data analysis and intraindividual 

variability approaches. 

Select Approaches to Integrated Data Analysis 

Over the past decade, a clear trend in research on the psychology of aging has seen innovative efforts 

to comprehensively integrate data across studies. Such integration affords a number of advantages 

including improved statistical power, improved precision of parameter estimation, and, perhaps most 

importantly, the testing of whether findings from single sample studies are generalizable. Several 

approaches to integrated data analysis are overviewed here. 

Meta-Analysis 

The meta-analytic approach to integrated data analysis involves synthesizing various summary statistics 

(effect sizes, regression coefficients, probability values) across individual studies that share a number 

of important similarities. In effect, a metaanalysis is an aggregate study about a number of prior studies. 

This accumulation of evidence yields a quantitative summary of findings, including an omnibus 

measure of effect size (e.g., Hedges’ g) as well as the identification of key variables that moderate this 

effect and explain variation between studies. The degree to which summary statistics from individual 

studies influence the final measure of effect can be weighted according to important factors (e.g., sample 

size). Key steps involved in conducting a meta-analysis include deciding upon the target research 

questions, deciding upon the parameters governing the literature search and choosing studies that clearly 

meet criteria, requesting data from researchers as required, addressing incomplete data, and data 

analysis. There are important assumptions when conducting a meta-analysis, including the need to 

ensure the psychometric comparability of pooled constructs, measures, and measurement scales. 

Advantages of the meta-analytic approach over individual studies include the improvement of statistical 

power and precision, a direct means of addressing equivocal findings within a research field (e.g., are 



opposing findings due to systematic between-study differences), as well as drawing inference regarding 

generalizability of findings. However, meta analytic approaches are also subject to notable concerns 

including the impact of publication bias (as many nonsignificant findings are not represented in the 

literature) as well as the ecological fallacy, where inaccurate inferences about individuals are based 

upon population mean trends. 

Mega-Analysis 

In contrast to a meta-analytic approach, mega-analytic studies derive similar quantitative benefits 

through the actual pooling of raw data across many studies/samples. The distinguishing feature between 

meta- versus mega analysis concerns the type of information that is concatenated across studies. For 

meta-analysis, various summary statistics are compiled, whereas the actual raw data are concatenated 

across study for the mega-analysis. In this sense, a mega-analysis shares greater similarity with a 

conventional research study where the researcher collects and analyzes person-level data from multiple 

research contexts. Advantages of the mega-analytic approach include the ability to conduct a 

meaningful investigation even when few studies are available (a distinct problem for metaanalysis), 

improved reliability and precision of model-based parameter estimates, and perhaps most importantly 

an increased flexibility with regard to research questions that can be pursued and analytic techniques 

that can be employed. While there are limitations involved with the mega-analytic approach, such as 

the need for identical measures across studies, it is certainly a powerful and attractive approach for 

large-scale examinations of research questions. 

Data Harmonization 

Data harmonization, whether retrospective or prospective, represents another approach to pooled data 

analysis. In contrast to a megaanalysis, a retrospective harmonized dataset reflects more than the mere 

pooling of raw data across studies; rather, the harmonized dataset derives novel variables and constructs 

based upon complex harmonization procedures. Not only are raw data concatenated across studies, but 

entirely new variables are generated to index constructs of interest. For example, in the Dynamic 

Analyses to Optimize Ageing (DYNOPTA) project, Anstey et al. (2009) created a retrospectively 

pooled dataset spanning nine Australian Longitudinal Studies of Ageing, and applied harmonization 

procedures to create new variables to facilitate comparison with clinically meaningful scores (e.g., 

harmonized data on physical activity to reflect national recommendations for weekly participation 

levels). Recently, efforts have been championed toward prospective harmonization across studies, 

where across-study consensus guidelines are adopted that govern new data collection and measurement. 

For example, some international research on dementia has adopted prospective guidelines for the 

selection of standardized measures (e.g., the measurement of biomarkers like CSF, common 

neuroimaging protocols) across studies. Similarly, the U.S. National Institutes of Health has developed 

the NIH Toolbox, a common battery of performance measures (cognition, emotion, motor, and sensory 

function), as a standardized testing platform that can be administered across studies of human 

development and aging. Although promising, the process of data harmonization is laborious, with 



numerous challenges including common across-study variation in how constructs have been measured, 

the development and application of harmonization methods to facilitate comparability, and the 

retrospective versus prospective nature of the harmonization initiative. 

Coordinated Analysis with Replication 

The coordinated and integrated analysis of original data from multiple studies can augment scientific 

knowledge through the replication and extension of key findings. For the study of aging, the process 

involves identifying central research questions, conducting parallel analyses across multiple studies to 

ascertain whether the effect(s) of interest can be replicated, and interpreting similarities (or differences) 

across patterns of results to further inform generalizability and theory development. With particular 

regard to longitudinal studies, data pooling approaches can be problematic. For example, meta-analytic 

approaches can be quite limited by the body of longitudinal research published on particular research 

questions, as well as the types of research designs and analyses employed. Similarly, pooled analysis 

approaches (megaanalyses) are often limited by the lack of overlap of specific measures across studies, 

requiring more involved harmonization efforts. In these instances, a coordinated analysis platform is 

particularly advantageous, such as the Integrative Analysis of Longitudinal Studies of Aging (IALSA) 

project consisting of over 40 longitudinal studies of aging. IALSA facilitates access to member studies 

data, analysis scripts, and output, with the strengths (e.g., immediate replication of novel findings in the 

literature and/ or consideration of alternative hypotheses, generalizability of findings, improved 

statistical power) of such coordinated efforts having furthered our knowledge of the psychology of 

aging and its associated theories. 

An Intraindividual Variability Approach 

Beyond the First Order Moment 



Recently, aging theorists and developmentalists alike have demonstrated a renewed interest on 

approaches for studying intraindividual variability for a host of domains in aging and across the lifespan 

(for a comprehensive overview, see Diehl, Hooker, & Sliwinski, 2015). The reemergence of variability 

derives from a growing body of evidence demonstrating that short-term fluctuations often reflect more 

than random error or measurement unreliability, are systematically associated with numerous 

developmental outcomes, and are informative vis-a-vis theories of processing dynamics. Intraindividual 

variability, however, does not necessarily reflect a psychological primitive (e.g., processing speed) per 

se, but rather an approach to the study of adult development and aging that facilitates the examination 

of dynamic fluctuations in function that confer meaning beyond mean and static considerations. To be 

certain, the examination of mean remains a central focus, contributing essential information for 

characterizing behavior over time. However, recent findings have demonstrated that this knowledge 

should be supplemented by also asking how variable this performance is over time. Do trajectories of 

performance reflect mean stability characterized by modest or substantial variability? Variability not 

only contributes unique information independent of mean, but it also improves our understanding of the 

dynamic nature of the developmental process under study. The following subsections overview 

examples of variability research from the adult development and aging literature.RT Inconsistency 

Across Response Latency Trials 

Growing consensus from various scientific disciplines including lifespan psychology, cognitive 

neuroscience, neuropsychology, and mathematical modeling suggests that theoretically interesting 

aspects of cognitive function are not completely captured by mean performance. RT inconsistency, as 

defined by trial-to-trial fluctuations in RT latencies on performance-based measures of cognition, has 

emerged as one index thought to capture important features of behavioral and systemic integrity, 

including mental noise, transient lapses of attention, and a more enduring behavioral signature of 

compromised brain and neural function  and cognitive status. Numerous indices may be computed to 

index intraindividual variability across response latency trials. Among the simplest, the intraindividual 

standard deviation (ISD) can be computed within persons and across trials to index fluctuations in 

response latencies. In order to adjust for potential confounds (e.g., individual differences in average 

level of performance, response speed, or systematic learning over time), effects associated with age, 

disease status, and trial can be partialled. Other operationalizations of variability that may be considered 

include the coefficient of variation (each person’s SD/M), high versus low percentiles from RT 

distributions, as well as approaches that simultaneously model mean and variability. Disambiguating 

state- and trait-like variation in dynamic characteristics and processes within measurement burst 

designs. Measurement burst designs, which involve assessing individuals intensively over shorter 

intervals (e.g., across trials or over days), and repeating this intensive assessment longitudinally over 

longer intervals (e.g., over months or years), are ideal for examining and quantifying variability within 

persons across shorter or longer time horizons, or between persons. Evidence of significant 

intraindividual variability and interindividual differences in RT inconsistency would suggest that RT 



inconsistency exhibits both state-like and trait-like variation, and that this variation is potentially related 

to time-varying and time-invariant predictors. Most research has focused on RT inconsistency as a trait-

like characteristic (e.g., changes in CNS, changes in brain structure/function or underlying disease/ 

pathology) for differentiating individuals and/or subgroups, ignoring potentially important variation 

that may exist within persons across shorter intervals such as days, weeks, or months that may reflect 

variation in a person’s context (e.g., increased stress, distress, diminished sleep, attention). In future 

research, the analysis of indices of variability for various processes (e.g., cognition, gait, neural 

function) in the context of measurement burst designs represents a novel empirical approach to 

examining both the state-like and trait-like modulators of performance fluctuation. Empirical 

decomposition of variation in RT inconsistency, for example, will help better understand the utility of 

RT inconsistency as a behavioral indicator of cognitive, brain and CNS function, and may facilitate 

identification of risks (e.g., falls, delirium) for individuals with dementia. Consistent with this 

proposition, recent research on daily stress employing a measurement burst design has shown that 

among older adults, only 25% of the variability in emotional reactivity to daily stressors reflects 

individual differences or dispositional variation. This suggests that dynamic processes, in and of 

themselves, may be susceptible to vicissitudes of other time-varying processes or influences that operate 

at difference timescales, and underscores the need to examine factors beyond individual and group 

differences as important sources of variation in dynamic processes. Linking intraindividual variability 

to long(er)-term outcomes using intensive repeated measures and measurement burst designs. The vast 

majority of research in cognition and aging has focused on the utility of intraindividual variability as a 

more static indicator and proxy for dynamic processes that are reflected in behavior/performance. 

Intraindividual variability has a rich history in other domains, particularly affect and emotion, whereby 

intraindividual variability is thought to reflect, in part, the systematic impact of contextual and 

experiential forces such as stressful experiences. Thus, intensive repeated measures designs (e.g., 

ecological momentary assessment and daily diaries) can be exploited to examine the timevarying 

covariation of stressors and affect as a way to examine individuals’ emotional reactivity to stressors 

(and individual differences therein) as dynamic phenomena. Importantly, these intensive repeated 

measures design protocols can be repeated at periodic intervals, effectively yielding a measurement 

burst study. Such an approach is attractive as it allows for examining a dynamic process (e.g., emotional 

reactivity to stressors), how that process changes developmentally, and how that process impacts change 

in other outcomes of interest. For example, theoretical accounts of the impact of stress on long-term 

health have emphasized the importance of dynamic, microlevel processes including stressor reactivity 

as the mechanism underlying the stress–health link. In the daily stress literature, links between micro-

level stress reactivity processes and long-term health outcomes have only recently been explored. 

Mroczek et al. (2013) showed that greater emotional reactivity to daily stressors was associated with an 

increased likelihood of mortality among older men. Similarly, individual differences in emotional 

reactivity to daily stressors have been linked to increased distressed affect and self-reported affective 



disorders and increased risk of chronic health conditions 10 years later. Additionally, Sliwinski, 

Almeida, Smyth, and Stawski (2009) reported that emotional reactivity to daily stressors increases 

longitudinally across 2.5 and 10 years from two separate measurement burst studies of midlife and old 

age. These recent findings from the stress and affect literature exemplify the promise measurement burst 

designs hold for examining the longitudinal dynamics and impact of fast-acting processes. 

CONCLUSIONS 

In writing this chapter, our goal was to selectively highlight methodological considerations and 

concerns that characterize current research on the psychology of aging. The overview of sampling and 

design considerations emphasized missing data considerations and retest effects, as well as their 

corresponding impact on model-based parameter estimates and (in) accuracy of inferences drawn. In 

particular, we emphasized the strengths of the measurement burst design. Such intensive measurement 

designs hold real promise for improving our understanding of dynamic aging-related processes, 

including current trends such as whether intraindividual variability reflects both state-like and trait-like 

influences. We reviewed common analytic approaches for analyzing change in both continuous (LGC, 

multilevel models) and categorical (survival) outcomes, as well as emphasized the need to carefully 

consider alternative parameterizations of developmental time to chronological age. Finally, we 

concluded by exploring some emerging trends in the study of the psychology of aging, including the 

promise of integrated data analysis for informing the key scientific issues of generalizability and theory 

development. The advances in design and analysis and their corresponding recent applications have 

given rise to an exciting time for research in the psychology of aging, as we strive to further our 

understanding of dynamic developmental processes. 

 

 

 

 


