Methodological Considerationsfor the Study of Adult
Development and Aging

CHAPTER

INTRODUCTION

This chapter explores key methodological and amalytconsiderations for the study of adult
development and aging. In particular, we focus entral themes that are routinely encountered in
conducting current aging research. We addressgerahtopics, from design selection and sampling
considerations (including novel developmental regealesigns) to key considerations regarding
missing data as well as the impact of attrition esdst on statistical parameter estimates. Gigeant
advances in research design and statistical mapelidevelopmental phenomena and their application
to the study of the psychology of aging, we ovesvgeveral analytic procedures and approaches that
help to efficiently characterize aging-related damarfor various phenomena. In particular, we
summarize several models for measuring change oexphultivariate approaches for examining
correlated and coupled change, as well as compiareative metrics for parameterizing developmental
time. Finally, we conclude by highlighting emergingethodological trends in the study of adult
development and aging, including recent emphasisitegrated data analysis and harmonization, as

well as adopting an intraindividual variability appch for informing dynamic aging-related processes
RESEARCH DESIGNS AND SAMPLING CONSIDERATIONSFOR THE

STUDY OF ADULT DEVELOPMENT AND AGING

This section overviews two classic research dedmritie psychology of aging, contrasts their ig&at
strengths and weaknesses, and concludes with@utftooverview of a specific subtype of longitudinal
design (the measurement burst design) and itssreristudying select developmental phenomena.
Cross-Sectional Versus Longitudinal Designs

The theoretical focus of any study, as well asatsesponding research questions, helps to prexieker
selection of the most suitable research designedel designs for studies of adult development and
aging reflect a combination of age, cohort, andogeeffects. Further, for any study of the psyclyglo

of aging and underlying developmental processeis, éssential to distinguish between age-related
differences and aging-related changes. The follgwiction briefly addresses these issues; rathar th
an exhaustive overview of possible research desigadocus in particular on crosssectional versus
longitudinal approaches to the study of adult deweental and aging.

Age Differences Versus Change

Age differences are indexed using cross-secti@saarch designs and reflect differences in coristruc
(e.g., cognitive function, wellbeing) across agéhegeneous groups or samples of individuals

measured & single point in time. Comparisons across these individuals ougs would afford insight



into age differences in level(s) of cognitive function or wellbeing, toprovide no information about
how these constructs may be changing over timeoirast, the study of aging-related change is the
province of longitudinal research designs. Sucligiiesndex changes in constructs by testing a group
of individuals over multiple occasions of assesdmBwn studying the same individuals over time, we
are able to derive within-person estimates fordinection and rate of change.

Relative Advantages Versus Disadvantages

Cross-sectional studies offer a number of advastagguding efficiency (e.g., less time required to
collect data) as well as avoiding select confousutsh as retest effects. However, with regard to the
study of adult development and aging, notable wesé®s of cross-sectional designs include an
overestimation of age-related performance diffeesrdue to cohort effects, as well as an inabidty t
address arguably the masiportant aim of aging research—whethagingrelated changeis occurring.

As cross-sectional assessments are conducted iagla point in time, such designs necessarily
confound age and cohort effects. Consequenths itat possible to differentiate whether observed
group differences are due to developmental ageepsas or to shared experiences characterizingtcohor
effects. In contrast, longitudinal studies factlitéhe direct estimation of within-person changewall

as the possibility of investigating individual difences in change. Most if not all research questio
and theories in adult development and aging aergsted in such effects. To be sure, longitudinal
designs also entail a number of limitations inahgdithe cost (both in terms of added expense for
longitudinal collections and the time required emduct repeated assessments to study aging precesse
that typically span years rather than months),elbag design considerations and analytic compéeit
Furthermore, longitudinal designs confound age timeé of measurement—observed changes in
outcomes of interest may be due to age- and/orrtretetted processes (if an age-heterogeneous cohort
is being studied longitudinally), or to events lat¢ time of measurement that exerted a pervasive
influence on all individuals. When contrasting pats and magnitude of effects, decades of research
have demonstrated differences in results betweess«ectional (i.e., age-related differences) and
longitudinal (i.e., aging-related changes) desidiste specifically, estimates of longitudinal aging
related changes are routinely smaller than estsnafe cross-sectional age-related differences.
Crosssectional age-related differences are ofteatlgrinfluenced by cohort effects between the age
groups under study, such as societal shifts in @éreducation and the corresponding impact on
cognitive performance. Longitudinal aging-relatédmges are often influenced by selective attrition
from longitudinal follow-up (e.g., more frail indduals discontinue participation), as well as poact

or retest effects (with repeated exposure/assessreing to obscure true age-related declineg. Th
topics of attrition and retest are reviewed in dleta the subsequent section concerning key
methodological considerations for the study of ggin

Which Design | s Best Suited for the Study of Aging?

A recent special issue Meuraobiology of Aging (Volume 30, 2009) focused on anduring question in

research on the psychologl/aging—"\When does age-related cognitive decline begin?” Perhaps better



than anydescription we can offer, this collection of artigldirectly addresses the conundrum regarding
whether cross-sectional versus longitudinal desayesbest suited for the study of aging. Despite
consistently reported negative associations betvaggn and cognitive function in cross-sectional
studies, many theorists and methodologists alikit guat the study agingrelated change necessitates
longitudinal data. Indeed, Molenaar (2004) hasdfuity argued that inferences about longitudinal
aging-related change can only be drawn from studfie€soss-sectional age-related differences when
very strict (and often unrealistic) assumptionsraet. Similarly, Hofer and Sliwinski (2001) contend
that aging is awithin-person phenomenon, and that longitudinal research designs are regquigr
evaluating aging-related theories and propositioqgrticular. A central tenet of their argumenthiat

the study of aging is a process that transpirelinvfgersons over time, and can only be observed
through the study of change. Moreover, as findingge clearly shown, the correspondence between
age-cognition trends for betweenperson versusmvibrson variance and covariance estimates is often
modest at best. One might question the relativeitapce of this issue and why it matters. To addres
this, consider an example regarding the proces@étting from the episodic memory literature, néhe

for decades, general consensus was that rategyettiog were invariant across persons, despit&/kno
individual differences in encoding and retrievabgesses. The generally accepted interpretation was
that rates of acquisition and forgetting are asyinigad, rather than processes anchoring disparats e

of a memory continuum. However, a competing explanaas to why individual differences in
forgetting were rarely identified may be based ugisliterature’s more typical reliance on betwagn
opposed to within-person designs and estimates Wgard to forgetting, it is tenuous to assume tha
mean group differences will exhibit identical patteto individual differences. For example, a nisgat
correlation between learning and forgetting rebatethe between-participants level (those indialgu
who learned more will also forget less) does natrgatee that a similar negative association will be
observed at the within-person level (for any givahividual, learning information at a faster ratél w

be associated with a slower rate of forgetting dwvee). Such discrepancies have been long described
by the ecological fallacy, stating that mean (greyel) findings can differ in both magnitude and
valence relative to individual results. Of direetavance to the question regarding which research
design is best suited to the study of aging,aigregation bias just described represents perhaps the
most critical weakness of cross-sectional desi§pscifically, due to considerable between-subjget a
heterogeneity (e.g., samples that span 50-90 géage) at the single point of assessment, assmtsat
between measures (e.g., memory and sensory fuhotioserved in cross-sectional designs are
positively biased due to the confounding influeméepopulation average age trends. Virtually any
variables that exhibit cross-sectional age diffeesnon average (e.g., poorer memory function and
auditory acuity for those in the ninth versus sélvatecades of life) will result in a positively bed
association at the betweenperson lexeh if corresponding withinperson associations for rafes o
change for the very same measures are nonsigrificanversely associated (for further discussion,

see Hofer & Sliwinski, 2001). This bias introdudadccross-sectional studies due to population mean



confounds is particularly troubling for hypothesesl theories predicated largely upon cross-sedtiona
data. For example, evidence from cross-sectiondiest consistently provided strong support for the
processing speed hypothesis, indicating that dgéerkdifferences in higher order cognitive funetio
could be explained by age-related decreases iregsotgy speed. However, when examined using
longitudinal data, evidence for this hypothesis wasdest at best. Whereas crosssectional studies
routinely reported that greater than 90% of agateel differences in cognitive function could be
accounted for by processing speed, the use ofied¢iebnstructs and measures in longitudinal design
found thatchange in perceptual speed accounted for only 20% (or) lesshange variance in other
cognitive outcomes. Such a discrepancy providesipartant example of the cross-sectional fallacy—
within-person aging-related changes spanning ladgial segments of time cannot be necessarily
inferred from cross-sectional agerelated differsanndexed at any single point in time.

Summary

Beyond the mere passage of time, understandingthewaging process unfolds requires research
designs that incorporate between-person differena@hin-person rates of change, as well as
individual differences in change. There is a longtdry in the study of human development, and
adulthood development and aging in particular, adting for longitudinal designs in keeping with key
foci including the study of performance change adume as well as an idiographic emphasis. With
regard to the study of aging-related change, we with many other aging scholars who advocate for
the use of longitudinal designs.

Longitudinal Designs: Select Subtypes

Whereas longitudinal designs provide a vehicledicectly examining aging-related changes, simply
collecting longitudinal (or repeated measures datahout consideration of the temporal cadence of
the phenomena under study, may offer relativelytéichtheoretical and empirical yield. For example,
whether one’s focus concerns ontogenetic versusogeoetic forms of within-person change will
necessitate selection of a specific subtype ofitadmal design. Thus, if the focus concerns aging-
related changes in cognitive function, such charastically slow(er) and more enduring within-parso
change reflects processes that transpire acrosthsjgrears, or decades, with a typically employed
longitudinal design characterized by single asseassrseparated by months or years. In contrasg mor
labile (i.e., transient, fluctuating) phenomena.(eneuroendocrine or emotional responses to fiiiess
experiences, trial-to-trial variability in respontimes (RTs)) require indexing change across much
shorter time periods (e.g., seconds, minutes, dayaieeks). Failure to consider the (hypothesized)
temporal interval of the process or phenomenatef@st and design a longitudinal study accordingly
could lead to results and conclusions that are ligised with theory and process. Employing
longitudinal research designs (e.g., multiple tipwints with well-reasoned retest intervals) and
corresponding analytic techniques (e.g., lineareahimnodels) represent critical considerations when

attempting to study processes in their approptiate courses in service of the study of aging. In



particular, the measurement burst design faciit#tte study of dynamic aging processes that unfold
across distinct temporal intervals. The followitdpsection briefly overviews the longitudinal inteses
measurement burst design and its utility for stngyselect aging processes.

I ntensive Measurement Burst Design

The measurement burst design incorporates dataisgragross distinct temporal intervals: bursts of
intensive repeated assessments within a relatshedyt duration (e.g., spanning hours, days, or gjeek
with these bursts repeated longitudinally acrosgéo temporal intervals (e.g., months, years).o5sf
sectional study conducting assessment for a sipgiet in time confounds trait-like (e.g., stable
characteristics of a person such as intelligengeeosonality), state-like (e.g., a person’s momgnta
state characterized by stress, fatigue, or anged)developmental (e.g., developmental metastabés s
as pre- vs. postretirement, pre- vs. postdiseade)snfluences. Single assessment designs simply
cannot distinguish among these competing sourcesaoénce. By blending intensive repeated
measures designs (e.g., ecological momentary asersaily diaries) within traditional longitudina
designs (e.g., annual retests), the measuremesit design attempts to address these shortcomings.
There are numerous advantages of the measuremesttdasign, including: (i) the use of multiple
assessments within a short period of time offeingroved measurement properties of variables and
for the detection of change, (i) the ability teanbiguate shorter-term and transient fluctuatfpas
intraindividual variability) from longer-term andichble changes (i.e., intraindividual change), @nd

the ability to formally examine how faster-movingppesses, reflected in intraindividual variability,
influence slower-moving processes reflected inainttividual change. Of particular note is the third
point above— that the measurement burst desigmesepts an invaluable methodological tool for the
study of dynamic processes that unfold across thetin- and long-term intervals, as well as how these
processes influence one another (see related disous later section omtraindividual variability).

As with standard longitudinal studies, the samptingescale of the measurement burst design must be
carefully matched to the particular aging procesden study. However, in contrast to traditional
longitudinal designs that only need to consider th&erval between successive assessments,
measurement burst designs require consideratidheotemporal interval of the intensive burst of
assessments, as well as the temporal intervalvavieh these successive bursts of assessmentsewill b
repeated. Such decisions should be informed onthetbretical and empirical grounds. For example,
for cognitive processes like memory, a well-suigtision might entail a series of short-term
assessments spanning days or weeks as well as-tengefollow-up assessments spanning years, with
the former elucidating intraindividual variabilitp memory processes (e.g., learning) and the latter
informing more durable, developmental change. Intrast, processes such as emotional reactivity to
stressors that transpire over much shorter timesaalll need to consider the appropriate interfal o
assessment and design accordingly. By conductisgsaments within (e.g., ecological momentary
assessment) and/or across (e.g., daily diary d&sibpys, such designs are particularly effective at

capturing dynamic processes. In some instancedpgimg variation in the spacing of assessments may



be particularly advantageous, both within burstg.(erandom or event contingent sampling for
ecological momentary assessment) as well as abuwsts (e.g., more frequent assessments for at-risk
populations— such as 6-month retests for thoskdrearly stages of dementia versus every few years
for otherwise healthy older adults). To be surshauld be emphasized that different timescalenatre
necessarily interchangeable, and that varianceoicegses observed across these distinct timegsales

not necessarily a function of the same causesreelates.
KEY THREATSTO THE VALIDITY OF LONGITUDINAL DESIGNS

Although longitudinal designs have many definitimdvantages for addressing central research
guestions in the study of adult development andggb be sure, there are some notable limitations
that must be considered including attrition, reed&tcts, and missingness. In this section, weidsov
an overview of these limitations, as well as offeme basic guidelines for researchers to considenw
analyzing data influenced by these factors.

Attrition

Selection processes including non-representatitialisampling and attrition pose important consern
for drawing inferences from our data. The potenimapact of incomplete data is invariably first
encountered during the participant recruitment phés this initial stage, attrition due to refusal
participate or failure to respond to the invitatisroften discounted as an important source of §agp
bias. However, to the extent that the initial saaripla longitudinal study is less or non-reprederda

of the target population, then parameter estimabed corresponding inferences drawn about
longitudinal change may be biased or inaccuratdidfgnt attrition in a longitudinal study may be
due to illness (self or other), lack of interesyerse reactions to testing, relocation, or dehh.
addition, it is not uncommon for participants téestively complete certain tasks in the measurement
battery, and to avoid attempting others. Such eeskattrition within a longitudinal study represent
an internal validity threat to the research studgigh. Of even greater concern is the issue ofvenet
attrition is non-random. If there is a systematilationship between attrition, missing an entitese
assessment, or failing to complete specific meassreh non-random or selective attrition is likiely
systematically bias patterns or rates of changth thie most pronounced effects of attrition usually
occurring between the first and second measureaeeasions. Individuals who remain in longitudinal
studies often tend to be more select, exhibitingebdealth and cognitive functioning. In addititan
threatening internal validity, attrition may alsesult in diminished statistical power. Longitudinal
studies provide opportunity to explore the impéch given selection process (e.g., dropout, dezgh)
well as to incorporate such processes into the htodmprove our inferences about change based on

tenable assumptions regarding the underlyingiattrjfrocess.
Retest Effects

For some time, practice or retest effects have beeognized as a threat to the internal validity of

longitudinal studies. In the case of cognitive fiimt, the process under study (e.g., episodic mgmor



may be directly influenced by repeated exposurad¢mory tasks, thereby benefitting performance on
subsequent occasions. Any systematic associatiwebe the process under study (i.e., aging-related
declines in episodic memory) and the repeated todigial assessment (i.e., retest or practice-mtlate
improvements) exert opposing influences on perfocea and (potentially) bias observed
developmental trajectories. The degree of retefsiciebias is influenced by several determinants
including the amenability of the construct underdgtto practice, the length of time spanned by the
retest interval, and the number of longitudinaleasments. Certain attributes such as measures of
biological function (e.g., markers of blood chemyistpulmonary function) can remain largely
uninfluenced by repeated assessments, whereasatiitides are far more amenable to practice (e.qg.,
developing strategies for successfully completiognitive tasks). In the study of adult development
and aging, cognitive functions are putatively thestmsusceptible to retest effects. Similarly, lange
retest intervals (e.g., >5 years between retesivals) are suggested to exert a more modest @iffect
patterns of change, with the most marked retesiceffobserved between the first two repeated
assessments and the positive benefits of reteshidiimg for three or more assessments. Concerns
about retest effects in longitudinal studies ineltide possibility that they mask aging-related idesl
due to the benefits conferred by prior test expege and may in part account for the oft-reported
discrepancies between trends reported in cros@geatversus longitudinal studies. Retest effeciy m
result in the systematic underestimation of ratesaging-related change, or may even enhance
performance, for various reasons including redathe correct response when exposed to the verg sam
task, the reflection upon and development of gdizexh strategies for completing tasks, or the
diminishment of anxiety during follow-up testingoasions. In order to have confidence in such
inferences drawn, it is necessary to disambigustienates of change by attempting to differentiate
sources due to developmental shifts versus reffest®

Assessing the Impact of Repeated Practice on Trajectories of Age-Related Change

Gauging the impact of retest effects is commonboaplished in one of several traditions, either via
the sampling approach (research design) auantitative model parameterization (statistical control).
The sampling approach involves retaining a rand@alyipled select subset of participants who are not
administered any measures that are to be assessedefst effects. Other than not being testechen t
target measures that represent the focus of studgskessing practice effects, this reserve saisiple
identical to the parent longitudinal sample. Thegmtude of practice effects are evidenced by
comparing the time 2 performance of the longitudgzanple (tested on two occasions) to the time 2
performance of the reserve sample (tested onlyret 2), with observed performance differences
between groups reflecting retest effects. Problevith this approach include: (i) attrition in the
longitudinal sample that may positively bias battividual differences and change in performance; as
well as (i) the fact that the refreshment sampldrawn at a different time of measurement ankus t
subject to changes over time in selection effeuthiding population change, sampling methods, and

volunteering behaviors. Recent research using @ahatgrogeneous sample and sampling- based



approach revealed very modest evidence for reffestgon performance level for two of five cogndi
outcomes assessed. Thus, sampling-based appraacssessing retest effects can provide invaluable
insights, but can be time-consuming and expendiaay longitudinal studies of aging do not include
reserve or refreshment samples, but rather coneyetated longitudinal assessments for a single
cohort. As such, quantitative modeling approactes tbeen developed to distinguish the effects of
withinperson change from repeated exposure. Feraeré2004), for example, employed a statistical
approach to estimate separate effects for retestahin-person age-related change for select measu
of cognitive function. Of particular note, when bis@s were conducted that excluded the
parameterization for practice effects, the estimater age-related cognitive decline were
underestimated. However, a profound issue relatepiantitative modeling approaches for assessing
retest effects involves estimating g@par ate effects of retest and within-person developmerttahge

in the same model. This requires the inclusion p#cgic time parameterizations—one per effect.
However, the time structures underlying processkgetest and change (maturation) are not
independent. In order for such models to convengé provide estimates for both retest and
developmental change, it has been suggested thatréfly upon between-person age differences to
estimate effects of repeated testing, and as secuaceptible to population mean confounds discuss
earlier. In concluding this subsection, it shouddrioted that retest effects are not solely apdkctb
longitudinal studies. Cross-sectional studies thiauploy testing batteries comprised of multiple
indicators of the same construct (e.g., varioussmexs of executive function) are also susceptible t
retest, and may require counterbalancing the afdask administration. Further, regardless of Wwhet

a design-based or quantitative approach is addptéaidexing retest effects, additional confoundsym
influence estimates. For example, with either thsigh-based or statistical approach, cohort effects
(e.g., historygraded influences) may bias reteitnages as it is assumed that the groups being
compared differ primarily in terms of the numbergpeated assessments. If the samples also differ a
a function of cohort effects, this confounds intetation of any observed retest effect differences.
Missingness. Causes, Consequences, and Potential Solutions

As first introduced in the section on participatttition, missing data due to various sources—from
initial sampling selectivity, to dropout, to homdom completion of tasks in the test battery—can
adversely bias parameter estimates, particulagyudies of adult development and aging. This secti
overviews how patterns of missingness are classitige corresponding implications, and outlines
approaches for effectively addressing missingness.

Classifications of Missingness

Prior to analyzing data, it is imperative for tltilh development and aging researcher to assesbhevhe
data missingness, due in particular to non-randmtofs, is present. A greater degree of non-random
dropout begetsgreater concern about the represemiss of a given sample. The nature of

missingness can exert influences ranging frometaively benign (reducing statistical power) togh



eliciting great concern (e.g., resulting in the #ahtial bias of parameter estimates). This awagene
led to formal classifications identifying three tiist patterns or classes of missingness, each with
different implications for interpreting one’s dataissing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR). E&tass refers to the probability of missing
data values given information about the dependaritible(s) of interest, other associated predictor
variables under study, and the hypothetical meshatihought to underlie the missing data. Data are
classified as MCAR if the missing data occur bytugrof a random process. In such instances, the
reason for the missing data is unrelated to obdesveinobserved variables in a study, the mechanism
underlying missingness is ignorable, and the mgsdata can be safely ignored. Data are classied a
MAR if the missing data for a given variable octyrvirtue of a random process after taking other
observed variables in the study into account. Thathe mechanism of underlying missingness has
been accounted for based on associations with ateesured variables and any potential threat has
been negated. Data are classified as MNAR if theae for the missing data on a particular varigble
directly attributable to the construct that varet#flects. That is, data are missing becauseahable

(or outcome) of interest carries information ababy the variable is missing in the first place. $be
three distinct classes or mechanisms reflect tigeegeto which missingness may bias any statistical
analysis; from MNAR through MAR to MCAR, in ordef greatest to least concern. The missing data
mechanism is considered ignorable for MCAR or MARRt is nonignorable for MNAR. In actual
practice, data are rarely MCAR, with the primargtidiction between MAR and MCAR reflecting
whether additional variables under study are aassatiwith missing data for a given variable; it is
difficult to distinguish between MAR and MNAR. Fartately, considerable advancements have been
made with respect to statistical analysis in thesence of missing data.

Approaches for Dealing with Missing Data: A Brief Overview

Methodologists have developed modern statisticat@grhes that facilitate obtaining unbiased model
estimates for incomplete datasets. Over the pastliézades, imputation approaches have emerged as
a popular approach for addressing missingnessallpjtapproaches like mean or regression-based
imputation were adopted. Mean imputation entaigaging a missing observation for a given variable
with the sample mean, or with a person level méémnpitudinal data are available. Although often
employed, there are many concerns with this approsduding the systematic reduction of observed
variance for the mean-imputed variable, as welbiased parameter estimates. Although regression-
based substitution represented an improvements itstil a single imputationprocedure that
systematically underestimates variance. Such liroita led to the development of multiple imputation
(MI) approaches that replace missing data with iplelppossible values (5-10 or more; Schafer, 1999).
There are many advantages to the Ml approach imgudchbiased and precise estimation of parameters
as well as its easy implementation in many modgatistical software packages. In contrast to single
imputation approaches, the Ml approach entails rgeimg a distribution of estimates to replace migsi

values. The optimal number of Ml estimates ranga® {3 to 10, with the estimates iteratively derived



based on observed betweenand within-person soafoggiance. For example, if ten new estimates
are derived via Ml to replace missing values feadable, then a corresponding number of new detase
(i.e., 10) is generated—one new dataset per impakae. Analyses of interest are then computed for
each of these imputed datasets, with the correspgpmbhrameter estimates obtained subsequently
combined to derive a single best estimate. Whesgagle imputation approaches tend to reduce
variance in the observed variable and underestiratterdard errors for parameter estimates, the
multiple estimates involved in the MI approach piémmore accurate estimates of standard errors and
reduce Type | errors. Another approach for anatyzimcomplete data involves likelihood-based
estimation procedures, such as full information imaxn likelihood (FIML) estimation. Unlike
imputation-based approaches, FIML derives paranestamates based upon all available information
as opposed to complete (e.g., listwise deletenhputed data. Further, FIML will preferentially veit
cases with greater numbers of observations (lessimgi data). Benefitting from a number of desirable
statistical properties, maximum likelihood estingatee known to be consistent (are unbiased and
converge on unknown true values of population patams) and efficient (yield smaller standard
errors), with normally distributed sampling distritons (Singer & Willett, 2003). In contrast howeve

to MI approaches, likelihood- based approachesdaire a correctly specified model to explain the
structure of the data, and are most appropriatejyl@ed on larger sample sizes. Despite the presenc
of missing data, approaches such as FIML use allable data (including all partial data) to produc
estimates for various population parameters thaimiae the probability of having observed patterns
(e.g., aging-related rates of change in cognitivefion) for the given sample under study. Maximum
likelihood derived estimates of population paramgetequire the computation of a likelihood function
to characterize the probability of observing asstimis in the sample data as a function of unknown
model parameters. The process proceeds iterativitlycompeting estimates compared until estimates
are identified that maximize the log-likelihood @tion (i.e., the final estimates yield the greatest
probability of having been observed given the sandalta under study). When the difference between
competing successive estimates is sufficiently kifaia., the model converges), the final model
estimates are identified. FIML assumes that misdaitg are MCAR or MAR, and thus requires valid
inferences about the reasons for missingness. Tthag;ritical to examine differences between #os
individuals with complete versus missing data. Kgyestions to be addressed include whether any
observed group differences are systematicallyedlad variables under study. Further, regardless of
whether an Ml or FIML approach is employed, thdusmn ofauxiliary variables can reduce: (i) bias

by facilitating a closer approximation of the MARsamption, (ii)) marked variability in the imputed
values, and (iii) standard errors of estimatesveerifor the final model. Auxiliary variables aretno
intended for inclusion in the final model, but aether selected based upon their association with
model-based variables with missing data. By inalgdiuxiliary variables in the imputation or modglin
process, the resulting imputation or model-basdinates are conditioned upon the reasons for

missingness (i.e., the auxiliary variables are ciased with other variables under study that aleted



to missingness), thereby increasing the tenalafithe MAR assumption and improving the quality of
parameter estimates. Virtually all quantitative lgsia software packages include likelihood-based
estimation algorithms, which make them an accessibt attractive option for researchers. Because
longitudinal studies on adult development and agypically involve attrition and missing data, both
imputation- and likelihood- based estimation praged are frequently employed. Either modern
approach has proven superior to more traditionahaus of listwise deletion or single imputation
regression methods. However, although both MI dwdihood-based approaches benefit from similar
statistical properties and make similar assumptisosne important differences should be noted.
Allison (2012), for example, notes that MI approeglyield a distribution of results predicated upon
the multiple random draws that are central to thg@icess. How varied this distribution of resusts
depends upon the number of new MI datasets creAtieereas Ml requires a decision about the number
of random draws to be made, the maximum likelihapproach yields a single deterministic result. Ml
also requires a logical consistency between yoatyais model and your imputation model; nuances
in one model (e.g., interaction terms, transforweatihbles) should be reflected in the other. Inticst,
FIML employs a single model, which may improve gafieability of findings.

Planned Missingness

To this point, we have introduced some of the aiahased solutions for dealing with missing data
from longitudinal studies that have already beermdooted. Recently, Little and Rhemtulla (2013) have
offered a design-based complement for missing dat@ngitudinal studies. Planned missingness
designs involve the a priori specification of adstalesign such that participant data will be inctete

or “missing,” but this missingness is determinedrra priori fashion and controlled by the research
Such designs are attractive as they reduce paitipurden as well as the total volume of data
collection and resources needed to field longitaldgtudies. Recent research has provided empirical
support for the successful use of planned misssgydesigns in developmental research with minimal
loss of fidelity or statistical efficiency. Combithewith the contemporary and advanced analytic
techniques for accommodating missing data (e.g.amtl maximum likelihood approaches), planned
missingness designs can be a powerful, efficiedtadimactive option for longitudinal research irrag
and human development in general.

Section Summary: Key Methodological Considerationsfor Incomplete Data

To summarize, reasons for missingness range fronplgay selectivity during initial recruitment to
attrition in longitudinal studies due to health mortality. In order to minimize threats to internal
validity, as well as to maximize both efficiencydaoonsistency in the computation of model-based
parameter estimates, the analyst should attenéveral basic considerations. A step that is often
ignored involves assessing patterns of missingnese’s data, as well as contemplating the fekisibi

of MCAR and MAR assumptions visa- vis the apprderiass of a specific analytic technique. With

regard to assumptions regarding missingness dkzdsins, some statistical packages (e.g., SAS,



SPSS) have incorporated basic statistical testd, asi Little’'s (1998) MCAR test. A significant chi-

square value associated with Little’s test indisdbat the data are not MCAR. Imputing missing data
using MI approaches requires careful consideradfothe imputation model and its correspondence
with the planned statistical model. Similarly, likeod-based approaches require that the model be
appropriately specified and based upon a suffigemhber of cases to yield consistent and efficient

estimates.
MODELING CHANGE IN STUDIESOF AGING

As a corollary to the discussion on longitudinale&rch designs, a corresponding increase in attenti
has been devoted to accompanying statistical mdkaisexamine the dynamic nature of both growth
and decline associated with various aging processése following section, we overview some basic
analytic approaches for modeling both continuous eategorical outcomes, differentiate correlated
from coupled change as foci in developmental aealysnd discuss the modeling of change based upon
alternative parameterizations of developmental time

Select Statistical Modelsfor Change

Multilevel and Latent Growth Curve Approachesfor Continuous Outcomes

Until several decades ago, most studies of devetapmhchange for longitudinal panel data employed
balanced research designs and general linear nfGd&ll) approaches such as repeated measures
ANOVA. The experimental tradition at the time oftegsulted in longitudinal studies that failed to
detect change due to limited sample size, the simtuof few measurement occasions, compromised
statistical power for detecting differences, andiféerential focus on between-group differences as
opposed to within-participant change. Among thertslomings, these initial GLM approaches for
assessing change focused on mean estimates aggragedss individuals, with the assumption that all
individuals from a specific group were charactatiby the very same pattern of (mean) change over
time, and any deviation from this average assumeelftect error. Several vastly improved approaches
are now typically employed to analyze change fatiooious outcomes in adult development and aging
(e.g., aging-related change in cognitive functi@gth multilevel or linear mixed models of changse

well as latent growth curve approaches are commeniployed. These approaches consider both
intraindividual change over time and interindivitiddferences in change over time. In additionhe t
linear analysis of continuous change, multileved gnowth curve models are also particularly well
suited to the study of discontinuous developmemtatesses. For example, in research on aging, it is
of particular theoretical interest to contrast@atts of change both prior to and following critieaénts,
such as the onset of menopause to gauge the irapastrogen depletion on cognitive function, to
differentiate normal from pathological cognitiveirag by identifying the inflection point thought to
indicate the onset of the prodromal phase of deiment to disambiguate rates of longitudinal change
in outcomes attributable to aging- versus mortaldisease-, or disablement-related processeerfsitt

of change prior to and following such critical eteemight be characterized quite differently, withtib



differences in the magnitude of change as welhagransition point for such differences of paiacu
research interest. Thus, contemporary modeling dveonks provide considerable flexibility for
examining developmental and other time-dependeatgsses. Modern approaches have notable
statistical advantages for the assessment of ch&irge they do not assume equality of slopessacro
individuals, but rather empirically test this natiby including variance terms for various fixedeets
(including change slopes) in the model. Anotheraatizge is the ability to examine change despite
heterogeneity in retest schedules. Further, bahnhbltilevel and LGC approaches yield parameter
estimates using FIML based upon all available mfmion, assuming that missing data are MAR. The
mutlilevel and LGC approaches are similar in thathiprovide estimates of individual differences and
change in performance, and indeed can be structared equivalent and to yield identical estimates.
However, important differences should also be ndted example, time is treated differently between
the multilevel and LGC models, introduced as all@veredictor yielding a fixed effect in the former
case, and incorporated into the model via the fdotalings for the latent slope variable for thitela
This represents a fundamental distinction: theitneat of time is univariate for multilevel modetlsr(e

is parameterized as distinct observations for #raesvariable) versus multivariate for LGC models
(each time point represents a distinct variabl@elstVan den Wittenboer, & Hox, 2003). Other
advantages of LGC models including more flexiblecdsfications of residual covariance structures, as
well as simple extensions of LGC estimates of cbattyother outcomes within a broader SEM
framework. In contrast, multilevel models are adageous for incorporating higher levels of nested
structures (e.g., three-level structures commaméasurement burst designs such as weekly sessions
within annual retests within persons). On balarie,differences between the multilevel and LGC
approaches are modest, with many modern softwarkapas seamlessly estimating both statistical
models of change.

Generalized Linear Mixed and Survival Models for Categorical Outcomes

Research applications for the psychology of agitegadso based upon longitudinal responses that are
not continuous (e.g., presence or absence of asdisprocess over time, counts of specific event
occurrences such as stressors, etc.). As suchetiuges separate models includgegeralized linear
mixed effects models as well asurvival models. Generalized linear mixed effects models repreaant
extension to linear mixed models of continuous aétare longitudinal categorical outcomes can be
examined by transforming the mean response uslimk dunction and then relating the transformed
outcome to predictors. Appropriate selection of link function transformation of the non-normal
outcome depends upon the distribution of the outcdiaa (e.g., a logit transform for binary data
characterized by a Bernoulli distribution). ThensBormed outcome can then be predicted by covariate
of interest using the familiar GLM; effectively, miinuous models with normal distributions are sinpl
special cases of GLMs. Survival (or event histaapplysis models the risk of a particular event
occurrence (e.g., disease onset, death) as a danofi specific predictors in your model. In a

longitudinal analysis, this risk of event occurrens referred to as a hazard—the probability timat a



individual will experience the event within a petiof time. A key feature of survival models is the
ability to consider both event occurrence and timyevent occurrence. In psychological aging resgarc
survival models have been commonly used for thdystf disease risk, as well as for the study of
terminal decline that examines an accelerated redr drop in cognitive function in proximity to
death. The terminal decline hypothesis has beemiexa using both conventional survival methods,
as well as modern analytic approaches that conthenstatistical analysis of change (e.qg., lineaehi
models) with survival models. Such joint modelipgpeoaches have also been employed to examine
how individual differences in levels and rates lodigge in cognitive function from LGCs are related t
onset of Alzheimer’s disease.

Correlated and Coupled Change

The analysis of change goes beyond a simple dacisgarding which type of analytic approach to
employ. Indeed, the primary research questionfitsed an important bearing on the nature of change
examined. Multilevel and LGC approaches offer théity for examining change in one outcome, and
potential moderators or sources of individual @ugr differences in rates of change (i.e., intexirlial
differences in intraindividual change). Howeverclsuapproaches can be expanded to consider
scenarios where researchers might be interestemhiriwo or more variables may be changing together
over time. As such, multivariate approaches allbes tonsideration of how variables and rates of
change in these variables are related over timdadibitate a more stringent test of a developmienta
hypothesis, a researcher might be interested imigkag whether two processes (cognitive and
physiological function) change together within adividual over time. In order to examine the time-
varying covariation between these two processe®saarcher could explore eithewsrrelated or
coupled change between physiological and cognitive functidrese two approaches actually address
disparate questions. By way of example, one cooldetate two separate slopes of aging-related
change—one for cognitive and one for physiologfcaiction. Such an analysis would yield insight
regardingcorrelated change—the extent to which individuals’ whose cognitivmétion is changing at

a faster rate is also exhibiting faster rates aingje in physiological function. Alternatively, ooeuld
examine the time-varying covariation of cognitivadaphysiological function after taking the
longitudinal trends for each into account. Suclamalysis would yield insights intmupled change—

the extent to which an individual’s level of cogwetfunction at a particular sampling occasiorelated

to their level of physiological function at the sasampling occasion. Here, it is important to ribg
correlated change involves the examination of iodial differences (or between-person associations),
whereas coupled change involves the examinatiomtcdindividual differences (or within-persons
associations). The approaches often yield simgimates, but may diverge due to aggregation bias i
longitudinal research. Although analyses of coteglaand coupled change address complementary
guestions about how variables are related over, thmeh approaches are ultimately correlational and
preclude inferences about causation or lead oelhgffects. Models such as the bivariate dual ahang

score model represent an analytic alternativeititatrporates both the longitudinal modeling of two



variables, as well as lead and lag parameterslaa dbr the rate of change in one variable to be
prospectively predictive in the other variable (ar@k versa). Such an approach affords researtters
ability to examine individual differences in andm@ations between rates of change among variables,
as well as how individual differences in ratesludiege among variables can be antecedent to eagh oth
to reveal unidirectional and/or bidirectional cdusfiuence among variables.

Developmental Parameterizations of Time

A critical issue for longitudinal studies on add&velopment and aging concerns how we define the
time continuum used for characterizing change.hiis section, we highlight examples from the
literature that demonstrate how employing varioasameterizations of time can influence results
observed in longitudinal investigations.

I s Chronological Agethe Only Metric?

Despite considerable advances in research destgawgki et al., in press) and statistical proceslure
for the study of the psychology of aging, chroniaday age perseveres as arguably the most used
predictor and developmental time metric for charperformance differences and changes. Despite this
popularity, the weaknesses of age as a develophiedéx have been well documented. Specifically,
rather than a causal mechanism underlying cogrétingefunctional decline, chronological age is said
to merely reflect a temporal dimension along wheelusal factors (e.g., biological, environmental,
health, and neurological) operate. Consequentlgeming that chronological age is associated with
performance decline (e.g., in cognition) does nfarim the specific or general mechanisms underlying
age-related cognitive impairment—rather, age isljikan indirect reflection (i.e., a proxy) of true
mechanistic changes (e.g., accumulated biologimlesmvironmental factors) that influence cognition
across time. Beyond these theoretical concerns thithuse of chronological age as the primary
developmental time metric for charting change, shkection of a specific time parameterization is
known to influence the interpretation of resultdangitudinal studies. In particular, for longitudi
studies characterized by considerable age hetezagém the sample at baseline assessment, opting t
model long-term change using chronological agéhagiime basis without accounting for differences
in age at study entry (i.e., different age coharse sampled) assumes the equivalence (or convaagen
of cross-sectional and longitudinal aging effedithe advantage of such a model is that a single
trajectory of change spanning the entire obsergsdrange (e.g., 60-90 years) can be estimated—a
combination of age information spanning variousartshthat is much larger than the range measured
over the longitudinal follow-up (e.g., three regesppanning a 6-year period; cf. Singer & Wille@03).

Of course, such failures of age convergence—thengstson that cross-sectional age differences and
longitudinal age changes converge onto a commgactoay—are well documented in the adult
development and aging literature. The impact tletvben-person difference in age at baseline can
exert upon appropriate inferences regarding wiggrson change has led researchers to consider

additional parameterizations of developmental time.



Alternative Parameterizations of Time

In reviewing recent literature in adult developmentl aging, it is not uncommon to observe the fise o
various time parameterizations for modeling witpgrson change in various aging processes. Most
longitudinal research parameterizes developmemalusing threéme basis structures: chronological

age (e.g., years since birth), measurement occésign 0, 1, 2), and time in study (years fronetias
assessment). Thage-as-time parameterization estimates within-person change danction of
chronological age. However, as mentioned in theetfi;g section, such an approach not only assumes
age convergence, but may also fail to capture itaporsources of heterogeneity. Variance due to
underlying health conditions such as cardiovascdisease, for example, may be misattributed to
chronological age. Additionally, using age-as-ticae reveal complex non-linear trends that potdmptial
reflect cross-sectional mean differences introduggdeterogeneity in age at baseline. Employing
measurement occasion as a time basis is commothigapproach fails to capture important individua
differences in time sampling. Specifically, suchapproach fails to capture important variation in
individual retest intervals; regardless of whettrer first retest interval spanned 6 months for some
individuals versus 16 months for others, the timen@asurement occasion parameterization would treat
these as equivalent. Such an assumption may beelgnteasonable for certain processes and
populations under study, but may be grossly inigfficin other contexts. When examining changes in
cognitive function during the prodromal phase ahdatia, for example, changes across even relatively
short retest intervals can be meaningful (i.e.ividdal differences of even several months matfeo).
improve precision, many opt to parameterize timeagiatime-in-study metric. This approach charts
time elapsed from the beginning of the study, idirig a precise incorporation of individual diffeces

in retest intervals. Morrell et al. (2009) directlgmpared such competing time parameterizatiorts, an
report that accurate inference about within-perdmmge in longitudinal studies is best accomplished
by parameterizing time dsme-in-study as well as by including a between-subject termximigage
heterogeneity at entry into the study (baselinesssaent). Moreover, this approach allows for explic
examination of whether rates of aging-related ludinal change vary as a function of cross-sectiona
age-related differences at baseline (e.g., isatesaf decline in memory faster among individuatow
were older upon entry into the study?). Recetithge-to-event (or time-as-process) parameterizations
have been proposed as another promising develophmaatric for indexing change. A time-to-event
approach indexes change in relation to the onsmgrafal events or processes. Biological age reptss
one such alternative marker of developmental timigh recent empirical findings and theorizing
linking biological processes (e.g., vascular h@aithage-related cognitive decline. Other examples
include examining change in cognitive function @hation to specific processes including dementia
progression or menopause. For the former, one ety explored within-person change in cognition
as a function of years following dementia diagnddisicDonald et al., 2011)—understanding why
some individuals progress through the dementiaestagre rapidly than others could inform efforts to

lessen caregiver burden or to target effective thias. For the latter, another study examinechidge



change as a function of time prior to and followimgnopause (Thilers et al., 2010). Structuring
cognitive change in relation to the menopause dadetl to support claims that estrogen depletan f
postmenopausal women leads to cognitive declineyol® cognitive domains, time-to-event
approaches have been employed to examine longitiudivanges in mental and physical health with
respect to disablement- (Fauth et al., 2014), aodatity- (Gerstorf et al., 2013) related processes
Echoing the findings of terminal decline in cogwetifunction using time-to-event approaches, these
recent research findings indicate that mental dngipal health exhibit accelerated decline proximal
to specific health-related events. This suggesis time-to-event-based examinations are incredibly
valuable for articulating processes other than@gmat impact mental, physical and cognitive health
during the later years, and there is consideraiolimise for applying such approaches for understandi

multiple dimensions and processes in the contebeter life.
EMERGING METHODOLOGICAL TRENDSFOR THE STUDY OF AGING

In this final section, we overview several trenaisttare exerting considerable influence on theetiirr
scope of adult development and aging research—tegrated data analysis and intraindividual
variability approaches.

Select Approachesto Integrated Data Analysis

Over the past decade, a clear trend in researtheopsychology of aging has seen innovative efforts
to comprehensively integrate dateross studies. Such integration affords a number of athges
including improved statistical power, improved ps@n of parameter estimation, and, perhaps most
importantly, the testing of whether findings froimgle sample studies are generalizable. Several
approaches to integrated data analysis are ovezdidwere.

Meta-Analysis

The meta-analytic approach to integrated data aisdlyvolves synthesizing various summary stasstic
(effect sizes, regression coefficients, probabiijues) across individual studies that share abenm
of important similarities. In effect, a metaanadyisi an aggregate study about a number of pridiesu
This accumulation of evidence yields a quantitattuenmary of findings, including an omnibus
measure of effect size (e.g., Hedggsas well as the identification of key variableattmoderate this
effect and explain variation between studies. Tégrele to which summary statistics from individual
studies influence the final measure of effect cawbighted according to important factors (e.gnda
size). Key steps involved in conducting a metaysislinclude deciding upon the target research
questions, deciding upon the parameters goverhmbtérature search and choosing studies thatglea
meet criteria, requesting data from researcherse@sired, addressing incomplete data, and data
analysis. There are important assumptions whenumtimdy a meta-analysis, including the need to
ensure the psychometric comparability of pooledstmets, measures, and measurement scales.
Advantages of the meta-analytic approach over iddal studies include the improvement of statistica

power and precision, a direct means of addresgjniyecal findings within a research field (e.gg ar



opposing findings due to systematic between-stiffigrdnces), as well as drawing inference regarding
generalizability of findings. However, meta anatyéipproaches are also subject to notable concerns
including the impact of publication bias (as mamnsignificant findings are not represented in the
literature) as well as the ecological fallacy, wharaccurate inferences about individuals are based
upon population mean trends.

Mega-Analysis

In contrast to a meta-analytic approach, mega-#inatyudies derive similar quantitative benefits
through the actual pooling of raw data across nséungies/samples. The distinguishing feature between
meta- versus mega analysis concerns the type afmattion that is concatenated across studies. For
meta-analysis, various summary statistics are deahpivhereas the actual raw data are concatenated
across study for the mega-analysis. In this semsmega-analysis shares greater similarity with a
conventional research study where the researchiectsoand analyzes person-level data from multiple
research contexts. Advantages of the mega-anahgjmroach include the ability to conduct a
meaningful investigation even when few studiesauvailable (a distinct problem for metaanalysis),
improved reliability and precision of model-basedgmeter estimates, and perhaps most importantly
an increased flexibility with regard to researclestions that can be pursued and analytic techniques
that can be employed. While there are limitatiaonslved with the mega-analytic approach, such as
the need for identical measures across studiés,ciertainly a powerful and attractive approach for
large-scale examinations of research questions.

Data Harmonization

Data harmonization, whether retrospective or prosge represents another approach to pooled data
analysis. In contrast to a megaanalysisgtigospective harmonized dataset reflects more than the mere
pooling of raw data across studies; rather, thebaized dataset derives novel variables and cantstru
based upon complex harmonization procedures. Ngtaoa raw data concatenated across studies, but
entirely new variables are generated to index cootst of interest. For example, in the Dynamic
Analyses to Optimize Ageing (DYNOPTA) project, Aegtet al. (2009) created a retrospectively
pooled dataset spanning nine Australian Longitudstadies of Ageing, and applied harmonization
procedures to create new variables to facilitateparison with clinically meaningful scores (e.g.,
harmonized data on physical activity to reflectioradl recommendations for weekly participation
levels). Recently, efforts have been championedatdwerospective harmonization across studies,
where across-study consensus guidelines are adihatisgbvermew data collection and measurement.
For example, some international research on demdras adopted prospective guidelines for the
selection of standardized measures (e.g., the merasut of biomarkers like CSF, common
neuroimaging protocols) across studies. Simildhg,U.S. National Institutes of Health has devetbpe
the NIH Toolbox, a common battery of performancesuges (cognition, emotion, motor, and sensory
function), as a standardized testing platform tbam be administered across studies of human

development and aging. Although promising, the esscof data harmonization is laborious, with



numerous challenges including common across-stadgition in how constructs have been measured,
the development and application of harmonizationthods to facilitate comparability, and the
retrospective versus prospective nature of the biaization initiative.

Coordinated Analysis with Replication

The coordinated and integrated analysis of origitzh from multiple studies can augment scientific
knowledge through thesplication andextension of key findings. For the study of aging, the praces
involves identifying central research questionsidzatingparallel analyses across multiple studies to
ascertain whether the effect(s) of interest carepkcated, and interpreting similarities (or drifaces)
across patterns of results to further inform geliaility and theory development. With particular
regard to longitudinal studies, data pooling apphea can be problematic. For example, meta-analytic
approaches can be quite limited by the body ofitadgal research published on particular research
guestions, as well as the types of research deamghsinalyses employed. Similarly, pooled analysis
approaches (megaanalyses) are often limited biatheof overlap of specific measures across studies
requiring more involved harmonization efforts. hese instances, a coordinated analysis platform is
particularly advantageous, such as the Integratnadysis of Longitudinal Studies of Aging (IALSA)
project consisting of over 40 longitudinal studidsging. IALSA facilitates access to member stadie
data, analysis scripts, and output, with the stten¢e.g., immediate replication of novel findirigshe
literature and/ or consideration of alternative dtyyeses, generalizability of findings, improved
statistical power) of such coordinated efforts hgviurthered our knowledge of the psychology of

aging and its associated theories.
An Intraindividual Variability Approach
Beyond the First Order Moment



Recently, aging theorists and developmentalistee aliave demonstrated a renewed interest on
approaches for studying intraindividual variabifity a host of domains in aging and across thepid@

(for a comprehensive overview, see Diehl, Hookegl&vinski, 2015). The reemergence of variability
derives from a growing body of evidence demonstgatihat short-term fluctuations often reflect more
than random error or measurement unreliability, aystematically associated with numerous
developmental outcomes, and are informative vissdheories of processing dynamics. Intraindividual
variability, however, does not necessarily refeegisychological primitive (e.g., processing spgex)

se, but rathean approach to the study of adult development and aging thaitifates the examination

of dynamic fluctuations in function that confeeaning beyond mean and static considerations. To be
certain, the examination of mean remains a ceritrals, contributing essential information for
characterizing behavior over time. However, redemtings have demonstrated that this knowledge
should be supplemented by also asking how varihideperformance is over time. Do trajectories of
performance reflect mean stability characterizednmgest or substantial variability? Variability not
only contributes unique information independennefin, but it also improves our understanding of the
dynamic nature of the developmental process untetys The following subsections overview
examples of variability research from the adultelepment and aging literatuRel | nconsistency
Across Response Latency Trials

Growing consensus from various scientific disciginincluding lifespan psychology, cognitive
neuroscience, neuropsychology, and mathematicalehmgdsuggests that theoretically interesting
aspects of cognitive function are not completelptaeed by mean performance. RT inconsistency, as
defined by trial-to-trial fluctuations in RT latdes on performance-based measures of cognition, has
emerged as one index thought to capture imporeetiufes of behavioral and systemic integrity,
including mental noise, transient lapses of attentand a more enduring behavioral signature of
compromised brain and neural function and cogaisitatus. Numerous indices may be computed to
index intraindividual variability across responatehcy trials. Among the simplest, the intraindiatl
standard deviation (ISD) can be computed withirspes and across trials to index fluctuations in
response latencies. In order to adjust for potenbafounds (e.g., individual differences in averag
level of performance, response speed, or systeneaining over time), effects associated with age,
disease status, and trial can be partialled. @iperationalizations of variability that may be cdesed
include the coefficient of variation (each perso§B/M), high versus low percentiles from RT
distributions, as well as approaches that simutiasly model mean and variabilitiisambiguating
state- and trait-like variation in dynamic characteristics and processes within measurement burst
designs. Measurement burst designs, which involve assgdgsidividuals intensively over shorter
intervals (e.g., across trials or over days), apkating this intensive assessment longitudinalgr o
longer intervals (e.g., over months or years)j@d&al for examining and quantifying variability Wwin
persons across shorter or longer time horizonspbeaiween persons. Evidence of significant

intraindividual variability and interindividual ddrences in RT inconsistency would suggest that RT



inconsistency exhibits both state-like and trdielvariation, and that this variation is potengiaélated

to time-varying and time-invariant predictors. Mestearch has focused on RT inconsistency ad-a trai
like characteristic (e.g., changes in CNS, charngdsrain structure/function or underlying disease/
pathology) for differentiating individuals and/ounlsyroups, ignoring potentially important variation
that may exist within persons across shorter iafersuch as days, weeks, or months that may reflect
variation in a person’s context (e.g., increaseesst distress, diminished sleep, attention). taréu
research, the analysis of indices of variability f@rious processes (e.g., cognition, gait, neural
function) in the context of measurement burst desigepresents a novel empirical approach to
examining both the state-like and trait-like modofa of performance fluctuation. Empirical
decomposition of variation in RT inconsistency, éxample, will help better understand the utilifty o
RT inconsistency as a behavioral indicator of cogsi brain and CNS function, and may facilitate
identification of risks (e.g., falls, delirium) foindividuals with dementia. Consistent with this
proposition, recent research on daily stress endoyt measurement burst design has shown that
among older adults, only 25% of the variability @motional reactivity to daily stressors reflects
individual differences or dispositional variatiohhis suggests that dynamic processes, in and of
themselves, may be susceptible to vicissitudethefrdime-varying processes or influences thatatper

at difference timescales, and underscores the treedamine factors beyond individual and group
differences as important sources of variation inadgic processes&inking intraindividual variability

to long(er)-term outcomes using intensive repeated measures and measurement burst designs. The vast
majority of research in cognition and aging hasifsd on the utility of intraindividual variabiligs a
more static indicator and proxy for dynamic proessthat are reflected in behavior/performance.
Intraindividual variability has a rich history inher domains, particularly affect and emotion, veltgr
intraindividual variability is thought to reflecin part, the systematic impact of contextual and
experiential forces such as stressful experienthas, intensive repeated measures designs (e.g.,
ecological momentary assessment and daily diadas)be exploited to examine the timevarying
covariation of stressors and affect as a way tonéx@ individuals’ emotional reactivity to stressors
(and individual differences therein) as dynamic n@mena. Importantly, these intensive repeated
measures design protocols can be repeated at jgembervals, effectively yielding a measurement
burst study. Such an approach is attractive dews for examining a dynamic process (e.g., emmatio
reactivity to stressors), how that process chadgeslopmentally, and how that process impacts ahang
in other outcomes of interest. For example, themakaccounts of the impact of stress on long-term
health have emphasized the importance of dynamaptavel processes including stressor reactivity
as the mechanism underlying the stress—healthllinthe daily stress literature, links between vcr
level stress reactivity processes and long-ternitthemitcomes have only recently been explored.
Mroczek et al. (2013) showed that greater emoticgedtivity to daily stressors was associated afith
increased likelihood of mortality among older m&aimilarly, individual differences in emotional

reactivity to daily stressors have been linkedntiréased distressed affect and self-reported affect



disorders and increased risk of chronic health itimmd 10 years later. Additionally, Sliwinski,
Almeida, Smyth, and Stawski (2009) reported thabtéonal reactivity to daily stressors increases
longitudinally across 2.5 and 10 years from twoesafe measurement burst studies of midlife and old
age. These recent findings from the stress andtditierature exemplify the promise measuremenstour

designs hold for examining the longitudinal dynasvand impact of fast-acting processes.
CONCLUSIONS

In writing this chapter, our goal was to selectyvélighlight methodological considerations and
concerns that characterize current research opsyehology of aging. The overview of sampling and
design considerations emphasized missing data denagions and retest effects, as well as their
corresponding impact on model-based parameter astirand (in) accuracy of inferences drawn. In
particular, we emphasized the strengths of the ameasent burst design. Such intensive measurement
designs hold real promise for improving our underding of dynamic aging-related processes,
including current trends such as whether intraiitidial variability reflects both state-like and trike
influences. We reviewed common analytic approaéitreanalyzing change in both continuous (LGC,
multilevel models) and categorical (survival) outws, as well as emphasized the need to carefully
consider alternative parameterizations of develaopaietime to chronological age. Finally, we
concluded by exploring some emerging trends instbey of the psychology of aging, including the
promise of integrated data analysis for informing key scientific issues of generalizability aneldty
development. The advances in design and analysdigheir corresponding recent applications have
given rise to an exciting time for research in gsychology of aging, as we strive to further our

understanding of dynamic developmental processes.



