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Abstract

We developed a diameter distribution model for even-aged stands of European beech in Denmark using the Weibull distribution. The model

parameters were estimated using a large dataset from permanent sample plots covering a wide range of different treatments. Parameters of the

model were estimated by fitting the cumulative density function using a non-linear least squares procedure. Further, a model constrained to yield

estimates consistent with observed basal area was also developed. Predicted distributions confirmed the expected development of diameter

distributions in even-aged beech stands. Due to large differences in initial stem-numbers care should be taken when the model is applied to young

stands (<40 years).

# 2006 Elsevier B.V. All rights reserved.

Keywords: Weibull; CDF-regression; Diameter distribution; Stand structure; Fagus sylvatica

www.elsevier.com/locate/foreco

Forest Ecology and Management 231 (2006) 218–225
1. Introduction

Forest growth modelling has been an intrinsic part of

forest management planning and research for more than two

centuries. The majority of models operate at the stand-level

and predict stand-level variables such as basal area or

dominant height to provide information needed to estimate

harvesting costs, expected yield, financial results, etc. (e.g.

Møller, 1933; Schober, 1972). Although such models have

proved invaluable for forest managers they remain crude

simplifications of reality. Recent advances in forest growth

modelling have resulted in increasingly complex models

operating at the individual-tree level, explicitly modelling

complex interactions between trees and their surrounding

environment (e.g. Pretzsch et al., 2002). Although such

models represent a significant leap forward in our under-

standing of the processes of tree growth, they may prove to

be of little practical value to forest managers because the

detailed measurements required for the implementation of

these models are complicated and costly to obtain.

Bridging the gap between crude stand-level simplifica-

tions and complex individual tree models, size distribution
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models are potent tools for providing more detailed

knowledge on the forest structure, product mix, product

value, and forest operations costs for forest managers and

researchers, without additional inventory costs. Empirical

size distributions are given in some yield tables, providing

the expected stand structure development or expected size

distribution of thinned volumes for the specific silvicultural

regime underlying the table (Carbonnier, 1971). Such

distributions may enhance the level of detail provided by

the table but are of limited value when the practised

silvicultural regime diverges from that of the yield table.

More flexible size distribution models are often developed

using the parameter recovery approach, in which the

parameters of a desired family of distributions are related

to stand-level characteristics such as age, site index and stand

density (Clutter and Bennett, 1965; Bailey, 1980). In

practical application, overall stand attributes may then be

disaggregated into more detailed resolutions to provide the

forest manager with more detailed information.

From a practical perspective it is desirable that the same

family of functions can be used throughout a stand’s life and

only the parameters need to be changed regardless of initial

spacing or differing thinning practices. This necessitates a

flexible function but at the same time it is the desirable that the

function is both parsimonious and easy to estimate. In one of

the first studies on size distributions de Liocourt (1898)
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suggested that the diameter distribution of natural forests may

be described by an inverse J-shaped distribution, which was

later formulated as a negative exponential function (Meyer,

1933).

In even-aged stands most modellers have recognized that

size distributions are non-normal. However, an example of a

flexible application of the normal distribution is the Gram–

Charlier distribution which consist of an, in principle, infinite

series of normal distributions (Prodan, 1953). The simplest,

yet more flexible, alternative to the normal distribution is the

three-parameter log-normal which is described completely by

the mean and variance of the sample, when the origin is

known or assumed a priori (Bliss and Reinker, 1964). Adding

to the flexibility but also to the complexity of the size

distribution model, the Gamma-distribution and the Pearl-

Reed growth curve have been fitted to loblolly pine data

(Nelson, 1964).

In the first attempt to develop a size distribution model,

where diameter distributions were predicted directly from

stand attributes, the beta distribution was fitted to slash pine

data by Clutter and Bennett (1965). Keeping the location and

range parameters fixed, they estimated the two shape

parameters from age, stem number and site index. The beta

distribution was later used to characterize observed

distributions in beech (Kennel, 1972). The simpler, yet

highly flexible two- and three-parameter Weibull distribu-

tions are probably the most widely applied functions for

modelling tree size distributions and were first used for this

purpose by Bailey and Dell (1973). They have been used for

predicting the size distribution of Douglas fir (Knowe and

Stein, 1995), eastern cottonwood (Knowe et al., 1994), Scots

pine (von Gadow, 1984; Sarkkola et al., 2005), black spruce

(Newton et al., 2005), slash pine (Schreuder et al., 1979),

loblolly pine (Borders and Patterson, 1990; Cao, 2004;

Matney and Sullivan, 1982), jack pine (Bailey and Dell,

1973) and different species mixtures (Siipilehto, 1999; Chen,

2004). Even more flexible, but also more complex, the four-

parameter Johnson’s SB distribution has been used to model

the distributions of Norway spruce (Tham, 1988), Sitka

spruce (Skovsgaard, 1997), Changbai larch (Rennolls and

Wang, 2005), and loblolly pine (Hafley and Buford, 1985;

Scolforo et al., 2003).

Despite the evident efficacy of size distribution models, no

such model is presently available for beech (Fagus sylvatica L.)

forest management planning or research in Denmark. Hence,

the objective of this study was to develop a diameter

distribution model for even-aged beech based on a large

permanent sample plot data.

2. Materials

Data were collected from 1872 to 2005 from 69 permanent

spacing, species and thinning experiments in European beech,

totalling 204 individual plots. Plot sizes varied between 0.07

and 2.65 ha with an average of 0.40 ha. Plots were measured at

every thinning, identifying crop trees as well as trees to be

thinned. The number of measurement occasions total 1539. The
experiments were located in most parts of Denmark and

covered a wide range of site and growth conditions.

All plots were essentially even-aged and mono-specific,

covering a wide range of different treatments in terms of

initial spacing and thinning regimes. In the thinning

experiments, treatments ranged from unthinned controls to

heavily thinned shelterwoods. Some plots were managed

according to specific thinning strategies, such as group- or

selection-thinning, and others were managed according to the

thinning strategy typical at the time. Although thinning

intervals ranged from 1 to 35 years, the majority of plots

were thinned every 4–6 years.

In most of the sample plots, trees were numbered, marked

permanently at breast height (1.3 m) and recorded individually.

On 451 measurement occasions carried out before 1930 and in

some young stands with high stem numbers, trees were

recorded in tally lists to 1-cm diameter classes (or 1-in.

diameter classes before 1901). In 13 very young planted stands

with high stem numbers, only a subset of stems was measured,

e.g. every 5th or 10th row. Breast height diameters were

generally obtained by averaging two perpendicular calliper

readings. Observations also included records on whether the

tree was alive or dead at the time of measurement. Height

measurements were typically obtained from about 30 trees per

plot.

Based on the paired observations of diameter and height,

diameter–height equations were developed for each plot and

measurement combination using a modified Näslund-equation

(Näslund, 1936; Johannsen, 2002):

h ¼ 1:3þ
�

d

aþ bd

�3

(1)

where d is diameter at breast height, h tree height and a and b

are parameters to be estimated. The equations were used to

estimate the height of trees not measured for height.

Dominant height, H100 (m), defined as the mean height of

the 100 thickest trees per hectare, was calculated for each

plot and measurement combination. Where stem numbers

were less than 100 per hectare, H100 was estimated as the

mean height.

Stem numbers, N (ha�1), were calculated as the number of

individual trees taller than 1.3 m. When trees forked below

1.3 m, each stem was measured individually, but multiple

stems from the same root were counted as one tree.

Understorey trees were identified as smaller trees growing

entirely beneath the forest canopy. Understorey trees were

measured less intensively and were therefore not included in

this study.

Stand basal area, G (m2 ha�1), of each plot was estimated by

summation of individual tree basal areas calculated from the

diameter measurements. When trees were recorded in tally

lists, mean class values were used as an estimate of the diameter

of all trees in that class. Diameter corresponding to mean basal

area, Dg (cm), was derived from the estimates of N and G. The

data represent a wide range of stand ages and stand values in

terms of H100, G, Dg and N (Fig. 1).



T. Nord-Larsen, Q.V. Cao / Forest Ecology and Management 231 (2006) 218–225220

Fig. 1. Stand-level values of H100, G, Dg, and N. The lines represent repeated measurements on each individual plot.

Fig. 2. Skewness (g1) and kurtosis (g2) of observed diameter distributions

compared with the possible solutions of the Weibull distribution (full line).
3. Methods

The Weibull distribution (Weibull, 1951):

f ðxÞ ¼ c

b

�
x� a

b

�c�1

e�ððx�aÞ=bÞc ; x� a; b> 0; c> 0:

(2)

covers most of the desired shapes for a diameter distribution

model. It describes the inverse J-shape for c< 1 and the

exponential distribution for c ¼ 1. For 1< c< 3:6 the density

function is mound shaped and positively skewed and for c ¼
3:6 the density function becomes approximately normal. If

c> 3:6 the density function becomes increasingly negatively

skewed. Contrasting the flexibility of the Weibull distribution,

mathematical derivations are simple and allow for simple

solutions in simulation studies (Weibull, 1951). Motivated

by a comparison of skewness and kurtosis observed on the

individual measurement occasions and the possible combina-

tions of the Weibull distribution (Fig. 2) as well as the sim-

plicity of the Weibull distribution and its well-described

properties, this function was used for modelling the diameter

distribution of European beech in Denmark.

3.1. Model estimation

Parameters of the Weibull distribution may be estimated

using various kinds of transformations to linearize the function

and subsequent estimation by (weighted) linear regression, or

by moment (Burk and Newberry, 1984) or percentile estimation

(Bailey and Burgan, 1989; Borders and Patterson, 1990).

Estimation of the parameters by maximum likelihood has been

found to produce consistently better goodness-of-fit statistics

compared to the previous methods, but also put the largest
demands on the computational resources (Cao, 2004). Recently,

parameters of the Weibull distribution were iteratively searched

to minimize the squared deviations between the observed and

predicted cumulative distribution function (cdf) (CDF-regres-

sion; Cao, 2004). CDF-regression was found to yield the best

goodness-of-fit statistics among the methods tested in this

study.

The cumulative distribution function of the Weibull

distribution is:

Fðxi jÞ ¼ 1� exp

�
�
�

xi j � a

b

�c�
(3)

where Fi j is the cumulative probability for diameter at breast

height (xi j) of the ith tree in the jth plot and age combination. In

this study, the parameters of the Weibull distribution were

initially estimated for each age and plot combination using
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CDF-regression. The parameters were iteratively searched to

minimize:

Xp

j¼1

Xn j

i¼1

ðFi j � F̂i jÞ
2

ni
(4)

Due to high levels of correlations between parameters,

estimation of the individual cdf’s in this preliminary analysis

frequently failed to converge. We therefore used 0.5 times

the observed minimum diameters (Dmin ) of the different

measurement occasions as an a priori estimate of the location

parameter a.

The a priori estimates of a were plotted against various

stand-level variables. Based on the observed relationships, a set

of candidate functions for modelling a were selected and fitted

to the data. Based on a statistical analysis of model fit and the

parsimony of the candidate functions, a was estimated from a

Chapman–Richards function (Richards, 1959) of Dg, where the

asymptote is Dg and the other parameters were estimated from

Dg, H100, and N:

a j ¼ Dg; jð1� exp ð�a1Dg; jÞÞa2 þ ea; j;
a1 ¼ a01Dg; jH100; j

a2 ¼ a02 þ a03ln ðN jÞ
(5)

where a01– a03 are parameters to be estimated, and

ea; j�Nð0; s2
a; jÞ is the error term. Subscript denotes the jth

plot–age combination.

Using the a priori estimates of a, the scale (b) and shape

(c) parameters were subsequently estimated for each age and

plot combination and plotted against various stand variables.

Based on the observed relationships, a set of candidate

functions for modelling b and c were selected and fitted to

the data.

Based on a statistical analysis of model fit and model

parsimony of the candidate functions, the scale parameter was

estimated from a saturation growth-rate type model of Dg:

b j ¼
b01Dg; j

b02 þ Dg; j
þ eb; j (6)

where b01 and b02 are parameters to be estimated and

eb; j�Nð0; s2
b; jÞ is the error term. Based on a similar analysis,

the shape parameter was estimated from a logistic function of

Dg where the parameters were estimated from H100, and N:

c j ¼
c1

1þ c2exp ð�c3Dg; jÞ
þec; j;

c1 ¼ c01 þ c02N jD
2
g; j

c2 ¼ c03

c3 ¼ c04

Dg; j

H100; j

(7)

where c01– c04 are parameters to be estimated and

ec; j�Nð0; s2
c; jÞ is the error term.

Based on the initial analyses, the parameters in Eqs. (5)–(7)

were estimated simultaneously using CDF-regression as

described by Cao (2004). The diameter observations were

assumed to be independent, random observations.
3.2. Constrained estimation

When the distribution parameters of the Weibull distribution

are known for a stand with N trees per hectare, the basal area

may be calculated as:

G j ¼
p

4
N jc jb

�1
j

Z 1
a

x2
i j

�
xi j � a j

b j

�c j�1

e�ðxi j�a j=b jÞc j
dx

¼ p

40; 000
N jða2

j þ 2a jb jG 1 þ b2G 2Þ (8)

where G 1 ¼ G ð1þ 1=c jÞ, G 2 ¼ G ð1þ 2=c jÞ, and G ð:Þ is the

complete Gamma-function (Arfken, 1985). Solving Eq. (8) and

substituting for either of the parameters constrain the Weibull

distribution to yield estimates consistent with the observed or

predicted basal area of a particular stand. In addition to the un-

constrained model, we estimated the parameters of Eqs. (5) and

(7), where b j was constrained to yield estimates of the diameter

distribution function, consistent with observed or predicted

basal area as:

b j ¼
�a jG 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

jðG 2
1 � G 2Þ þ G 2D2

g; j

q
G 2

(9)

3.3. Model evaluation

Estimated diameter distributions were evaluated by statis-

tical tests that included t-tests of predicted mean and x2,

Kolmogorov–Smirnoff (KS), and Anderson–Darling (AD)

goodness-of-fit tests. Although the KS and AD goodness-of-

fit tests may be useful when comparing different families of

distributions in the early stages of model building, one

important caveat applies to the use of these formal tests when

evaluating diameter distribution models (Reynolds et al., 1988).

Theoretically, the tests only apply to the case where the

distribution function is completely specified. This is seldom the

case and critical values have been provided for various cases

where the parameters must be estimated (Stephens, 1977).

However, no critical values have been calculated for the case

where parameters are estimated by CDF-regression. We

therefore conducted the tests, ignoring the fact that the

distribution was not completely specified.

In addition to the goodness-of-fit statistics, the unconstrained

diameter distribution model was evaluated by comparing obser-

ved basal area to basal area predicted by the diameter distribution

model. This comparison was motivated by the importance of

basal area in forest applications, and the fact that errors among the

large and thereby more valuable trees have more weight.

Finally, we conducted a leave-one-out cross-validation for

both the constrained and un-constrained model, where entire

experiments were left out one at a time during the estimation

procedure. Estimated models were subsequently applied to the

left-out experiment and goodness-of-fit statistics were calcu-

lated. The stability of estimates was evaluated by comparing the

number of rejected distributions to the numbers obtained in the

original estimation.
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Table 1

Parameter estimates and their approximate standard errors of the model fitted by the CDF-method

Parameter Not constrained estimates Constrained estimates

Estimate S.E. t-Value Estimate S.E. t-Value

a01 3.00095E�8 1.25E�9 23.94 4.38261E�7 2.17E�8 20.22

a02 0.33278 3.82E�3 87.09 0.18282 4.84E�3 37.76

a03 �0.00165 1.74E�4 �9.49 0.00321 4.81E�4 6.68

b01 283.13622 5.56 50.93 – – –

b02 268.60650 5.18 51.85 – – –

c01 9.30607 3.51E�2 267.81 5.10905 2.12E�2 240.47

c02 �5.36769E�6 4.26E�8 �125.88 �3.28411E�6 3.11E�8 �105.74

c03 3.27888 1.46E�2 224.92 1.71800 1.12E�2 152.83

c04 0.07880 2.86E�4 275.24 0.10277 6.84E�4 150.32

Estimates are provided for both the un-constrained model and for the model constrained to yield estimates consistent with observed basal area. All parameter

estimates were highly significant (P< 0:0001).

Table 2

Test statistics and the number of predicted distributions significantly different from the observed (P � 0:05)

Statistic Not constrained Constrained Cross-validation

Mean Rejected % Mean Rejected % Mean Rejected %

Mean 0.242 42 2.7 0.021 25 1.6 0.242 27 2.7

x2 56.480 701 47.3 59.035 674 45.5 57.851 708 47.8

K–S 0.138 536 34.8 0.135 511 33.2 0.139 546 35.5

A–D 8.186 609 39.6 8.338 566 36.8 8.446 615 40.0

Test statistics are provided for both the un-constrained and the constrained model as well as for the cross-validation procedure.
4. Results

Fitting of the cumulative distribution function accounted for

94.1% of the variation (R2) and resulted in all parameter

estimates significantly different from 0 (P � 0:05; Table 1).

When the model was constrained to yield estimates consistent

with the observed basal area, the model accounted for 93.3% of

the observed variation.

The basal area predicted by the unrestricted model deviated

less than 10% from the observed (Fig. 3), but the model seemed

to underestimate basal area systematically.

The null hypothesis, that the estimated mean diameter is

similar to the observed mean diameter was rejected for 1.6–
Fig. 3. Residual basal area of the unrestricted diameter distribution model.
2.7% of the 1539 distributions for the un-constrained model

(Table 2). Also for the un-constrained model, 34.8–47.3% of

predicted distributions differed significantly from the observed,

depending on the applied goodness-of-fit statistic. The number

of rejected distributions was similar for the constrained model,

although this model consistently rejected fewer of the predicted

distributions. The leave-one-out cross-validation showed only a

small increase in the number of rejected distributions for both

the constrained and un-constrained models, which indicated a

large stability of the model.

5. Discussion

Judging from the model predictions, the diameter distribu-

tion is typically right skewed in young, even-aged beech stands,

probably as a result of self thinning among the smallest trees

(Fig. 4). As the stand matures, the peakedness of the

distribution is reduced and it becomes less skewed, but the

variation increases. Classical thinning from below causes a

relative reduction in variation, peakedness and skewness of the

distribution. In old beech stands (>100 years) skewness and

kurtosis of the diameter distribution begins to increase again.

Further, the diameter distribution becomes increasingly left

skewed, possibly due to harvesting of the largest trees. The

observed pattern of the diameter distribution is concordant with

the findings of a study on even-aged beech stands in Germany

(Kennel, 1972) and with findings from southern Sweden

(Carbonnier, 1971).

Despite the apparent agreement between expected devel-

opment of the diameter distribution over time and the model
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Fig. 4. Simulated development of the diameter distribution for the un-con-

strained (full line) and constrained model (dashed line). Simulations are based

on stand-level variables (H100, G and N) obtained from the most commonly used

yield table for beech in Denmark (Møller, 1933). Numbers indicate stand ages.
predictions, 30–45% of the predicted distributions differed

from the observed distribution according to our criteria at the

5% significance level (for x2, KS and AD-statistics). The

seeming weakness of the model is to be expected when fitting a

smooth curve to diameter distributions from relatively small

plots in managed stands. Size distributions are affected by both

spatial structure and the chosen plot size. Considering the

relatively small plot size (0.40 ha on average) it is probably not

realistic to sample the actual, smooth distribution that can be

fitted by the hypothesized distribution function. Further,

thinnings in managed stands are often targeted at specific

social classes of trees, or at obtaining specific assortments or a

specific stand structure. In the typical Danish beech stand

management, also practised on the permanent sample plots,
Fig. 5. An example of simulated diameter distributions (experiment EC, plot 01, C-g

line) compared with the observed diameter distribution.
thinnings are often targeted at class III-trees according to Kraft

Crown Classification System (Kraft, 1884). This causes the

diameter distribution to be irregular as specific diameter classes

are often almost entirely removed (example in Fig. 5). Such

diameter distributions would not be successfully fitted by any

smooth statistical distribution. This probably explains why

stand table projection methods are considered superior to

distribution prediction methods when predicting future

diameter distributions (Pienaar and Harrison, 1988; Borders

and Patterson, 1990; Nepal and Somers, 1992; Cao and

Baldwin, 1999).

In a number of plots where observed distributions differed

from the predicted, visual inspection showed that observed

distributions tended to be bi-modal, possibly because the

initial exclusion of understorey trees was not always

successful (see Section 2). The Weibull distribution is uni-

modal and is thus unsuited to model such distributions. Bi-

modal diameter distributions have been modelled by finite

mixtures of various distributions (for a forestry related

application, see Skovsgaard, 1997; Liu et al., 2002).

However, in this study we decided not to model the

distribution of understorey trees for two reasons. Firstly, the

understorey trees were measured less intensively and it was

uncertain if all understorey trees were in fact measured in the

historical data. Secondly, understorey trees have been treated

very differently across the individual plots, but their

treatment has little effect on stand-level variables such as

basal area or dominant height. Hence, the diameter

distribution model cannot be expected to adequately model

the distribution of understorey trees based on stand-level

variables.

Further analyses showed that the frequency of predicted

distributions that differed significantly from the observed was
rade thinning) for the un-constrained (full line) and constrained model (dashed
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Fig. 6. Frequency of experiments in different age-groups where the Kolmo-

gorov–Smirnoff–test resulted in rejection of the hypothesis that observed and

predicted distributions are the same.
highest among young age classes (Fig. 6). This reflects a

general problem of all diameter distribution models: that prior

treatment influences the diameter distribution, but is not

entailed in the model since such information is generally not

available for its application. In other words, we model the

diameter distribution based on the assumption that all

information needed is expressed by the stand variables,

although these may reflect many different thinning strategies

that result in different diameter distributions. This becomes

especially evident for young stands since initial conditions (i.e.

stem numbers) differ considerably between, for example a

naturally regenerated stand with several hundred thousand

plants per hectare and a planted stand with less than 5000 plants

per hectare. Such stands are not likely to have similar diameter

distributions, even if they are thinned to approximately the

same stem number or basal area. Later, the frequency of failed

estimates is reduced because multiple thinnings according to a

similar strategy even out initial differences but probably also

because stem numbers are reduced and the estimated

distribution therefore becomes harder to reject.

6. Conclusion

The diameter distribution model was successfully estimated

using CDF-estimation and predicted distributions confirmed

the expected development of diameter distributions in even-

aged beech stands. However, predicted distributions deviated

significantly from the observed in 60–80% of stands younger

than 40 years, probably due to large differences in initial stem-

numbers. Hence, the diameter distribution model may be used

for predicting distributions from observed or predicted stand-

level values of stem numbers and basal area, but care should be

taken when the model is applied to young stands (<40 years).
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Näslund, M., 1936. Skogsforsöksastaltens gallringsforsök i tallskog. Medde-

landen från Statens Skogsforsöksanstalt 29, 1–169.
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