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The present study is concerned with the development and application of Lattice Boltzmann method-
based numerical scheme for investigating the thermal response of laser irradiated biological tissue
phantom during laser-based photo-thermal therapy. The Lattice Boltzmann Method (LBM) has been
employed for analyzing the transport of short-pulse radiation within the body of the tissue phantom that
has been considered as the participating medium. In order to determine the two-dimensional temper-
ature distribution inside the tissue medium, the transient form of radiative transfer equation (RTE) has
been coupled with the energy equation modeled based on dual phase lag (DPL) heat conduction
framework. The LBM-based solution of the coupled RTE and DPL-based numerical model has been
benchmarked against the results available in the literature. Results have been presented in the form of
two-dimensional temperature distributions, spatial and temporal profiles of temperatures within the
body of the laser-irradiated biological tissue phantoms. Effects of phase lags associated with the heat flux
(tq) and temperature gradients (tT) on the resultant temperature distributions inside the laser irradiated
tissue phantom have also been analyzed and discussed. Thereafter, the temperature distribution inside
the biological tissue phantom embedded with optical inhomogeneities has been determined using the
DPL-based model. Results of the study clearly reveal the successful implementation of LBM-based nu-
merical approach in analyzing the thermal response of laser-irradiated biological tissue phantoms. The
inherent properties associated with non-Fourier heat conduction models have also been explicitly
brought out in the context of photo-thermal therapy.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

In the past decade due to the availability of short-pulse lasers,
the role of lasers in photo-thermal therapy has grown dramatically,
wherein the tissue temperature is raised up to a pre-defined
threshold value to destroy the cancerous cells. In order to raise
the tissue temperatures, the required amount of heat can be pro-
duced by various techniques that include ultrasound, radio-
frequency (RF), microwaves, etc. [1]. Of all these available
techniques, high power laser-based photo-thermal therapy has
gained considerable attention due to the potential of short pulse
lasers to confine the temperature rise to specified tissue volume
rather than affecting the surrounding normal cells. The funda-
mental idea behind this technique is the possible conversion of
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photon energy into thermal energy and the heat thus generated is
sufficient to induce cellular damage via processes (effects) such as
hyperthermia, coagulation and evaporation [2]. Moreover, as part
of the continuing developments in this field, recent advances
include the applications of plasmonic gold nanoparticles as the
contrast agents, which have demonstrated the potential of
enhancing the efficiency of laser-based photo thermal therapy
[3e5]. This potential of plasmonic gold nanoparticles is primarily
due to their properties of strong absorption and relatively weak
scattering that are in contrast with the properties exhibited by
normal biological samples (high scattering and weak absorption
characteristics). By virtue of these characteristics, the gold nano-
particles aid into the localized treatment of the embedded
abnormal cells with minimum possible damage to the surrounding
healthy cells. The available literature also shows that various
shapes, sizes andmaterials of nanoparticles have been employed by
a range of researchers in the context of photo-thermal treatment of
tumorous cells [6,7].
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Nomenclature

c speed of light in medium
cv specific heat of the tissue
f(r,v,t) particle distribution function
feq(r,v,t) equilibrium distribution function
G incident intensity
I intensity
Ib black body intensity
k thermal conductivity
r position vector
T temperature
t time

Greek symbols
ka absorption coefficient
s scattering coefficient
b extinction coefficient
3 emissivity
DU control angle
F scattering phase function
a thermal diffusivity
r density
tq phase lag of heat flux
tT phase lag of temperature gradient
t relaxation time in BGK model
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In view of the fact that the technique of laser-based photo-
thermal therapy primarily makes use of the photon energy, it is
important to develop a detailed understanding of the phenomenon
of light propagation through biological tissues that exhibit both
scattering as well as absorption properties and are turbid in nature.
By virtue of these properties, the incident laser beam undergoes
various processes such as reflection from the interfaces, trans-
mittance, scattering and/or absorption. Of all these events, it is
primarily the absorbed component that leads to an increase in the
tissue temperature. It has well been established that a rigorous
electromagnetic theory based analysis is required for completely
understand the various mechanisms associated with light propa-
gation inside the laser-irradiated biological samples, which in itself
is a complicated and challenging task. Therefore, various mathe-
matical models of varying degree of complexities have been
developed to numerically simulate light transport phenomenon in
biological tissues. Of all the available approaches, the radiative
transfer theory, originally developed by Chandrasekhar [8], is
believed to be the most successful for modeling light transport
through biological samples [9e11]. Radiative transfer equation
(RTE) is an integro-differential equation. This is complicated
because of the presence of an integro-differential term due to in-
scattering, which makes RTE highly complex and getting the
exact solution becomes a challenging task.

In the recent decade, various numerical methodologies such as
Monte Carlo method (MCM), discrete ordinate method (DOM),
finite volume method (FVM) etc. have been proposed for gener-
ating the complete solution of the RTE. The MCM has been used to
model the transient RTE by Schweiger et al. [12] and Guo et al. [13].
However, this method requires a large number of energy bundles
for accurate results, hence it is not computationally efficient. Guo
and Kumar [14] and Sakami et al. [15] extended the applications of
DOM to the 2-D rectangular enclosure. Mishra et al. [16] employed
a range of numerical techniques such as DOM, FVM and discrete
transfer method (DTM) to solve the transient form of RTE in the
context of laser-irradiated one-dimensional participating media. It
is pertinent to note here that for applications that involve the
interaction of short laser pulses with materials under study e.g.
biological samples, one needs to take into account the transient
effects and hence it becomes important to consider the complete
transient form of RTE [14,15,17].

Brief literature review presented above indicates that the
importance of developing fast and accurate numerical schemes for
simulating light propagation phenomenon through biological
samples has been realized by various researchers in the past. In this
context, one of the relatively new numerical schemes, namely the
Lattice Boltzmann method (LBM) has attracted the attention of
quite a few research groups in the recent past, though it's potential
in the field of photo-thermal therapy has not yet been fully
explored. In one of the works presented by Asinari et al. [18], the
authors employed the LBM to solve the steady-state RTE in a 2-D
rectangular enclosure. The numerical study found that LBM pro-
vides accurate results, and is also computationally efficient than the
FVM-based numerical approach. Mishra and Vernekar [19]
extended the work of Asinari et al. [18] to analyze the transport
of collimated radiation in one-dimensional planar participating
medium. Another study reported by Vernekar and Mishra [20] has
been concerned with the transport of short-pulse radiation in one-
dimensional planar participating medium. In the recent past, LBM
has been widely employed for handling the fluid flow and heat
transfer problems [21e23] primarily due to its attractive properties
such as relative ease of implementation on computer, mesoscopic
nature, ability simulate complex geometries and boundary condi-
tions, and parallelization of computer code [18,24].

In the context of therapeutic applications, one of the primary
interests in photo-thermal therapy is to understand the extent of
heat diffusion through the body of the laser-irradiated biological
samples and the resultant temperature distributions. The correct
estimate of thermal profiles becomes important for selective
destruction of abnormal cells (malign/benign) present in an
otherwise homogeneous medium. While the solution of RTE
through any of the above-mentioned numerical schemes provides
intensity distribution due to light propagation through the bio-
logical samples, the resultant intensity distribution needs to be
coupled with a suitable heat conduction model for understanding
the thermal response of the medium under study. In this direction,
one of the most commonly employed approaches for determining
the temperature distribution in laser-irradiated biological samples
has been based on Pennes bio-heat transfer equation, as earlier
introduced by Pennes [25]. In this approach, the source term is
derived from divergence of radiative heat flux that is obtained
through the solution of RTE and is coupled with the Penne's bio-
heat equation for determining the temperature distribution inside
the body of laser-irradiated biological sample. However, one of the
major limitations of this approach has been the assumption of
infinite speed of thermal wave propagation through the body of the
biological sample which is considered to be turbid in nature.

By virtue of the inherent turbidity, the biological samples
exhibit absorption as well as scattering properties due to presence
of absorbers like water, hemoglobin etc. and scatterers like cell
membranes, red-blood cells, etc. The presence of non-
homogeneous cell structures acts as additional centers for
increasing the turbidity of biological samples and hence a finite
phase lag is expected between the heat flux and the resultant
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temperature distribution inside the laser-irradiated tissue domain.
In this context, non-Fourier heat conduction models have been
proposed and developed by quite a few researchers in the recent
past for taking into account the finite speed of thermal wave
propagation through biological samples. Some of notable studies
include the works reported by Cattaneo [26] and Vernotte [27]
wherein the authors proposed wave-based hyperbolic heat con-
duction (HHC) model by introducing relaxation time. Although the
paradox of instantaneous response of thermal disturbance can be
solved through HHC model, but it also introduces physically un-
realizable solutions, as has been demonstrated by a few researchers
in the past [28,29]. Along the similar lines, Bright and co-workers
have also dwelled upon the possibility of the prediction of
unphysical results through HHC models [30,31].

Recently the dual-phase-lag (DPL) heat conduction model pro-
posed by Tzou [32] got considerable interest due to its potential
importance in areas such as modeling heat conduction in biological
materials [33], heat transport in amorphous media [34] etc. This
model allows either the temperature gradient to precede the heat
flux or the heat flux to precede the temperature gradient,
depending upon the relative influence of relaxation times associ-
ated with the resultant temperature gradient and/or the heat flux.
On the other hand, a select group of authors have also commented
on the possible limitations of DPL model. For example, the study
reported by Rukolaine [35] for three-dimensional Jeffreys-type
equation with a positive localized source of short duration has
highlighted such aspects of DPL model. It is important to mention
here that though the importance of this generalized non-Fourier
heat conduction DPL model in the area of photo-thermal therapy
has been realized by various researchers, not much literature exists
that focuses on the coupling of DPL model with the transient form
of RTE except a very recent work reported by Kumar and Srivastava
[9]. The study by Kumar and Srivastava involves the solution of
transient form of RTE using DOM while the DPL-based heat con-
duction model has been solved using finite volume method (FVM).

With reference to the application of LBM, in one of the recent
works, Sun and Zhang [36] solved the conventional Fourier-based
heat conduction equation using LBM while the radiative source
term in the heat conduction equation was obtained by solving the
steady-state RTE using DOM. This study suggests the need of the
same grid systems for LBM and DOM, to avoid additional in-
terpolations between these two solvers while adding the radiative
heat source to the energy equation. However, this study and some
of the earlier studies e.g. Refs. [37,38] have primarily been based on
two de-coupled approaches, wherein the authors have solved the
RTE using the conventional FVM or DOM and the LBM has been
employed only for solving the Hyperbolic and Fourier-based heat
conductionmodels. The implementation of two different numerical
solvers for separately solving the radiative transfer equation and
heat conduction models would require additional interpolations
and numerical steps as has been discussed in the study reported by
Sun and Zhang [36]. In view of these limitations, development of a
uniform numerical methodology for the coupled form of governing
equations is desirable. Some of the very few efforts made in this
direction include the works of Mishra and co-workers wherein the
authors solved the coupled Fourier-based heat conduction equation
and RTE using LBM, and found that the LBMeLBM combination is
computationally faster than the LBMeFVM [39,40]. However, it is to
be noted here that the implementation of LBM-based numerical
solver for handling the coupled transient RTE and DPL-based heat
conduction model for understanding the thermal response of laser-
irradiated biological tissue phantoms has not been reported in the
available literature.

With this background, the present work is concerned with the
development and application of a uniform LBM-based numerical
solver for understanding the thermal response of laser-irradiated
biological tissue phantoms using a generalized non-Fourier heat
conduction DPL model. The solution of the transient RTE has been
coupled with the DPL model to determine the resultant tempera-
ture distribution inside the body of single-layered biological tissue
phantom. The optical properties of the tissue phantom considered
have been kept similar to the biological samples. It is pertinent to
note here that the real superficial biological tissues are generally
characterized by a layered structure such as epidermis, several
layers of dermis, subcutaneous fat layer and more internal tissues,
and properties of each of these layers play an important role in
influencing the heat transfer processes during the thermal treat-
ment of cancerous cells [41,42]. However, in viewof the fact that the
primary focus of the present work is the development and appli-
cation of a uniform LBM-based numerical scheme for the coupled
transient RTE and DPL heat conduction model, the numerical
studies have been performed on single-layered tissue phantoms for
determining the two-dimensional temperature distributions. The
numerical code, developed in-house, has first been thoroughly
benchmarked against the results available in the published litera-
ture. Thereafter, the LBM-based numerical scheme has been
implemented for understanding the effects of various parameters
like relaxation times associated with heat flux and temperature
gradient on the resultant temperature distribution inside the
domain of the tissue phantoms. The effects of optical in-
homogeneities embedded in an otherwise homogeneous tissue
phantoms on the resultant temperature distribution have also been
studied and presented. The optical inhomogeneities represent the
abnormal cells, generally classified as malignant (absorption in-
homogeneity) and/or benign cells (scattering inhomogeneity). The
motivation of the study lies in the fact that the localized changes in
the absorption and/or scattering coefficient within the spatial
extent of the embedded inhomogeneities (malignant/benign) as
compared to the surrounding medium influence the light propa-
gation through the biological samples, which in turn results in
considerable temperature variations inside body of the biological
samples.
2. Mathematical formulation

Light propagation through the biological tissue phantom is
mathematically modeled by the transient RTE, Eq. (1). Radiation
intensity (I) in any direction bs identified by a solid angleU about the
elemental solid angle DU is given by Refs. [11,16]:

1
c
vI
vt

þ dI
ds

¼ �bI þ s

4p

Z4p
0

IfðU0;UÞdU0 (1)

Eq. (1), that is integro-differential in nature, has first been con-
verted into a set of partial differential equation corresponding to a
finite number of lattice direction M using D2Q8 model in LBM. The
existing numerical methodologies for solving RTE such as DTM,
DOM, FVM etc. assume some kind of angular isotropy. However, in
LBM, the radiative energy is simulated in terms of particle distri-
bution functions (PDFs) and is carried to the neighboring lattices
only through some discrete direction. Once the intensity field is
known within the tissue phantom, the local temperature distribu-
tion due to the single pulse laser irradiation can be obtained by
solving Eq. (2).

rcv
vTðx; y; tÞ

vt
¼ �V$qr (2)
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where the divergence of the radiative heat flux ðV$qrÞ and incident
intensity (G) can be calculated by following expression,

V$qr ¼ kað4pIb � GÞ (3)

G ¼
XM
m¼1

umIm (4)

Eq. (3) is the divergence of radiative heat flux which represents the
net radiative heat loss from the medium. The first term on the
right-hand side of Eq. (3) is emission from the medium while the
second term is the incident intensity; ka is the absorption co-
efficients, Ib is the black body intensity and u is the weight in
discrete direction m.

In order to determine the temperature distribution within the
body of the biological tissue phantom that is subjected to a train of
short laser pulses, the temperature rise obtained from Eq. (2) is
added to the temperature value calculated at the previous time step
and employed as the initial condition for bio-heat transfer equation
(Eq. (5)) in order to determine the temperature distribution at the
current time instant [9],

rcv
vT
vt

¼ �ðvqÞ
vr

þ Qm þwbrbcbðTb � TÞ (5)

where q is heat flux; r and cv are, respectively, density and specific
heat of the tissue; rb and cb are the density and specific heat of
blood, wb is the blood perfusion rate; Tb and T are the temperature
of blood and tissue respectively; Qm is the source term due to the
metabolic heating. The simplest form of DPL with the first order
approximations for both q and T is given as follows [43]:

qðr; tÞ þ tq
vqðr; tÞ

vt
¼ �k

"
vTðr; tÞ

vr
þ tT

v3T
vr2vt

#
(6)

Here r is the position vector, k is thermal conductivity of the tissue,
tq is the phase lag time of heat flux, and tT is the phase lag time of
temperature gradient. Antaki [44] estimated the value of tq to be
range of 14e16 s while tt to be 0.043e0.056 s for the processed
meat. Since for normal bodies amount of heat generated due to
metabolic activities is very small [45,46], so its contribution to-
wards total heat generation can be neglected compared to the heat
generated by incident laser intensity. Furthermore, the numerical
simulations reported in the present study have been performed on
solid single layer tissue phantoms without the presence of large
blood vessels e.g., arteries. The metabolic heat generation and
blood perfusion has been neglected. The solution of Eqs. (5) and (6)
simultaneously leads to

tq
v2T
vt2

þ vT
vt

¼ a
v2T
vr2

þ att
v3T
vr2vt

(7)

The system of equations presented above has been solved under
the following assumptions: the boundaries of the medium are non-
reflecting and non-refracting, refractive indices of the tissue
phantom and the surrounding medium are same. Moreover, the
contribution due to the thermal emission from the tissue has been
neglected. This assumption can be justified in view of the fact that
the blackbody radiation intensity is significantly smaller than the
intensity of the short pulse laser employed for irradiating the
sample. The assumptions mentioned above are in accordance with
the studies earlier reported in the literature [47]. It is also important
to mention here that the RTE and the bio-heat transfer equations
have been solved at two different times scales; the time scale used
for Eqs. (1) and (2) is of the order of picoseconds while time scale
used for Eq. (5) is of the order of milliseconds in order to capture the
phenomenon of heat diffusion through the body of the tissue
phantom [11].

3. Numerical modeling

A finite two dimensional square enclosure of a biological tissue
with dimensions 2 mm � 2 mm and initial temperature of 37 �C is
considered in present numerical study. The tissue is irradiated
normal incidence on the top wall (as shown in Fig. 1(a)). The top
wall of the tissue phantom is subjected to convective boundary
conditions with surrounding temperature of T∞ ¼ 25 �C and heat
transfer coefficient, h ¼ 15W/(m2 K) [48], while temperature of the
remaining three walls of the phantom is maintained at 37 �C, as
shown in Fig. 1(a). The parameters of short pulse laser used for
irradiating the tissue are: amplitude of pulse 1.6 � 10�3 J/mm2/ps,
repetition rate 1 kHz and wavelength of 1100 nm. The laser pulses
have been modeled as point source with a pulse width of tp ¼ 5 ps.
Similar parameters are frequently employed in the medical com-
munity for therapeutic applications [49,50]. The values of the ab-
sorption (ka) and scattering (s) coefficients are 0.051 mm�1 and
6.14 mm�1 respectively [11,47]. The thermos-physical properties of
the tissue phantom include density (r) to be equal to 1000 kg/m3,
thermal conductivity (k) of 0.63 W/m K, while the value of specific
heat (cv) is 4200 J/kg K [11].

3.1. Radiative transfer equation

The RTE has been solved using LBM and the square enclosure
has been divided into 51� 51 lattices. On the basis of a detailed grid
independence study, the grid size of 51 � 51 has been chosen for
the numerical simulations presented here. In the current LBM-
based analysis, the two-dimensional lattice lies in the xey plane
(the solution plane), as schematically shown in Fig. 1(b). In view of
the fact that the intensity varies in the 4p spherical space, and
assuming isotropy in the polar direction q (0 < q < p), the angular
dependence of intensity is considered only in the azimuthal di-
rection 4 (0 < 4 < 2p). D2Q8 lattice model (as shown in Fig. 2(a))
has been employed in which the 2p angular space has been dis-
cretized into 8 divisions, with all directions being equally-spaced.

Assuming that the medium is non-reflecting, the boundary
condition for the collimated and diffused intensity on all the four
walls (left, right, bottom and top) of the tissue phantom are given
below [11]:

Left wall (x ¼ 0, 0 < y < 2 mm):

Imw ¼ 0 for mm >0; Imc ¼ 0 for all mm; and Imd ¼ 0 for mm >0

Here Imw, is the total intensity (sum of collimated ðImc Þ and diffuse
ðImd Þ components) in the discrete direction m and m and z are the
direction cosines.

Right wall (x ¼ 2 mm, 0 < y < 2 mm):

Imw ¼ 0 for mm >0; Imc ¼ 0 for all mm; and Imd ¼ 0 for mm <0

Bottom wall (y ¼ 0, 0 < x < 2 mm):

Imw ¼ 0 for zm >0; Imc ¼ 0 for all zm; and Imd ¼ 0 for zm >0

Top wall (y ¼ 2 mm):

at y ¼ 2 mm and x ¼ 1 mm : Imc
¼ I0

�
HðtÞ � H

�
t � tp

��
dðzm � zcÞ

Otherwise at y ¼ 2 mm, Imc ¼ 0



Fig. 1. (a) Schematic diagram of the physical domain under consideration (dimensions in mm); (b) 2-D rectangular geometry and the computational grid [18].

Fig. 2. Schematic of lattices (a) D2Q8 and (b) D2Q5.
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For the diffuse component, at y ¼ 2 mm and 0 < x < 2 mm:

Imd ¼ 0 for zm <0

For solving Eq. (1), the intensity Iwithin the tissue phantom can be
expressed as the sum of the collimated intensity Ic and the diffuse
intensity Id.

I ¼ Ic þ Id (8)

The variation of the collimated component of the intensity i.e. Ic
within the tissue phantom is primarily governed by the Beer's Law
[16],

dIc
ds

¼ �bIc (9)

Substituting Eqs. (8) and (9) into Eq. (1) yields

1
c
vId
vt

þ dId
dr

¼ �bId þ St (10)

where St is the total source term given by St ¼ Sd þ Sc. Sd and Sc are
respectively the source terms due to the diffuse and collimated
components on intensity. The phase function f is defined as
f(U0,U) ¼ 1 þ amm0 þ azz0 and dU0 ¼ sin q dq d4.

The collimated residual intensity of the pulse irradiation within
the body of the tissue phantom can be expressed as:
Icðs;Um; tÞ ¼ I0 exp
�
� b
�
Ly � y

�
jzcj

�
�
�
H
�
bct � b

�
Ly � y

�
jzcj

�
� H

��
bct � b

�
Ly � y

�
jzcj

�
� bctp

�	
� dðm� mcÞdðz� zcÞ

(11)

where H is Heaviside function and d is dirac-delta function, tp is
pulse time and Ly is total length of sample in y direction. Subse-
quently, Eq. (10) when expressed in terms of the non-dimensional
time t* can be rewritten as

b
vId
vt*

þ dId
dr

þ bId ¼ St (12)

where r is the position vector. Using fully implicit backward dif-
ference scheme in time, the discretized form of Eq. (12) becomes

b
Id �~Id
Dt*

þ dId
dr

þ bId ¼ St (13)

where eId corresponds to the diffuse component of intensity esti-
mated at the previous time step and Dt* is the non-dimensional
time step.

Rearranging terms in Eq. (13), we get
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dId
dr

þ b

B
Id ¼ St þ b

Dt*
~Id (14)

where B ¼ Dt*=ð1þ Dt*Þ, and the above equation can be rearranged
as

dId
dr

¼ St
�
t*
�þ b

Dt*
~Id � b

B
Id (15)

Following Refs. [19,20], as part of the implementation of LBM, a
pseudo timemarching is performedwith aM-velocity lattice model
in 2-D (D2QM) withM being the total number of discrete directions.
Along any mth direction, the speed of particle propagation can be
shown to be em ¼ Dr=Dt.

Applying finite difference discretization scheme to the left hand
side of Eq. (15), the transient form of RTE in the mth discrete di-
rection can be expressed as [19,20]

Imd
�
r þ emDt*; t þ Dt*

�� Imd
�
r; t*

�
Dr

¼ St
�
t*
�þ b

Dt*
~Id � b

B
Id (16)

where Dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDx=mÞ2 þ ðDy=zÞ2

q
, the evolution equation corre-

sponding to Eq. (16) is given as

Imd
�
r þ emDt*; t þ Dt*

� ¼ Imd
�
r; t*

�þ Dt*em
b

B

�
B
b
St
�
t*
�

þ 1
1þ Dt*

~Id � Imd
�
r; t*

�	
(17)

The above equation (Eq. (17)) can be expressed in the standard form
of LBM, which is given below

Imd
�
r þ emDt*; t þ Dt*

� ¼ Imd
�
r; t*

�þ Dt*

~tm

��
Imd
�
r; t*

�eq
� Imd

�
r; t*

��
(18)

where the ~tm is the relaxation time for the collision process and
fImd geq is the equilibrium particle distribution function. Here, the
relaxation time ~tm is

~tm ¼ B
emb

(19)

and a comparison of Eqs. (17) and (18) gives the equilibrium par-
ticle distribution function as

�
Imd
�
r; t*

�eq ¼ B
b
St
�
t*
�þ 1

1þ Dt*
~Id (20)

The source term Sc and Sd can be calculated as:

Sd ¼ ss

4p

Z4p
0

IdfðU0;UÞdU0 (21)

Sc ¼ ss

4p

Z4p
0

IcfðU0;UÞdU0 (22)
3.2. Dual-phase-lag heat conduction equation

The energy equation has also been solved with LBM with
physical enclosure divided into same lattice size as used in earlier
section in RTE and D2Q5 model (as shown in Fig. 2(b)) has been
used to simulate Eq. (7),

tq
v2T
vt2

þ vT
vt

¼ a
v2T
vr2

þ att
v3T
vr2vt

(23)

The kinetic equation for the particle distribution function fi(r,t),
which is the lattice Boltzmann equation (LBE) [51],

fiðr þ eiDt; t þ DtÞ � fiðr; tÞ ¼ �Dt
t

h
fiðr; tÞ � f ð0Þi ðr; tÞ

i
(24)

for i ¼ 0,1,…,b, where fi(r,t) denotes the particle distribution func-
tions. Physically, it represents the total number of particles at any
given lattice node “r” and at a time instant of t, moving in direction i
with velocity ei along the lattice link Dri ¼ eiDt that connects the
nearest neighbors. The first term on RHS of Eq. (24) corresponds to
the collisions from b directions that drive each distribution (fi) to-
wards its local equilibrium distribution ðf ð0Þi Þ. Here b is the total no.
of directions. Having determined the discrete populations, the
macroscopic physical quantity (e.g. temperature field in the present
case) can be expressed in terms of the discrete distribution function
fi(r,t) as per the following equation:

tq
vTðr; tÞ

vt
¼
X
i

fiðr; tÞ (25)

After using Taylor series expansion, the local temperature at t þ Dt
can be obtained as,

Tðr; t þ DtÞ ¼ Tðr; tÞ þ Dt
vTðr; tÞ

vt
þ Dt2

2
v2Tðr; tÞ

vt2
þ O

�
Dt3
�

(26)

By including heat dissipation term in the extended LBE for DPL
equation is proposed as [52],

fiðr þ eiDt; t þ DtÞ � fiðr; tÞ ¼ �Dt
t

h
fiðr; tÞ � f ð0Þi ðr; tÞ

i
� ADt

vTðr; tÞ
vt

(27)

In Eq. (27), fiðr; tÞ is equilibrium particle distribution function and A
is the coefficient to be determined. In the following section, it is
demonstrated that this proposed LBE can be macroscopically
consistent with the generalized DPL-based bio-heat transfer
equation i.e. Eq. (23).
3.2.1. Chapman-Enskog expansion
The existing literature shows that the concept of Chapman-

Enskog expansion has well been employed by various researchers
for deriving the NaviereStokes, Euler and other macroscopic
equations under the framework of LBM [53,54]. Ho et al. [52] have
also reported the derivation of dimensionless form of dual phase
lag (DPL) equation for 1-D systems. The following discussion on the
Chapman-Enskog expansion (extended for two-dimensional
physical domains) has primarily been motivated from the
detailed work of Ho et al. [52] reported in the context of 1-D
systems.

The Chapman-Enskog expansion is employed to reveal the
macroscopic nature of the extended Lattice Boltzmann (LB) equa-
tion as it deviates from the equilibrium distribution once disturbed
through a small perturbation. Under this scheme, the particle dis-
tribution functions (fi) are subjected to the third order expansion
with respect to the expansion parameter d as,
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fi ¼ f ð0Þi þ f ð1Þi þ d2f ð2Þi þ d3f ð3Þi þ O
�
d4
�

(28)

where jdj≪1. The nature of the distribution functions is such that
their summations should satisfy the following criteria:

X
i

fi ¼
X
i

f ð0Þi and
X
i

f ð1Þi ¼
X
i

f ð2Þi ¼
X
i

f ð3Þi ¼ 0

Changes in the quantities take place both at the temporal as well as
space scales and these scales are the large spatial scale r(1), slow
time scale t(2) and the fast time scale t(1). One can nowexpress these
scalings as

vtzdvtð1Þ þ d2vtð2Þ þ d3vtð3Þ þ O
�
d4
�

vrzdvrð1Þ þ O
�
d2
� (29)

The heat dissipation term in Eq. (27) is assumed of the scale of
O(d2) and can be obtained as,

vT
vt
zd2

vT
vtð2Þ

(30)

Expanding fi(r þ eiDt,t þ Dt) in Eq. (28) around f ð0Þi ðr; tÞ up to
O(Dt3) and making use of the above mentioned scales, the resulting
equations to the order of d, d2 and d3 can respectively be given as
Eqs. (31)e(33)

vtð1Þ f
ð0Þ
i þ vrð1Þa

eiaf
ð0Þ
i ¼ �1

t
f ð1Þi (31)
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��
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�2
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(32)

and,
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ð0Þ
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eia
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eia
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(33)

Eqs. (31)e(33) upon summed up over i in the range of 0 to b result
into,
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(36)

On solving (Eq. (34)) � d þ (Eq. (35)) � d2 þ (Eq. (36)) � d3 and
applying the following constraints,

Pb
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eiaf
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i ¼ 0

Pb
i¼0

eiaeibf
ð0Þ
i ¼ lT þ tTg

vT
vt

Pb
i¼0

eiaeibeigf
ð0Þ
i ¼ 0

(37)

leads to,
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(38)

As Dt and d are relatively very small quantities (approaching zero),
it is to be seen that Eq. (38) is consistent with Eq. (23) when one
chooses A, l and g in such a way that A ¼ 1=ðbþ 1Þ and
g ¼ l ¼ a=ðt� ðDt=2ÞÞ. The truncation error obtained after the
application of Chapman-Enskog expansion for Eq. (27) can be
determined as,

RE ¼ tAd3ðbþ 1Þvtð1Þvtð1ÞT � 3d3
�
t2 � tDt þ Dt2

6

�
vtð1Þvrð1Þa

vrð1Þ
b

�
lT

þ tTg
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vt

�
þ O

�
Dt3
�
þ O

�
d4
�

(39)

Mathematically, RE represents the error between the proposed
Lattice Boltzmann Equation (27) for solving Eq. (23) and original
solution of Equation (23) [52].

The D2Q5 lattice, as schematically shown in Fig. 2(a), with b¼ 4,
e0¼ 0, e1 ¼ ebi, e2 ¼ �ebi, e3 ¼ ebj, e4 ¼ �ebj has been used for the two
dimensional study [52]. The equilibrium particle distribution
function, f ð0Þi can be determined by

P
i
f ð0Þi ¼ tqðvT=vtÞ and the

constraints given by Eq. (37), which finally yield,
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2
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2
tTg

e2
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(40)
4. Results and discussion

Primary findings of the LBM-based numerical simulations per-
formed for determining the temperature field distribution within
the body of the laser-irradiated tissue phantoms have been pre-
sented in this section. First, the LBM-based numerical code devel-
oped in the present study has been verified against the results
reported in the literature. This verification study has been per-
formed under identical operating parameters. Thereafter, two
dimensional temperature distributions, temperature profiles and
heat flux profiles inside the laser-irradiated biological tissue
phantoms have been presented and discussed. The effects of phase
lags associated with heat flux and temperature gradients on the
thermal profiles have been presented. Thereafter, the influence of
an optical inhomogeneity embedded in an otherwise homogenous
medium on the resultant temperature distributions and tempera-
ture profiles have been assessed and also comparedwith the case of
the uniformly homogeneous sample. Here the optical in-
homogeneity represents the malignant (absorbing inhomogeneity)
and benign (scattering inhomogeneity) cells. The inhomogeneities
embedded into tissue phantoms have been simulated as the 2-D
localized region in which the optical properties (absorption/scat-
tering coefficients) are significantly different from the rest of
background homogeneous properties.

4.1. Code verification

Benchmark studies on code verification have been performed
on two dimensional enclosures, for radiative transfer part as well
as heat conduction part. Fig. 3 shows the benchmark results for
the solution of RTE using LBM in the context of two-dimensional
planar medium that is subjected to single pulse laser irradiation.
Spatial variation of diffused intensity component with respect to
the depth of the tissues phantom recorded at x ¼ 0.98 mm has
been shown in Fig. 3(a). It is to be seen from the figure that the
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Fig. 3. Comparison of (a) spatial variation of diffuse component of light along a section pas
(t ¼ 5 ps), (iii) Present study (t ¼ 14 ps), (iv) Kumar & Srivastava (2014) (t ¼ 14 ps); (b) tem
point of irradiation between present work and Kumar and Srivastava [11].
maxima of the diffuse component is observed at a spatial location
that is situated at some distance below the top surface (y ¼ 2 mm)
of the laser-irradiated tissue phantom. The observation of the
maxima of the diffuse component of the intensity can be
explained on the basis of the fact that the tissue phantom being
turbid in nature exhibits the scattering properties, which in turn
affect the propagation of the diffuse component of light intensity.
Once the laser power is switched off (t > 5 ps), the diffuse
component of intensity decreases due to less incoming of photons
from top surface, as it can be observed at t ¼ 14 ps from Fig. 3(a).
The temporal profile of temperature rise (dT) recorded at the point
of laser irradiation as obtained through LBM-based solution has
been compared with those reported by Kumar and Srivastava [11]
and is shown in Fig. 3(b) for the same operating conditions. It is to
be seen from the figure that during the first 5 ps, the rate at which
the temperature rises is quite rapid as the pulse width of the laser
is 5 ps and therefore the laser power is available for this complete
duration of 0 < t < 5 ps. After the laser power is switched off
(t > 5 ps), the rise in temperature becomes fairly constant due to
the fact that net radiative heat flux becomes zero and radiative
equilibrium is achieved in the tissue phantom. The above dis-
cussion based on the verification results presented in Fig. 3 shows
that the developed LBM-based numerical model successfully
predicts the process of light propagation through a planar me-
dium that is turbid in nature. Moreover, the results of the present
study are reasonably in good agreement with those reported in
Ref. [11].

The benchmark study of LBM-based approach for solving the
heat conduction model has been carried out by comparing the
spatial distribution of temperature field estimated through the
solution of hyperbolic heat conduction model with those reported
by Yang [55] under the same operating conditions. With reference
to the two-dimensional physical domain considered in the work of
Yang [55], the following boundary conditions have been employed
for the present benchmark study: Top and bottom boundaries:
Insulated; Right boundary: maintained at zero non-dimensional
temperature; the left boundary is divided into three parts. The
boundary condition of constant dimensionless temperature has
been imposed at the central 1/3rd portion of the left boundary
while the remaining two portions are kept insulated. The dual
phase lag model developed in the present work has been converted
into hyperbolic heat conduction model by setting the relaxation
Kumar & Srivastava (2014)
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time associated with the temperature gradient (tT) i.e. equal to
zero.

Fig. 4(a) shows the temperature distribution as a function of the
horizontal direction at a dimensionless height of 0.45 at two
different time (z) instants. It is to be seen from the figure that the
temperature profiles during the initial time instants (z � 1.5 s) are
oscillatory in nature with a certain degree of waviness that one
associates with the inherent nature of hyperbolic heat conduction
model. The waviness in the temperature variations is much more
pronounced in the profiles corresponding to relatively lower values
of non-dimensional time instants, e.g. z ¼ 0.3 and 0.5. However, as
the time progresses, these oscillations tend to die out and nearly
steady state conditions are achieved, as signified by an almost
linear temperature profile seen at z ¼ 5.

The above-presented discussion on the studies performed for
code verification pertained to the conversion of the generalized
DPL-based heat conduction model into the hyperbolic heat con-
duction model (HHC) for two-dimensional systems. In order to
assess the ability of the numerical scheme developed in the present
work for the complete DPL model, select verification studies in the
context of one-dimensional physical domain have also been per-
formed with the literature available. For this study, the two-
dimensional physical domain shown in Fig. 1(a) has been con-
verted into 1-D system by stretching one of its dimension to a fairly
large value and the necessary numerical simulations have then
been performed for this geometry using the developed numerical
code for the generalized DPL-based heat conduction model.
Fig. 4(b) shows the comparison of temperature profiles thus ob-
tained for the 1-D system with those reported by Tzou [32] for
different values of non-dimensional relaxation times associated
with temperature gradient (ZT ¼ 0, 0.001, 0.05 and 0.5). For these
simulations, the value of relaxation time corresponding to heat flux
i.e. Zq has been fixed at 0.05. The effect of increasing value of ZT on
the resultant non-dimensional temperature profiles is clearly to be
seen from the figure. At relatively lower values of ZT (¼0 and 0.001),
the predicted temperature profiles show the dominance of sharp
wave fronts. However, as the relaxation time is increased (ZT ¼ 0.05
and 0.5), the dominant effects of thermal diffusion are clearly to be
seen as the temperature profiles tend to get smoothen out and one
does not observe sharp wave fronts that were observed for the
lower values of ZT. In addition, a close match between the profiles
Fig. 4. (a) Spatial distribution of temperature at a dimensionless height of 0.45 at two differe
different values of relaxation time associated with temperature gradients (ZT) as predicted
obtained in the present work with those reported by Tzou [32] is
also to be seen from the figure. Comparison of the temperature
profiles at various time instants as obtained through the present
LBM-based numerical analysis with those reported in the literature
[32,55] reveals a reasonably good match, which verified the code
developed in the present work. Moreover, the above discussions
pertaining to the benchmark studies on RTE and heat conduction
model show that the LBM-based numerical scheme successfully
captures the physical phenomenon associated with the thermal
response of laser-irradiated tissue phantom.

4.2. Temperature distribution inside a homogeneous tissue
phantom

The LBM-based numerical model, thus benchmarked, has now
been implemented for determining the two-dimensional temper-
ature distribution within the body of the laser-irradiated homog-
enous biological tissue phantom. The physical domain under
consideration has earlier been schematically shown in Fig. 1(a). The
source term in the energy equation has been calculated from the
solution of the transient RTE obtained in the form of light intensity
distribution within the body of tissue phantom (Eq. (3)). It is
pertinent to note here that in photo-thermal therapy, one needs to
achieve the localized heating of the abnormal cells (i.e. the target
region) without crossing the threshold temperature of the sur-
rounding normal cells. Therefore, it becomes imperative to assess
the range of the spatial spread of the thermal energy around the
target cell due to the incident laser beam and the resultant tem-
perature distribution in the region of interest.

The two-dimensional distribution of temperature within the
body of the tissue phantom at various time instants as predicted
using the DPL-basedmodel has been shown in Fig. 5. The relaxation
times associated with the heat flux (tq) and temperature gradients
(tT) are respectively equal to 15 s and 0.05 s. It is to be observed that
for the initial times instants of laser-irradiation (tz 0.1 s), the high
temperature zone (due to the deposition of the thermal energy), is
predominantly localized within the small region surrounding the
point of laser irradiation. As the time progresses, the thermal
diffusion front propagates through the body of the tissue phantom
to the opposite boundary. The two-dimensional temperature dis-
tributions, as predicted through the DPL model, are in sharp
nt time instants; (b) Comparison of non-dimensional temperature profiles obtained for
in the present work with those reported by Tzou [32] for a 1-D system.



Fig. 5. Two-dimensional temperature distributions within the body of tissue phantom as a function of time due to the train of pulses with a repetition rate of 1 kHz.
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contrast with those obtained on the basis of Fourier heat conduc-
tion model, as reported in the literature [11]. While a nearly uni-
form diffusion of thermal energy is predicted via Fourier model, the
DPL model-based temperature contours reveal that the tempera-
ture field undergoes localized heating and cooling process, as can
be seen from the periodic changes in the color shades of temper-
ature contours at any given spatial location within the body of the
tissue phantom shown in Fig. 5. The observed heating and cooling
behavior and the associated periodic fluctuations in temperature
profiles at any given spatial location are to be attributed to thewave
nature of the thermal front propagating through the turbid bio-
logical phantom, as predicted using the DPL-based heat conduction
model. Similar observations have also been reported in the work
presented by Shen and Zhang [56] wherein the authors employed a
purely numerical explicit total-variation-diminishing (TVD)
scheme.

With reference to the temperature contours shown in Fig. 5, it
is to be seen that the highest temperature at any given spatial
location within the tissue phantom is realized at t ¼ 1.0 s. This is
understandable since t ¼ 1.0 s also happens to be the total time
for which the tissue phantom is subjected to laser irradiation.
Once the laser power is turned-off (t > 1.0 s), the temperature
values start getting reduced. It is worth noting here that the
minimum temperature attained inside the tissue sample at
t y 25 s is equal to z306 K, as shown in Fig. 5(g). This obser-
vation is primarily to be attributed to the inherent wave nature of
the thermal propagation front that is associated with the non-
Fourier heat conductions models, e.g. DPL model in the present
work. It can also be seen that slowly the temperature profiles
converge towards uniform temperature distribution throughout
the body of the tissue phantom. Along the expected lines, the
maximum temperature rise (DT z 70 K) occurs at the point of
laser irradiation at t ¼ 1 s.

Fig. 6(a) shows the temperature variation as a function of spatial
dimension in the x-direction for varying depths of the tissue
phantom. It is to be seen from the figure that the temperature
values at any particular depth achieve maxima at x ¼ 1 mm. This is
expected since the direction of laser beam employed for irradiating
the tissue phantom is along the vertical section defined at
x¼ 1mm. Thus, the maximum temperature is achieved at the point
of laser irradiation i.e. x ¼ 1 mm, y ¼ 2 mm and is equal to
Tmax z 388 K.



Fig. 6. (a) Spatial variation of temperature at t ¼ 1 s at various depths; (b) Variation of temperature with respect to the depth of the tissue phantom at different time instants.
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In order to check the ability of the developed numerical scheme
for predicting thewave nature of the thermal front propagation, the
variation of temperature at a given horizontal section of x ¼ 1 mm
with respect to the depth of the tissue phantom (y) have been
plotted at different time instants and shown in Fig. 6(b). The
maximum temperature is realized at the point of laser irradiation
i.e. y ¼ 2 mm and t ¼ 1 s. For higher time instants (e.g. t ¼ 5, 10, …
,100 s), as the laser power has been switched-off, the temperature
values show a significant reduction and the wave nature of the
thermal front propagating through the depth of the tissue phantom
is to be clearly seen.

The effects of two important parameters in the form of relaxa-
tion times associated with the temperature gradient (tT) and heat
flux (tq) on the resultant temperature distribution as well as on the
heat flux within the body of the tissue phantom are discussed now.
Fig. 7(a) and (b) respectively show the temporal variations of
temperature and heat flux (q) at the center of the tissue phantom
domain (Location 1 as shown in Fig. 1(a)) for tq ¼ 10 s for different
values of tT while the relaxation time associated with the heat flux
i.e. tq has been fixed at 10 s. It is evident from Fig. 7(a) that as tT
increases, the inherent oscillations associatedwith the temperature
Fig. 7. Temporal distribution of (a) temperature, (b
profiles get suppressed and the wave front tends to become more
smoother. The phase lag associated with the temperature gradient
tT leads to significant attenuation of the sharp wave fronts through
the diffusion process. A reduction in the maximum magnitude of
temperature at time instant (t z 6 s) is to be seen from Fig. 7(a)
with increasing value of tT.

It can be seen that the maximum temperature attained for
tT ¼ 0.1 s and tT ¼ 0.0001 s is nearly equal to 316.5 K at t ¼ 7 s
whereas for tT ¼ 1 s, it is 316 K (as shown in the inset of Fig. 7(a)).
It is to be noted here that the present discussion pertains to the
case wherein the relaxation time associated with the heat flux
i.e. tq is significantly larger than that associated with tempera-
ture gradient (tT). Hence it is expected that in comparison with
the heat flux, temperature gradients get established within the
body of the tissue phantom at a much faster rate. This obser-
vation can clearly be made through the time variation of heat
flux, as presented in Fig. 7(b) for different values of tT. In
Fig. 7(b), it can be observed that larger shift in the peak of heat
flux on the time scales (x-axis) corresponds to tT ¼ 1 s, which
implies that tT is significantly affecting the heat flux. Due to the
higher value of tT larger delay in the heat diffusion process
) heat flux at center (Location 1) for tq ¼ 10 s.



Fig. 9. Temporal variation of temperature for different relative values of relaxation
times associated with the heat flux (tq) and temperature gradients (tT).
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occurs, thereby causing a time delay in achieving the maximum
value of heat flux.

The effects of changes in the relaxation times associated with
the heat flux i.e. tq on the temporal profiles of temperature distri-
bution and heat flux is depicted in Fig. 8(a) and (b) respectively. The
values of tq have been varied in the range of 1 s to 20 s while the
relaxation time concerned with temperature gradient has been
fixed at tT ¼ 0.1 s. It is to be seen from Fig. 8(a) that as tq increases,
the maximum value of temperature and the time required to ach-
ieve this maxima in temperature values also increase. The observed
trend can be attributed to the fact that as the relaxation time
associated with the heat flux (tq) increases, the process of diffusion
of heat into the rest of the surrounding medium takes relatively
longer time, thereby leading to a localized increase in the tem-
perature values at the point of considerationwithin the body of the
tissue phantom. Increase in the time required for heat diffusion also
explains the time delay observed in achieving the maximum values
of temperatures in Fig. 8(a) with increasing values of tq.

Similar observations can also be made from Fig. 8(b) wherein
one can see that the maximum value of heat flux is relatively lower
for larger values of tq. With reference to temperature profiles
shown in Fig. 8(a), an enclosed waviness (larger magnitude of os-
cillations) is to be observed for higher values of tq. On the other
hand, the temperature variations corresponding to smaller values
of tq (for instance tq ¼ 1 s) show relatively smoother profiles with
respect to time.

It has well been established and reported by various researchers
that in the context of biological samples, the relaxation time cor-
responding to the heat flux (tq) is comparatively higher than tT
[9,44,47,57]. This characteristic of the biological samples forms the
basis of the choice of the relative values of relaxation times
considered in the present study as the primary focus of the present
work is to understand the thermal response of laser-irradiated
biological tissue phantoms. However, for general interest, it is to
be mentioned here that an interesting aspect of the generalized
DPL-based heat conduction model is its possible conversion into
Fourier-based heat conduction model under the conditions of both
the relaxation times (tq and tT) being equal to each other and have
been presented in Fig. 9. Figure shows the temperature profiles as
the function of time for two cases: 1) different values of tq and tT
and, 2) both the relaxation times being equal to each other.

With respect to Fig. 9, strong oscillations are to be seen in the
temperature profile corresponding to the case wherein the values
Fig. 8. Temporal distribution of (a) temperature, (b
of tq and tT are finite and significantly different from each other.
However, the profiles obtained through DPL-based heat conduction
model are much smoother and approach towards those similar to
Fourier model for the second case wherein the associated relaxa-
tion times are equal to each other. It is to be seen that the conditions
of thermal equilibrium are achieved much faster for significantly
small and equal values of tq and tT as compared to their relatively
higher values. Such features of the dual phase lag heat conduction
models can also be seen in one of the recent works of the authors
[9].

4.3. Thermal response of biological phantom with embedded
inhomogeneity

The LBM-based numerical methodology for solving the tran-
sient RTE and bio-heat transfer model has now been employed for
investigating the influence of an optical inhomogeneity embedded
within the body of the tissue phantom on the resultant tempera-
ture distribution. The inhomogeneities considered are absorbing as
well as scattering in nature. The ratio of the absorption/scattering
) heat flux at center (Location 1) for tT ¼ 0.1 s.



Fig. 11. Effect of absorption inhomogeneity on temporal profile of temperature at
center (Location 1).
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coefficients of the embedded inhomogeneities with respect to
those of the homogenous tissue phantom medium i.e. the contrast
level has been set to be equal to 2:1. The optical properties of the
uniform homogeneous medium have already mentioned in Section
3. The absorption inhomogeneity numerically simulates the exis-
tence of malignant cells, while the abnormal cells that are benign in
nature have been simulated in the form of scattering
inhomogeneity.

4.3.1. Absorption inhomogeneity
The assessment of the influence of an inhomogeneity that is

purely absorbing in nature and has a contrast level of 2:1 on the
temperature distribution within the tissue phantom subjected to
laser irradiation has been presented in this section. The in-
homogeneity dimensions are 0.4 mm � 0.4 mm and the co-
ordinates of its southewest corner are x ¼ 0.8 mm, y ¼ 0.8 mm
while the northeeast corner is located at x ¼ 1.2 mm, y ¼ 1.2 mm.
The two-dimensional temperature field within the body of the
tissue phantom that is embedded with an absorbing in-
homogeneity has been shown in Fig. 10(b). For comparison, the
corresponding thermal profiles for the homogeneous tissue phan-
tom have also been presented in the figure (Fig. 10(a). As expected,
the maximum temperature at any given time instant is realized at
the point of laser irradiation. It is to be seen that in the case of
absorbing inhomogeneity, the thermal energy is primarily localized
within the spatial region covered by the dimensions of the
embedded inhomogeneity. The localization of the thermal energy
in this region leads to an increase in its temperature as compared to
the surrounding domain. This localized increase in the temperature
corresponding to the physical extent of the embedded in-
homogeneity is expected because the absorption coefficient of the
inhomogeneity is twice that of the homogeneous background
medium. This in turn leads to the absorption of higher amount of
thermal energy, which increases the temperature of this region
locally. On the other hand, the temperature distribution is nearly
Fig. 10. Temperature contours at various time instants for (a) homogeneous ph
uniform without any localized increase in temperature at any
spatial location in the case of homogeneous tissue phantom
(Fig. 10(a)).

Fig. 11 shows the temporal variation of temperature based on
DPL model at the center (Location 1) for the case of the tissue
phantom that is embedded with an absorption inhomogeneity.
For comparison, the corresponding profile for the homogeneous
phantom has also been presented. One achieves the maximum
temperature rise during the first 1 s time duration and it corre-
sponds to the case of the absorbing nature of the embedded in-
homogeneity (that replicate the rapidly growing malignant cells)
that absorbs relatively larger part of the thermal energy in
comparison with that absorbed by a purely homogeneous tissue
antom and (b) tissue phantom embedded with absorption inhomogeneity.
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phantom (or the background medium), thereby leading to a
sharp increase in the local temperature values. Another inter-
esting observation that can be made from the temperature pro-
files shown in Fig. 11 can be made in the form of extent/
magnitude of oscillations during the period of laser irradiation.
Comparatively stronger oscillations in the temporal profiles of
temperature are to be seen in the case of tissue phantom that is
embedded with absorbing inhomogeneity during the initial time
period i.e. t < 5 s than those observed for the homogeneous tissue
phantom. Once the laser power is switched off, irrespective of the
case considered, the thermal energy absorbed within the local-
ized region corresponding to the spatial extent of the in-
homogeneity starts getting diffused into its surrounding and
since a finite value of relaxation time is associated with the heat
flux (tq ¼ 15 s), the heat diffusion phenomenon is accompanied
with oscillations due to the wave nature of propagating thermal
front as predicted by DPL-based model. As expected, at higher
time instants, the temperature profiles for both the cases overlap
with each other.
Fig. 12. Two-dimensional temperature distributions at various time instants for (i)
A detailed comparison of two-dimensional temperature distri-
butions achieved in the case of a homogeneous and non-
homogeneous (embedded with absorption inhomogeneity) tissue
phantoms is presented in Fig. 12. Temperature distributions cor-
responding to three different time instants t¼ 1 s, t¼ 2 s and t¼ 4 s
are shown. It is to be seen from Fig. 12(i) that the presence of
absorbing inhomogeneity results into a localized increase in tem-
perature within the region that is spread over the physical size of
the embedded inhomogeneity. At any given time instant, the local
temperature at the site of embedded inhomogeneity is consider-
ably higher than that achieved at the same spatial location in the
case of homogeneous tissue phantom. This is understandable as by
virtue of the absorbing nature, the inhomogeneity (replicating the
rapidly multiplying abnormal cells) absorbs relatively larger
amount of thermal energy in comparison with the surrounding
normal cells, thereby leading to a localized increase in temperature
in the region over which it is spread.

An interesting observation can be made in terms of oscil-
lations in the temperature distribution in the region
absorption inhomogeneity embedded phantom and (ii) homogenous phantom.
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surrounding the absorption inhomogeneity on the basis of
surface plots shown for time instants greater than t ¼ 1 s.
Relatively strong oscillations in the thermal profiles (2-D
temperature distribution) are to be seen in the spatial region
around the embedded inhomogeneity as can be seen from
Fig. 12(b) and (c). These observation, as made through
Fig. 12(i), become important in the context of photo-thermal
therapy wherein the prime interest is in achieving localized
increase in the temperature at the affected region without
raising the temperature of the surrounding healthy tissues.
The results of the analysis, as predicted through Fig. 12, pro-
vide a basis of determining the extent of thermal energy
penetration in the region surrounding the embedded in-
homogeneity and hence accordingly, the operating parameters
(e.g. laser power, irradiation time etc.) can be controlled so as
to impart minimum damage to the surrounding homogeneous
medium.
4.3.2. Scattering inhomogeneity
This section discusses the influence of an inhomogeneity that is

purely scattering in nature on the temperature distributions ach-
ieved as the tissue phantom is subjected to laser irradiation. The
dimensions and the position of the inhomogeneity considered in
this case are the same as that mentioned for the absorption in-
homogeneity in the previous section. The absorption coefficient for
the inhomogeneity equals to that of the homogeneous background
and is kept constant. The scattering properties of the in-
homogeneity have been considered such that the resultant contrast
level is 2:1. Fig. 13 shows the temporal variation of temperature
predicted by the DPL-based model at the center of the tissue
phantom (Location 1) that is embedded with a scattering in-
homogeneity. It is to be seen that the impact of the presence of
scattering inhomogeneity on thermal profiles inside the tissue
phantom is quite negligible and is in contrast with the observation
that was made in the previous section that pertained to the pres-
ence of a purely absorbing inhomogeneity. The observed trend of
the profiles shown in Fig. 13 can be explained by the fact that an
increase in scattering coefficient of the medium leads to increased
number of scattering events and thus the smaller amount of energy
gets stored as compared to the case of absorption inhomogeneity
while due to scattering temperature rise is more than that is
observed in homogeneous medium.
Fig. 13. Effect of scattering inhomogeneity on temporal profile of temperature at
center (Location 1).
5. Conclusions

Lattice Boltzmann method (LBM)-based numerical scheme has
been developed and employed for solving the coupled transient
RTE and dual-phase lag (DPL) heat conductionmodel to understand
the thermal response of laser-irradiated biological tissue phantoms.
The tissue phantom has been subjected to short pulse laser irra-
diation and the intensity distribution inside the tissue phantom
medium has been estimated by solving the transient form of RTE.
The solution of the time-dependent RTE has been coupled with a
generalized non-Fourier heat conduction model i.e. DPL. The nu-
merical scheme has been verified against the results available in the
literature. Results of study reveal that the uniform solver that is
based on the concept of LBM successfully predicts the thermal
response of the laser-irradiated biological tissue phantoms, both in
terms of intensity distribution as well as the resultant temperature
profiles. The inherent wave nature of the thermal propagation front
traveling through the body of the tissue phantom has successfully
been captured by the DPL-based heat conduction model. The initial
transients of the thermal field evolution showed the oscillatory
behavior of temperature field at any given spatial location, while a
nearly uniform diffusion of thermal energy was predicted at higher
time instants. The oscillations in the temperature field were found
to be strongly affected by the thermal relaxation times associated
with the temperature gradient (tT) and heat flux (tq). The presence
of abnormal cells (malignant and/or benign) embedded in an
otherwise homogeneous medium have been simulated in the form
of absorption and scattering inhomogeneities within the body of
the biological tissue phantom. It is demonstrated that the absorp-
tion inhomogeneities lead to localized increase in temperature, the
extent of which is spread over the spatial dimension of the
embedded inhomogeneity. On the other hand, one does not
observe any significant changes in the temperature distribution in
the case of scattering inhomogeneity. The present work is impor-
tant in the context of photo-thermal therapy as it employs for the
first time, to the best of the knowledge of the authors, the LBM-
based numerical scheme for handling the coupled transient RTE
and non-Fourier heat conduction model for determining the tem-
perature distributionwithin the body of the laser-irradiated tissue-
mimicking biological phantoms.
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