INUOMAIONETN
CoNSTRUCTLION

ELSEVIER

Automation in Construction 9 (2000) 369377

www.elsevier.com /locate/autcon

Parametric design: areview and some experiences

Javier Monedero *

Departamento de Expresion Gréfica Arquitectonica, Universitat Politecnica de Catalunya, Diagonal 649, 08028 Barcelona, Spain

Abstract

During the last few years there has been an extraordinary development of computer-aided tools intended to present or
communicate the results of architectural projects. But there has not been a comparable progress in the development of tools
intended to assist design to generate architectural forms in an easy and interactive way. Even worse, architects who use the
powerful means provided by computers as a direct tool to create architectural forms are still an exception. Architecture
continues to be produced by traditional means using the computer as little more than a drafting tool. The main reasons that
may explain this situation can be identified rather easily, although there will be significant differences of opinion. In my
opinion, it is a mistake trying to advance too rapidly and, for instance, proposing integrated design methods using expert
systems and artificial intelligence while no adequate tools to generate and modify simple 3D-models are available. The
modeling tools we have at the present moment are unsatisfactory. Their principal limitation is the lack of appropriate
instruments to modify interactively the model once it has been created. This is a fundamental aspect in any design activity,
where the designer is constantly going forward and backwards, re-elaborating once and again some particular aspect of the
model, or its general layout, or even coming back to a previous solution that had been temporarily abandoned. This paper
presents a general summary of the actual situation and recent devel opments that may be incorporated to architectural design
toolsin a near future, together with some critical remarks about their relevance to architecture. © 2000 Elsevier Science B.V.
All rights reserved.

Keywords: Geometric modeling; Architectural and building models; Parametric design

1. Current 3D-models

In architecture, 3D-models are elaborated by some
commercial version of one of the following tech-
niques. polygona meshes, solid models or paramet-
ric surfaces such as nurbs. Most architectural models
are till produced using the first method, together
with some appropriate interface that alows the use
of commands such as ‘‘3dfaces’, polylines with
““width and thickness’ or ‘‘revsurfs’, ‘‘tabsurfs’,
“rulesurfs’, etc. Thisis due to the characteristics of

* Corresponding author. E-mail: javier.monedero@egal.upc.es

architectura models that are mainly composed of
planar surfaces. Many architects work with what can
still can be called 2.5D-models (wide lines or poly-
lines depicting walls extruded to a particular height)
that can be used both as drawing planes and simple
3D-models. Solid models are also widely used due to
the fact that they allow boolean operations to create
more complex forms. Nurbs or the like are rarely
used (except by Frank Gehry), as common budgets
do not favor sculptured or free-form surfaces. The
history of 3D geometric modeling is studied and can
be found in well-known computer books like Foley’s
general exposition of computer graphics or Morten-
son’s more specialised textbook on geometric model-

0926-5805,/00,/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.

Pll: S0926-5805(99)00020-5

370 J. Monedero / Automation in Construction 9 (2000) 369-377

ing. This justifies a very shortened summary. The
intention of this summary is not only to locate the
subject in the adequate context but also to stress the
distance in time that has separated a published paper
and a generally used technique. As we will see, this
distance is approximately the same that separates the
first published papers on parametric design from our
immediate future, let us say 2 or 4 years. That is to
say, the situation is mature for a change in the
current techniques used in CAAD; it has already
happened in CAD /CAM although most of the archi-
tects that work with computers are unaware of it.

1.1. Evolution and limitations of CAD modeling tools

The first methods and techniques were put into
practice during the 1960s and included basic 2D-
primitives, as well as new entities like splines. The
work of Bezier and De Casteljau goes back to this
period. This was extended to 3D wireframes and
surfaces patches. New graphical methods are to be
associated to the name of Sutherland and to the year
1963, in which his thesis was published. Polygonal
meshes were used at the end of the 1960s; soon there
were techniques to visualize them by such methods
as what is now currently known as flat-shading
(Bouknight, 1970) or, better, Gouraud shading (1971)
or, even better, Phong shading (1975). This is where
most systems stop nowadays (more than 22 years
thereafter!). Free-form or sculptured surfaces were
developed extensively during the 1970s. The most
advanced method currently used, nurbs (non-uniform
rational b-splines) can be traced back to an article by
A.R. Forrest in 1980. AutoCad has incorporated it, a
couple of years ago (15 years after it was introduced),
through an extra module (AutoSurf) that came to-
gether with version 13.

Solid modeling using a primitive form of CSG
was also born at the beginning of the 1960s (at the
MAGI labsin USA), and evolved rather slowly until
some complete products appeared in Europe and
USA at the beginning of the 1970s. The first impor-
tant commercial packages, like Romulus, commer-
cialized by Evans and Sutherland in 1980, appeared
at the end of the 1970s. A very much quoted article
by Requicha that summarized the state of the art at
that time, with five principal systems quoted was
also published in 1980. At the present time, most

systems currently used combine two systems, B-Reps
and CSG or use B-Reps as a shell that alows
multiple representations and favors the transit from
one to the other. This is the case with ACIS (Alan,
Charles and lan System) used by AutoCad since
version 13 after dropping AME, a CSG system that
did not work as it should.

1.2. Editability of current 3D representations

All these systems suffer from severe limitations
from the point-of-view of an interactive approach to
design:
- Lack of resources to edit surfaces. Thisis particu-

larly clear in the case of sites that must be

reworked and adjusted to receive a building.

- Lack of resources to edit volumes in a redly
interactive way.

- Lack of resources to maintain relations between
parts of a volume during modifications.

- Lack of integration between surfaces and solids.

In the CAD /CAM-community, the methods cur-
rently used to create 3D architectura models have
been abandoned a long time ago. Different types of
research have been carried out to improve the situa-
tion. We offer some hints before getting into para-
metric design.

1.3. Object-oriented 3D-model: E-Reps

With a solid model such as the kind currently
used in the architectural community, if one wishesto
modify, for instance, a hole in awall, one has to edit
the csg tree, locate the primitive and then order the
system to rebuild the tree. With an object-oriented
approach, interaction will be more convenient and
easier to manage. The internal data structure and the
implementation of the algorithms able to modify it,
are hidden in the object. In this way, the orders sent
to the object do not need to specify how a modifica-
tion shall be done but only what is to be done (for
instance, change the position of a hole in a wall).
The mechanisms of inheritance that relate classes to
superclasses or subclasses assure that the previously
specified relations will be maintained. Unfortunately,
this requires an internal representation of data that is
still lacking in current CAD systems. In generd, a
representation that uses a chain of references that

J. Monedero / Automation in Construction 9 (2000) 369-377 371

links entities in the model is called a model graph.
Hoffman [8] has introduced the term of E-Rep (edita-
ble representation) to denote this kind of structure.
This has implications being of great interest in the
future. This structure is similar to a CSG graph but
with some important differences. The leaf nodes of
the graph, in the CSG are usualy the lowest primi-
tives of the system, i.e., half spaces, whereas in the
E-Reps, there usualy are B-Reps. Also, in a CSG,
the nodes are a few operators, mainly boolean opera-
tors, while in an E-Rep, the nodes may represent a
wide range of types including sketches, sweeps,
feature attachments, blends or dimensions. On the
other hand, the CSG-graphs have a well-defined
semantics and a guaranteed validity. This is not the
case with E-Reps so it seems that there is still some
experimentation needed.

2. Parametric design

Parametric design is, in a sense, a rather restricted
term; it implies the use of parameters to define a
form when what is actualy in play is the use of
relations. | will use the term in a wide sense that
covers what can be found in the literature under
other headings such as relational modeling or varia
tional design or constraint-based design or other
titles that will be quoted to some extent in the
following paragraphs.

It should also be noted that, from an elementary
point-of-view, there is not a clear boundary between
what can be called parametric design and what is
currently called computer-aided drafting or model-
ing. In these cases, forms are created by combining
basic entities that are inserted in the model after a
basic template, which includes their ‘* proper param-
eters”’, isfilled. A line, for example, is an entity that
becomes part of a model once two parameters, its
length and its direction, are specified. A polylineis a
set of lines joined at their vertices whose position
parameters must also be specified when it is created.
A prismatic meshed volume is inserted in a model
through four parameters, its location, length, width,
and height. Besides this, we can also define ** blocks'”’
(AutoCad), ‘‘cells’ (Microstation) ‘‘symbols’ or
“‘components’ (other systems) that combine and
keep together these primitive forms with different

overall values. There are aso, in current CAD sys-
tems, tools that allow us to make some modifications
a posteriori regarding these primitive entities. How-
ever, this does not work for complex elements where
we want relations to be maintained while modifying
their parts independently. We can define a metal
window as a block but if we change the scale at the
moment of insertion, frame sections will change in
the same proportion as the overall magnitude and we
will not be able to keep a standard frame with
different opening dimensions. But we can still define
a procedure, through some programming language
like AutoLisp, in such a way that only the relations
are specified and the adequate dimensions are de-
fined only at the moment of insertion in the model.
This is aready parametric design in a litera and
fundamental sense. And, it is obviously of interest in
the case of architecture due to the fact that a very
important number of building elements can be
grouped in families that tend spontaneously to be
parameterized. And, if this can be done in a satisfac-
tory way, it can save a lot of time and computer
memory and will also help the management of these
elements. As the notion of family is important in a
parametric design we can define it formally: a set of
elements that only differ in the dimension of their
parts. To describe a family, to elaborate a primary
design of a family, we only need two things. a
topological description specifying the parts that con-
gtitute it and the relations they maintain with each
other and a dimensiona scheme specifying priorities
and dimensional congtraints. In this way, we can
define an abstract collection of elements and insert
them in our models. Thisis good for a start, but what
happens if after the element is inserted we want to
modify it? This is where parametric design, in a
promising way, properly started out in CAD /CAM a
few years ago in relation with the fundamental no-
tion of constraint.

3. Constraints

A fundamenta problem in CAD is how to make
explicit some intuitive knowledge we have about
something in such a way that a machine can interpret
and treat it in an automatic way. This problem
reveals its magnitude as soon as we try to formulate

372 J. Monedero / Automation in Construction 9 (2000) 369-377

what is comfortably referred to as *‘ common sense’’.
From an architectural point-of-view, this is like
knowing that floors **shall always be’’ horizontal or
that windows ‘‘belong to’’ a wall and trying to
formulate this knowledge in such a way that a
machine could not violate such an obvious rule. This
is dealt with by means of constraints. Constraints
appeared in CAD as early as 1963, in the pioneer
work of Sutherland. As it happens with the very
notion of parametric design, the notion of constraint
is present, in a basic way, in any CAD system. A
polyline, for example, can be understood as a collec-
tion of curves with vertices constrained to remain
attached. But, in genera, the notion of constraint
implies a model with an extended database. A con-
straint is a relation that limits the behavior of an
entity or a group of entities. Examples of constraints
are; a group of lines constrained to be paralel o
perpendicular or collinear, a line constrained to be
tangent to an arc, two cylinders constrained to be
concentric, a dimension constrained to be less than a
particular magnitude or equal to a multiple of a
particular magnitude. The notion of constraint im-
plies the notions of degree of freedom (DOF), over-
constrained, and underconstrained models, as well as
the notion of tolerance. A model can be conceptual-
ized as a topological description of a complex form
with n variables or independent dimensions. Each
constraint diminishes the aternatives by one step. On
the other hand, the bigger the number of constraints,
the more difficult it is to manage in such a way that
it will remain consistent under different values as-
signed to the remaining free dimensions. If a model
is underconstrained, it cannot be resolved because
some additional parameter must still be specified. If
a model is overconstrained, it cannot be resolved
because there is a contradiction somewhere. Con-
straint modeling requires that all the defined con-
straints shall be fulfilled before the model is evalu-
ated or, in other words, that the DOF of the model
have to be reduced to zero. The power of a system to
deal with underconstrained or overconstrained mod-
els is a proof of its efficiency. Some programs
inform the user that the model cannot be resolved
but leave the user with the task of locating the fault.
A program properly designed should have a con-
straint management module able to provide default
parameters in case of an underconstrained model and

to inform the user of this or any other contradictory
parameter that may have been specified. Constraints
can also be of two different types that sometimes are
referred to as geometric constraints and physical or
engineering constraints. Parallelism, perpendicular-
ity, tangency, dimensionality are geometric con-
straints. But a model can also be based on formula
like area= force/pressure. Constraints can also be
specified as conditional relations such as: If D1+
D2>D3 then D1=10 cm else D1=20 cm. A
magjor difference between systems is the way in
which the constraints are input and controlled. In
general, this imposes some extra job on the user
who, besides choosing an entity, marking its position
and assigning some dimensions to it, must specify
the relation that it shall keep with other entities in
the model.

4. Evolution of parametric design techniques

Besides the above-mentioned pioneering work of
Ivan Sutherland, Hillyard and Braid [1] proposed a
system around 1978 that allowed the specification of
geometric constraints between part co-ordinates in
such a way that possible variations remain restricted
to a range given by some particular tolerances. This
proposal was not developed in the sense that could
be expected from our present point-of-view. Gossard
and Light [2] mention this work as a basis for their
own, which can be quoted as the primary reference
for what can be called parametric design in a more
mature sense. The work of Gossard and Light that
will commented below as a basis for what is called
variational geometry or variational design, was a
major step as it provided geometrical representations
with new mathematical and geometrical tools that
opened the way to the generalization of a model.

Around the end of the 1980s, when the main
techniques of geometrical modeling, free-form sur-
faces and solid modeling were already assimilated,
there was a growing sense that modeling techniques
should advance in the direction of an increasing
interactivity and ability to modify a model after it
had been sketched. There were a number of impor-
tant articles and books already published and, also, a
few articles by researchers directly involved in the
development of this field that attempted to resume

J. Monedero / Automation in Construction 9 (2000) 369-377 373

the state-of-the-art. It is clear that there are till, at

the present time, two big groups, one that is becom-

ing obsolete and the other that attracts a growing
number of researchers:

1. What we can cal, as Roaller [7] does, variants
programming or static generation of aternative
models by means of a programming procedure.
These systems can rely on current interna repre-
sentations of models.

2. Graphic generation or interactive methods by
means of more elaborated systems that allow the
modification of dimension and constraints after
the model has been created. These systems imply
a modification or an extension of the internal
representation of the model.

The main disadvantage of the first group is that it
cannot do what the second group does, that is, to
change some of the characteristics of a model in an
interactive way. On the other hand, it is a mode of
work that can adapt to current CAD programs if the
user has some knowledge of simple programming
techniques. The main disadvantage of the second
group is that we will have to wait a few years until a
consistent parametric modeler, based on some of the
different alternatives still under research enumerated
below, is integrated in some of the programs cur-
rently used by architects.

4.1. Variants programming by macros or procedural
modeling

One of the simplest ways of using a very rudi-
mentary form of parametric design is to record a
script of the commands and data values used to
create an element. If this script is edited and the data
values are changed, we will get a family of variants
of the same type with different dimensions. We can
refine this method by using a programming lan-
guage, like AutoLisp, to write a macro, aroutine or a
little program that performs the suitable actions to
model the element (the difference between these
three terms can be assimilated to a difference in
guantity, i.e., a few lines for a macro or a few pages
for what might be called a simple program). In this
way, the model can incorporate some kind of interac-
tion with the user, that is, it can record the main
parameters of the element as variables and request
their values from the user once the program is

activated. It can aso incorporate conditional expres-
sions or simple equations that may extend the inter-
est of the method.

Variants programming is equivalent to one of the
primitive forms of geometric modeling: primitive
instancing. This consists also in the generation of
models or elements by means of a procedure that call
in sequence the commands needed to build the model.
To prevent errors and secure the validity of the
representation, values used for input have to be part
of a pre-defined range. The main difference between
this method and the ones that we will see below is
that the commands used are already part of a CAD-
modeler. The program reads the values as input from
the user and executes the sequence of commands that
create the model, which are provided by the modeler.
The main limitations of this method are: the number
and the range of variables is limited as there is, in
general, no proper way for controlling variants that
might produce not valid results. Moreover, the re-
sults cannot be edited; the only way to change the
model is to repeat the process. However, it is a
method of modeling widely used in industry and that
can be very effective if one needs to incorporate to a
model simple elements that are not supposed to be
modified. It has been used extensively in architec-
ture.

4.2. History-based constraint modelers

A graphically interactive parametric modeler al-
lows the user to create a master model that can be
used as a base to input parameters to the system and
to request from the user the specification of con-
straints that will fix the model through a closed
description of its components. This ensures that no
errors should appear whenever any new variant is
specified. As we have said before, this means that an
extended or alternative internal representation must
be used. There are different methods used to gener-
ate a new model after parameters are changed. The
most widely used presently is perhaps what is some-
times called ‘‘history-based design’’ or proper
‘‘ parametric design’’ (as opposed to variational de-
sign) or ‘‘ constructive parametric design’’.

Many commercial parametric modelers available
at the present time use a data structure keeping track
of the sequence followed to create a model. Any

374 J. Monedero / Automation in Construction 9 (2000) 369-377

operation, together with the data used to complete it,
is recorded in the order that it occupied during the
process of building a particular model. The opera-
tional parameters can be geometric entities as well as
expressions. The model can be modified by substitut-
ing the data used in a particular operation. Recom-
puting the model will have the effect of changing
some of its geometric characteristics while maintain-
ing the connections, that is, the intended relations
between the different entities. This method is also
caled constructive parametric design, as the se-
guence incorporates and requests directly from the
user, the specification of secondary entities such as
line or plane axes or a circle used to define an arc,
etc. These constructive elements are also constrained
in a similar way to the rest of the entities that
constitute the model. One drawback of some com-
mercial systems is that they try to present the con-
structive planes or axes as something offered to the
user when it is rather something required by the
system. Once the model is completed and DOF are
fix to zero, and the model is neither underconstrained
nor overconstrained, a construction plan is produced.
The history is recorded by means of a directed graph
where nodes represent entities and arcs operations.
The direction of the graph follows the sense of
constraint propagation. The result is a cyclic graph.
To change a dimension is equivalent to substitute the
values of the related geometric constraint. Adding a
geometric relation is more complicated and requires
checking possible overconstraints, finding the appro-
priate dimensiona value and rebuilding the graph.
The entities and operations involved, in general,
must be such that can be constructed by rule and
compass. Also, a single change in the procedure can
force the system to recalculate, as average, a 50% of
the geometry. In any case, once the graph is automat-
ically reconstructed, the parameters are re-evauated
and the model is recomputed.

4.3. Variational geometry and variational design

Contrary to the previous method, parametric de-
sign based on variational geometry can recompute a
design taking into account the actual situation, inde-
pendently of the sequence that has been followed to
reach this situation. The method relies on the de-
scription of parameters by means of equations and

the availability of a system able to solve them. The
main foundational reference is given by the articles
published by Gossard and Light [2,3]. The method
requires, as before, that the system is neither under-
constrained nor overconstrained. The system has the
advantage, contrary to the previous one, that it is
independent of the way the model has been created
and can accept any situation or any model as input.
Dimensions are considered as constraints that affect
a particular set of pointsin the model. An object in a
space, defined by the three co-ordinates of their
N-vertices will have 3N DOF. To compute the new
geometry, after any of these vertices has changed,
3N equations (with 3N variables) will have to be
solved. Many of these equations can be derived
easily, such as the equation of a plane given by three
vertices or any equation that forces four points to be
coplanar. Similarly, simple quadrics like cones or
spheres can be represented in this way. As distances
are aso implied, the constraint equations will be
quadratic and are, for this reason, in general, non-lin-
ear. Numerical methods are used to solve them and
the method proposed by Gossard and Light reduces
the number of necessary equations to solve the model
using a Jacobian matrix to find the parameters and a
propagation systems that runs in both directions.
Still, the method is computational expensive. It is
doubtful, for the time being, that it could be applied
to architectural models.

4.4. Rule-based variants. geometric reasoning by
expert systems

The previous method has a number of important
difficulties, such as the need to specify an exact
number of constraints or to solve a large number of
equations by numerical methods. To avoid these and
other problems, a few aternatives have been pro-
posed. Among them, some derived from Artificial
Intelligence and Expert Systems can be quoted.
Briderlin [4], Sunde and Kallevik [5], Aldefeld [6] or
Veroust et al. [9] are among the first and main
researchers in this field.

These dternative techniques consider the model
as something that can be described by a series of
facts relating to geometric entities and constraints
between them. A form is described by a series of
logical predicates using languages like Prolog or

J. Monedero / Automation in Construction 9 (2000) 369-377 375

Lisp. A set of rules is specified to relate these
constraints. These rules are applied through an infer-
ence engine that gives as output a particular model
that satisfies the initial constraints and the production
rules. The predicates can specify dimensions such as
the distance between two lines (i.e,, distance (11, 12,
d)) or geometrical relations (i.e., paralel (11, 12) or
on-line (p,11)). The inference rules may look like this
expression:

on_line(p,I1),on_line(p,12), not_equal (11,12)
— pisintersect_lines(11,12)

deducing that point p is on the intersection of lines
11, 12, from the three predicates on the left of the
expression.

The method is still under research. Direct specifi-
cation of predicates is tedious, non-intuitive and
error prone. It is aso difficult to determine the
number of constraints a particular form needs to be
complete (‘* uniqueness problem’’). There are some
systems that help to solve these difficulties by means
of additional predicates and geometric master models
proposed by the user from which the set of initial
implicit logical predicates can be automatically gen-
erated. Still the method is very expensive computa
tionally and has to be refined.

4.5. Parametric feature-based design

What is a feature in CAD/CAM? A direct an-
swer could be that a feature is something that can be
extracted from a prismatic piece of material through
a particular sequence of machine operations. Fea
tures are ‘‘dots’, ‘‘holes’”, ‘‘blind holes’ or
‘‘pockets’’, ‘‘chamfers’, ‘‘fillets’, ‘‘protrusions’”
and the like. But this is a CAM point-of-view that
does not necessarily coincide with a CAD point-of-
view, mainly during the first steps in the design
process. From a more general standpoint, we can say
that a feature is an entity that belongs to a semantic
order higher than the geometric one. In literature,
also the definition of feature as ‘‘a form with a
defined function in a specific context’’ is found.

The first work in this field is probably a PhD by
A.R. Grayer from Cambridge University, in 1976
(‘““‘A Computer Link between Design and Manufac-
ture’’) attempting to automate the relationship be-

tween a CAD- and a NC-system. This work comes
from a group of researchers that had aready worked
in well-known modeling systems such as BUILD,
ROMULUS or ACIS. By the middle of the 1980s,
this topic had evolved until it became one of the
most active fields of research in CAD /CAM. At the
end of the 1980s, the first commercial prototypes
supporting features and parametric design were
available.

Features, in a parametric modeler, belong to fami-
lies and are inserted in the model as instances of a
master feature that is included in a features library.
These features can be type-oriented or object-ori-
ented. In the first case, the representation is given by
attributes such as the geometric properties of the
master feature (length, width, radius), tolerances,
relations with other characteristics, etc. In the second
case, the representation is based on procedures that
process the main properties of the features. As the
feature is defined externally and is inserted in the
model during the process of design, the position of
the feature must also be captured by parameters.
Also, some features have natural counterfeatures, as
what happens in CAD with, eg., a gear rim that
must fit into an inner gearing or as it could happen in
architecture with a metal window that must fit into a
hole in the wall. This means that the system must be
able to support and manage the complex combina
tion of relations of the model.

5. Architectural design and building models

The previous review was based on the available
literature on Parametric Design and CAD. The kind
of application that this literature is addressing has
more to do with Mechanical Engineering and Com-
puter-Aided Production, athough there are a few
papers related directly with the construction industry.
But we are interested in architectural education and
architectural practice and there are strong differences
between these fields. The main one is that CAD, as
used by engineers, applies mainly to objects that will
be repeated many times and that are not rooted to
any particular site. This is exactly the opposite of
what happens in architecture. Keeping these differ-
ences in mind, let us now see how the previous
review can relate to our field of interest.

376 J. Monedero / Automation in Construction 9 (2000) 369-377

(@) Variants programming is a well-established
topic among the architects who use CAD and have
some programming knowledge. Small elements, in
2D and 3D, can be created by means of some
recorded procedure that requests the value of a few
parameters when it is called by the user, activates the
adequate commands from the modeler and produces
and inserts a variant of a generic element on the
master model. During the last few years, we have
produced a wide collection of elements of this kind
using AutoLisp. From such utilities as routines that
open a hole in a wall, in 2D or 3D, and insert a
pre-defined door or window, or routines that com-
pute the dimensions and create a stair that runs from
a given position on a floor to another position on the
next floor, or routines that generate automatically
other common building elements, etc., to other more
speculative types that can, e.g., create geometrical
compositions in a fixed or random way. We take it
for granted that this kind of work is well-known, so
we will not show any results of this kind in this
paper. Some of these results will be published at our
university and can be acquired by those interested.
There is also a book by William Mitchell (The Art of
Computer Graphics Programming. A structured in-
troduction for Architects and Designers, 1987), that
can still provide a fine introduction to this subject
with routines written in Pascal but easily trandated
to other programming languages.

(b) Interactive parametric design of 3D elements
can be achieved by means of a dialogue box with
edit boxes that will alow the user to modify the
values of the current parameters and include a graph-
ical window pre-visualizing the results. Some com-
mercial programs like ArchiCad or 3dStudio Max
provide something similar to this but we are trying to
implement it in a more general way through Visual
C+ + and programming tools like Arx. Anyone
working in this field is invited to share experiences.
In any case, we think that the kind of resultsis easily
anticipated and we can accept that either by means
of personal programs or by commercia facilities,
there will soon be tools that will alow us to design
small elements by means of parametersin an interac-
tive way and insert them in an architectural model.

(c) The big challenge is the architectural model as
a whole. There are two current positions concerning
this topic. Some people think that it is not worth the

trouble. Others think that any building can be param-
eterized as an assembly in a similar way as an
industrial piece or a car or an aircraft. We are in an
intermediate postion. It is doubtful that a building
can be treated as an aircraft as this goes against the
very nature of architecture that is rooted to a particu-
lar site and, besides, cannot repeat itself in order to
justify fees and make our environment a little more
interesting. Although it must be said that we have a
lot to learn from the way these industries manage
features and databases and parametric models. There
is some research on specific methods to parameterize
a whole building. A recent article by K. Martini
presents an interesting program, still under develop-
ment, based on an object-oriented class hierarchy,
that can model a building through special primitives
and positioners, using what is caled intrinsic vs.
contextual geometry in such a way that modifica
tions of the model can be propagated to any part of it
after it has been created.

It is clear, however, that any development of this
kind will take a long time before architects can use
it. Meanwhile, we are working on the following lines
that we would like to present for discussion to
anyone interested in the subject. An architectura
model includes many different elements. We can
start by considering only two main groups:

(a) Floors, which have holes, which have interior

stairs, which have handrails.

(b) Walls, which have holes, which have windows

or doors.

Thisrelation is clearly hierarchical. Every handrail
belongs to a stair. Every interior stair belongs to a
hole in a floor. Every hole in a floor belongs to a
floor. Similarly, every window or door belongs to a
hole that belongs to a wall. Modeling of these ele-
ments should therefore be kept together on an
object-oriented basis. If, e.g., a window is modeled
as a feature that will be extracted from a public or
private library and is attached to a hole, which is
represented as a node in a tree graph and linked to a
wall node, then any modification on any of the terms
will be propagated to the others and we will not have
to care about adjusting it. This can be done without
much difficulty for small groups of elements. Things
start to get more complicated when we consider a
building with various floors and walls. Proposals as
the one by Martini that we have commented above

J. Monedero / Automation in Construction 9 (2000) 369-377 377

seem to be impractical for the time being. It seemsto
us leading beyond what is needed from a more
practical point-of-view and from an immediate point-
of-view and that, in any case, it will take too long a
time to be completed.

A more promising approach might be considering
a hierarchical subdivision of local co-ordinate sys-
tems and the fact that floors are horizontal and walls
are, usualy, vertica (we will not consider Gehry's
buildings for a few years). Floors can be identified
by a root (their local co-ordinate system origin).
Floor z-co-ordinates can be kept in a separate table.
Any modification on the floor height will automati-
cally be propagated to every element linked to this
floor through this table. Walls have a z-co-ordinate
and a height that depend on the floors above and
below. Any modification on the overall structure can
be propagated through this table to all the floors that
stand as global objects containing elements and sub-
elements. The propagation of these changes to the
whole structure by means of this general table cannot
be avoided and may take some time. But the hierar-
chical organization outlined above will prevent prop-
agation the other way round. This means that the
elements in a stable part of the building can be
modified more easily. The way these elements can
be modified will be facilitated by means of some
convenient interface as the one described in the
previous (b) paragraph.

References

[1] R. Hillyard, I. Braid, Anaysis of dimensions and tolerances in
computer-aided mechanical design, Computer Aided Design
10 (3) (1978) 161-166.

[2] R. Light, D. Gossard, Variational Geometry in CAD, Com-
puter Graphics, 15 (3) (1981), 1712-177.

[3] R. Light, D. Gossard, Modification of geometric models
through variational geometry, Computer Aided Design 14
(1982) 4.

[4] B. Bruderlin, Using Prolog for constructing geometric objects
defined by constraints, Proceedings of European Conference
on Computer Algebra, 1985.

[5] G. Sunde, V. Kallevik, A dimension driven CAD system
utilizing Al techniques in CAD. Report no. 860216-1, Senter
for Industriforskning, 1987.

[6] B. Aldefeld, Variation of geometries based on a geometric-
reasoning method, Computer Aided Design 20 (3) (1988)
117-126.

[7] D. Roller, A system for interactive variation design, in: J.
Wozny (Ed.), Geometric Modeling for Product Engineering,
Elsevier, 1989, pp. 207—219.

[8] C.M. Hoffmann, R. Juan, E-Rep. An editable high level
representation for geometric design and analysis, in: Technical
Report CSD-TR-92-055-CAPO Report CER-92-24, Depart-
ment of Computer Science, Purdue University, 1992.

[9] A. Veroust, F. Schonek, D. Roller, Rule oriented method for
parametrized computer-aided designs, Computer Aided Design
24 (10) (1992) 531-540.

