
Concise Papers __

Software Fault Prediction Using Quad
Tree-Based K-Means Clustering Algorithm

Partha Sarathi Bishnu and
Vandana Bhattacherjee, Member, IEEE

ABSTRACT—Unsupervised techniques like clustering may be used for fault

prediction in software modules, more so in those cases where fault labels are not

available. In this paper a Quad Tree-based K-Means algorithm has been applied

for predicting faults in program modules. The aims of this paper are twofold. First,

Quad Trees are applied for finding the initial cluster centers to be input to the

K-Means Algorithm. An input threshold parameter � governs the number of initial

cluster centers and by varying � the user can generate desired initial cluster

centers. The concept of clustering gain has been used to determine the quality of

clusters for evaluation of the Quad Tree-based initialization algorithm as compared

to other initialization techniques. The clusters obtained by Quad Tree-based

algorithm were found to have maximum gain values. Second, the Quad Tree-

based algorithm is applied for predicting faults in program modules. The overall

error rates of this prediction approach are compared to other existing algorithms

and are found to be better in most of the cases.

Index Terms—K-Means clustering, Quad Tree, software fault prediction.

Ç

1 INTRODUCTION

K-Means clustering is a nonhierarchical clustering procedure in
which items are moved among sets of clusters until the desired set
is reached [5]. The partitioning of data set is such that the sum of
intracluster distances is reduced to an optimum value [23], [27].
K-Means is simple and a widely used clustering algorithm.
However, it has some inherent drawbacks. First, the user has to
initialize the number of clusters which is very difficult to identify
in most of the cases. Second, it requires selection of the suitable
initial cluster centers which is again subject to error. Since the
structure of the clusters depends on the initial cluster centers this
may result in an inefficient clustering. Third, The K-Means
algorithm is very sensitive to noise. In [8], a method using Quad
Trees has been proposed as an initialization of K-Means algorithm.
The Quad Tree-based method assigns the appropriate initial
cluster centers and eliminates the outliers [26] hence overcoming
the second and third drawback of K-Means algorithm. In this
study, we focus on a practical problem that occurs when the fault
data for modules are not available. To solve this challenging
problem, researchers have applied a combination of clustering
techniques to cluster modules, and this process was followed by an
evaluation phase of an expert [2], who was an experienced
engineer and labeled each cluster as fault-prone or not fault-prone
by examining not only the representative points of each cluster, but
also some statistical data such as global mean, median, and
percentile of each metric. However, their approach required a
human expert during the prediction process and it is not always
possible to find an experienced expert who would have the duty to
label each cluster. In this paper, the Quad Tree-based K-Means
algorithm (QDK) [8] has been applied for predicting faults in

program modules. The objectives of this paper are as follows: First,
Quad Trees are applied for finding initial cluster centers for
K-Means algorithm. By varying the value of threshold parameter �
a user can generate a desired number of cluster centers to be used
as input to the simple K-Means algorithm. Second, the Quad Tree-
based algorithm is applied for predicting faults in program
modules. The overall error rates of this prediction approach are
compared to other existing algorithms and are found to be better in
most of the cases. Clustering gain values for the best cluster by
K-Means and by Quad Tree-based algorithm are very close
thereby proving the effectiveness of the algorithm. To compare
the performance of QDK for initialization of K-Means, experi-
ments have been conducted in which Quad Tree-based algorithm
and two other initialization techniques, Likas et al., Global
K-Means algorithm [23], [24] and SAS 2004 [23], [25] have been
executed and results are compared on the basis of evaluation
parameters. The QDK algorithm performs fairly well on all the
parameters. The Global K-Means algorithm considers each data
item in each iteration leading to high complexity when number of
data items and number of clusters are large and these scalability
issues have also been raised by the authors. The SAS 2004
algorithm even though being linear does not provide any guidance
regarding the selection of their distance measure [23].

The remaining part of the paper is organized as follows: Section 2
presents the related work on the topic. Section 3 presents an
overview on the theory of Quad Tree and the initialization
algorithm. Section 4 presents the experimental design. Section 5
presents analysis of the results while Section 6 presents the
conclusion.

2 RELATED WORK

Zhong et al. [2], [3] applied clustering techniques and expert-based
approach for software fault prediction problem. They applied
K-Means and Neural-Gas techniques on different real data sets
and then an expert explored the representative module of the
cluster and several statistical data in order to label each cluster as
fault-prone or not fault-prone. And based on their experience
Neural-Gas-based prediction approach performed slightly worse
than K-Means clustering-based approach in terms of the overall
error rate on large data sets. But their approach is dependent on
the availability and capability of the expert. Seliya and Khoshgof-
taar [4] proposed a constrained based semi-supervised clustering
scheme. They showed that this approach helped the expert in
making better estimations as compared to predictions made by an
unsupervised learning algorithm. Seliya et al. [12] have proposed a
semi-supervised clustering approach for software quality analysis
with limited fault-proneness data. Most recently Catal et al. [1]
proposed a metric threshold and clustering-based approach for
software fault prediction. The results of their study demonstrate
the effectiveness of metrics threshold and show that the stand-
alone application of metrics threshold is easier than the clustering
and metrics thresholds-based (two stage) approach because the
selection of number of clusters is performed heuristically in this
clustering-based method. In our present study we have presented
comparative results performed on same data sets as in [1].
Bhattacherjee and Bishnu have applied unsupervised learning
approach for fault prediction in software module in [16], [28]. In
their work, the false negative rates (FNR) for the clustering-based
approach is less than that for metrics-based approach, while the
false positive rates (FPR) are better for the metrics-based approach.
The overall error rates for both approaches remain the same.
Supervised techniques have however been applied for software
fault prediction [13] and software effort prediction [14], [15].
Several methods for initialization of K-Means algorithm are
available in literature. Tibshirani et al. suggest a statistical method
based on gap statistic to find the optimal number of clusters [20].
Pelleg and Moore suggest an algorithm which efficiently searches
the space of cluster locations and number of clusters to optimize
the Bayesian Information Criterion and Akaike Information

1146 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 6, JUNE 2012

. The authors are with the Department of Computer Science and Engineering,
Birla Institute of Technology, Extension Center Lalpur, PO Lalpur, Ranchi
834001, Jharkhand, India.
E-mail: psbishnu@gmail.com, vbhattacherjee@ieee.org.

Manuscript received 31 Mar. 2010; revised 26 Aug. 2010; accepted 3 July
2011; published online 19 July 2011.
Recommended for acceptance by D. Tao.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-03-0193.
Digital Object Identifier no. 10.1109/TKDE.2011.163.

1041-4347/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

Criterion [10]. Laszlo and Mukherjee present an approach for
finding the set of centers by constructing a Hyper-Quad Tree on
the set of data. Genetic algorithm has been used for evolving
centers in the K-Means algorithm and also for finding a good
partitioning [9]. An evaluation of several initialization techniques
for K-Means algorithm is presented in [23].

3 OVERVIEW OF QUAD TREE AND PROPOSED

INITIALIZATION ALGORITHM

3.1 Quad Tree

A Quad Tree in two dimensional spaces is a 4-way branching tree
that represents recursive decomposition of space using separators
parallel to the coordinate axis. At each level a square subspace is
divided into four equal size squares [17], [18]. This data structure
was named a Quad Tree by Finkel and Bentley in 1974 [19]. The
definition of a Quad Tree for a set O of data points inside a n
dimensional hyper cube � is as follows: Let � ¼ ½d1� : d01�� � ½d2� :
d02�� � � � � � ½dn� : d0n��. If the number of data points in any bucket
is less than threshold then the Quad Tree consists of a single leaf
where the set O and the hypercube � are stored. At each stage
every bucket gets subdivided into 2nsub buckets. Let us consider
the division of buckets for n ¼ 2. Let �d1Ld2R

; �d1Rd2R
; �d1Ld2L

; �d1Rd2L

denote the four quadrants of � (Fig. 1).
Let d1mid ¼ ðd1� þ d01�Þ=2 and d2mid ¼ ðd2� þ d02�Þ=2 and define

Od1Rd2R
¼ fo 2 O : od1

> d1mid and od2
> d2midg;

Od1Ld2R
¼ fo 2 O : od1

� d1mid and od2
> d2midg;

Od1Ld2L
¼ fo 2 O : od1

� d1mid and od2
� d2midg;

Od1Rd2L
¼ fo 2 O : od1

> d1mid and od2
� d2midg:

Similarly for n ¼ 3, eight sub buckets would be created namely,

�d1Ld2Rd3L
; � d1Ld2Rd3R

; �d1Rd2Rd3L
; �d1Rd2Rd3R

;

�d1Ld2Ld3L
; �d1Ld2Ld3R

; �d1Rd2Ld3L
; �d1Rd2Ld3R

:

For n dimensional data set the sub buckets will be named as
�d1ad2ad3a...dna ; a 2 fL;Rg.

3.2 The Proposed Initialization Algorithm

First, some definitions of notations and parameters used in the

initialization algorithm are provided.

Parameters and Definitions

MIN: user defined threshold for minimum number of data points

in a sub bucket.

MAX: user defined threshold for maximum number of data points

in a sub bucket.

�: user specified distance for finding nearest neighbors.

White leaf bucket: a sub bucket having less than MIN percent of

data points of the parent bucket.

Black leaf bucket: a sub bucket having more than MAX percent of

data points of the parent bucket.

Gray bucket: a sub bucket which is neither white nor black.

<k: neighborhood set of center ck of a black leaf bucket.

C: set of cluster centers used for initializing K-Means algorithm.

Algorithm 1 gives the pseudocode for the initialization

algorithm. In lines 1-8 of the algorithm, we divide an initial data

space into buckets and continue until all buckets are either black or

white leaf buckets as illustrated in Figs. 2a and 2b. In Fig. 2a the

first division into four buckets is done. Out of these, three buckets

are gray while one is white. In Fig. 2b the gray buckets are further

subdivided, while the white one is left as such. At this stage, one of

the sub buckets is labeled as a black leaf bucket.

Algorithm 1. The Initialization Algorithm

Input: Max%, Min%, Data set (O), �

Output: Number of centers jCj and the centers C

1. initialize the data space as a gray bucket;

2. while there are gray buckets

3. {

4. select a bucket;

5. divide it into 2n sub buckets; // n is the dimension

6. label the sub buckets as white leaf bucket, black leaf

bucket or gray bucket;

7. for every black leaf buckets calculate center (ci;ð1�i�mÞ);

// m is the number of black leaf buckets;

8. }

9. C ¼ �;

10. label all centers ci;ð1�i�mÞ as unmarked;

11. for i ¼ 1 to m do <i ¼ ci;
12. for each neighborhood <ið1�i�mÞ
13. {

14. if there exist an unmarked center in <i then

15. {

16. while there is an unmarked center ck in <i
then

17. {

18. select ck and label it as marked;

19. find �-nearest unmarked neighbors

of ck and include them in <i;
20. }

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 6, JUNE 2012 1147

Fig. 1. Quad Tree (for two dimensions).

Fig. 2. Quad Tree implementation.

21. for all ck 2 <i calculate the mean mi and call it

the cluster center;

22. C ¼ C [fmig;
23. }

24. }

25. return C and jCj;
Line 9 initializes the set of cluster centers to null set, and line 10

labels all black leaf bucket centers (as obtained in line 7) as
unmarked. The initial neighborhood sets <i are set to include the
black leaf bucket centers ci;ð1�i�mÞ(line 11). These neighborhoods
sets will now be expanded to include the �-nearest neighbors ofci.
This is done in lines 14-20, where we select an unmarked center ck,
mark it, find its �-nearest neighbors and include them in the set <i.
After one neighborhood set is exhausted, in lines 21-22, the mean
of all centers in <i is calculated and included in the set of cluster
centers C. This is done for all the neighborhood sets with
unmarked centers. Note that some neighborhood sets may not
get expanded at all if their initial centers (as initialized in line 11)
get included into other neighborhood sets and eventually get
marked. In other words, we group the centers of the black leaf
buckets such that each group contains centers of adjacent black leaf
buckets. Then, we calculate the mean of each group. The means are
used as initial cluster centers for the K-Means algorithm. At the
end of all iterations the algorithm returns the set C and the number
of centers. The output of the Quad Tree algorithm presented in
Algorithm 1 is the set of centers. We use such centers as the initial
cluster centers for the original K-Means algorithm.

Complexity of the algorithm: The complexity of generating the
black leaf buckets is ðbþ 1Þvc where the depth of the tree is b, v is
the number of data points, and c is a constant. Lines 12-24 generate
the neighborhood sets of the m black leaf buckets and this takes
Oðm2Þ time. Hence, the complexity of our algorithm is
Oððbþ 1Þvþm2Þ. Assuming m << v, the complexity can be
assumed to be Oððbþ 1ÞvÞ.

Criteria for selecting the parameter �: For selecting � we
consider the lmin and lmax as the minimum and maximum levels at
which the black leaf buckets are created. Let p be the side length of
the initial bucket and n is the dimension then diamax ¼

ffiffiffi
n
p

p=2lmin

and diamin ¼
ffiffiffi
n
p

p=2lmax . As a guiding rule it is suggested that � be
selected between diamin and diamax.

4 EXPERIMENTAL DESIGN

4.1 Data Sets

We conducted experiments on four real data sets to test our
algorithm. These data sets are: AR3, AR4, AR5 available at [22] and
Iris data set [7]. Of these, the first three data sets are related to
software fault prediction. The synthetic two dimensional two class
data sets (SYD1 and SYD2) have been taken to illustrate the
initialization algorithm. For SYD1 we have generated three well-
separated clusters with co variances �8:406, 9.483 and 22.585. The
mean values of the three clusters for X and Y attributes are
(158.166, 57.062), (102.640, 138.12), and (24.204, 11.136). For SYD2
we have generated four well-separated clusters with co variances
�0:2025, �7:533, 6.365, and �6:385. The mean values of the four
clusters for X and Y attributes are (24.77, 3.1), (195.40, 54.312),

(92.60, 216.60), and (256.85, 200.10). Out of the total of 163 data in
SYD2, 10 data have been introduced as noise. Descriptive statistics
for all the synthetic data sets are given in Table 1.

4.2 Metric Thresholds

In order to determine acceptable metrics thresholds, there are three
methods described as follows [11]: 1) Experience and Hints from
literature: The threshold values are specified according to the
empirical researchers, previously introduced in the literature.
2) Tuning machine: This approach uses a repository of problematic
items (faulty modules). Accordingly, there are chosen threshold
values that maximize the number of correctly detected items.
3) Analysis of multiple versions: This method does not parameterize
a strategy with several thresholds, but adds an important time
viewpoint for each suspected entity. The dimensions and metrics
we used in our experiments for AR# data sets are same as Catal et al.
and are as follows: Lines of Code (LoC), Cyclomatic Complexity
(CC), Unique Operator (UOp), Unique Operand (UOpnd), Total
Operator (TOp), Total Operand (TOpnd). Threshold vector [LoC,
CC, UOp, UOpnd, TOp, TOpnd] was chosen as [65, 10, 25, 40, 125,
70] [1]. For the Iris data set we have used all the four attributes.

4.3 Evaluation Parameters

A confusion matrix is formed as in Table 2. The Actual labels of
data items are placed along the rows, while the predicted labels are
placed along the columns. For example, a False Actual label
implies that the module is not faulty. If a not faulty module (Actual
label—False) is predicted as nonfaulty (Predicted Label—False)
then we get the condition of cell A, which is True Negative, and if
it is predicted as faulty (Predicted label—True) then we get the
condition of cell B, which is False Positive. Similar definitions hold
for False Negative and True Positive. The False positive rate is the
percentage of not faulty modules labeled as fault prone by the
model and the False negative rate is the percentage of faulty
modules labeled as not fault prone and Error is the percentage of
mislabeled modules. The following equations are used to calculate
these FPR, FNR, Error, and Precision [1]

FPR ¼ B

AþB ; ð1Þ

FNR ¼ C

Dþ C ; ð2Þ

Error ¼ Bþ C
AþBþ C þD: ð3Þ

The above performance indicators should be minimized. A high
value of FPR would lead to wasted testing effort while high FNR
value means error prone modules will escape testing.

In this paper, for calculating the evaluation parameters, if any
metric value of the centroid data point of a cluster was greater than
the threshold, that cluster was labeled as faulty and otherwise it was
labeled as nonfaulty. After this the predicted fault labels were
compared with the actual fault labels. Note that the clusters can be
labeled according to the majority of its members (by comparing with
metrics thresholds) but this increases the complexity of the labeling
procedure since all the modules in the cluster need to be examined.

1148 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 6, JUNE 2012

TABLE 1
Descriptive Statistics for All the Data Sets

TABLE 2
Confusion Matrix

4.4 Gain

The optimal number of clusters is said to occur when the
intercluster distance is maximized (or intercluster similarity is
minimized) and the intracluster distance is minimized (or
intracluster similarity is maximized). The clustering gain [21]
attains a maximum value at the optimal number of clusters. The
simplified formula for calculation of gain is as follows:

Gain ¼
PK

k¼1 ðvk � 1Þkz0 � zk0k
2
2, where K is the number of

clusters, vk is the number of data points present in kth cluster, z0

is global centroid defined as z0 ¼ 1
v

Pv
i¼1 oi where v is the total

number of data points, o is the data points and zk0 denotes the
centroid of the kth cluster, which is defined as zk0 ¼ 1

vk

Pvk
i¼1 o

ðkÞ
i where

o
ðkÞ
i denotes data points belongs to kth cluster.

4.5 Experimental Setup and Results

Table 3 presents the gain values for all the data sets as obtained by

the simple K-Means algorithm. Values have been taken for up to

12 clusters. For each cluster, six runs have been executed and the

maximum gain value has been reported. Initialization has been

done by random selection of the initial cluster centers. For the

Quad Tree-based algorithm there are four input parameters: MIN,

MAX, O, and �. The value for MIN has been chosen as 5 percent,

and for MAX it is 95 percent. In the QDK algorithm, for AR3, AR4,

AR5, Iris, SYD1, and SYD2 the � values are 40, 80, 40, 0.55, 70, and

120, respectively, and the number of cluster centers obtained was 3,

3, 2, 3, 3, and 4, respectively. Table 5 fifth column presents the gain

values obtained by applying QDK algorithm on various data sets.

To be able to compare our clustering quality with the K-Means

algorithm, we adjusted the threshold parameter � to obtain the

same number of clusters (3 for AR3, 3 for AR4, 2 for AR5, 3 for Iris,

3 for SYD1, and 4 for SYD2) which gave maximum gain values for

K-means algorithm. Table 4 presents the prediction error analysis

for the QDK approach as compared to other approaches, namely,

two stage approaches with simple K-Means with six attributes

(KM), Catal et al. Two stage approach (CT) [1], Catal et al. Single

stage approach (CS) [1], Naı̈ve Bayes (NB) and Linear discriminant

analysis (DA) (with ten fold cross validation setting). QDK, KM,

CT, and CS approach, as well as NB and DA have considered six

attributes from the mentioned data sets.

To compare the performance of QDK for initialization of

K-Means, we have conducted experiments in which QDK and two

other initialization techniques GM (Likas et al. Global K-Means

algorithm [23], [24]) and DD (SAS 2004 [23], [25]) have been

executed. The distance parameter d for the DD algorithm has been

obtained by multiple runs to obtain the desired number of clusters.

These distance values have been mentioned in Table 5. The

parameters for evaluation are number of iterations (NOI) which

counts the number of iterations of K-Means to arrive at the

convergence criteria, Sum of squares error (SSE) [23], Gain and

percent Error. The results are presented in Table 5. To check the

applicability of density-based algorithms, we have implemented

and applied the DBSCAN algorithm [6] on all the three data sets.

The parameters MinPts (6) and eps (0.9) have been chosen

heuristically by experiment. C++ programs ware developed to

apply QDK, KM, GM, DD, and DBSCAN and to check the metrics

thresholds. The NB and DA results have been obtained using

DTREG (www.dtreg.com/DownloadDemo.htm) and WEKA

(http://www.cs.waikato.ac.nz/ml/weka/). In this study, all the

results were obtained using a desktop computer with 1 GB of

RAM, Intel Pentium 4, 1.3 GHz CPU, Windows XP professional

version 2002 Service Pack 1.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 6, JUNE 2012 1149

TABLE 3
Gain Values for Various Data Sets

C#: Number of clusters, � Maximum gain value.

TABLE 4
Software Fault Prediction Error Analyses

TABLE 5
Various Results of Different Initialization Techniques

�Values taken from the best of six runs.

5 ANALYSIS OF THE RESULTS

In Table 3 the maximum gain values obtained by multiple runs of
K-Means algorithm for different cluster values are shown in bold
face in each column. Table 5 fifth column shows the gain values
obtained by the QDK algorithm for the same optimal number of
clusters obtained by Table 3. These two values within each column
are comparable. In fact gain values for QDK are nearly close or
equal in all the cases except AR4 data set. This indicates that
cluster quality obtained by QDK is comparable with K-Means
algorithm. Table 4 presents the software fault prediction error
analysis for three data sets namely AR3, AR4, and AR5. The values
of FPR, FNR, and Error are presented for six techniques. The FPR
values for QDK algorithm are better than CT and CS for AR3, AR4,
and AR5 data sets and FNR values are same as CT and CS except
in the case of AR4 data sets. The overall error rates are better than
CT and CS for AR3, AR4 as well as AR5 data sets. Further, for AR4
and AR5 data sets, our approach is comparable to supervised
learning approaches NB and DA. The overall error for AR4 data set
is 12.14 for QDK and 10.20 for NB, while it 13.88 for both QDK and
NB in AR5 data set. The overall error for AR4 data set is better
(12.14) for QDK as compared to DA (14.00). The overall error for
AR5 is 13.88 for QDK and 13.80 for DA which is very close. The
percent Error of QDK is equal to that of KM for AR3 and AR5 data
sets while it performs better in AR4 data set with respect to KM.
Moreover, QDK performs better than CT and CS for all the data
sets. For comparison sake we also labeled the clusters by majority
labeling and the cluster labels matched exactly with the labels we
had earlier assigned by mean. However, we did not proceed with
this approach since it required inspecting all the data points in a
cluster while our method required only one data which is the mean
of the final clusters. Results of Table 5 show that the NOI for QDK
is best for all the data sets except AR5 data set. The SSE and Gain
values of QDK are equal or comparable for all data sets except
AR4. The DBSCAN algorithm was applied upon the three data sets
and the number of clusters obtained was 1, 2, and 2 for AR3, AR4,
and AR5 data sets, respectively. It may be noted from Table 3 that
the highest gain values for the three data sets were obtained at 3, 3,
and 2 clusters. Moreover, DBSCAN treats some of the data as
noise, for example, in AR3, AR4, and AR5 data sets 13, 1, 1 percent,
data, respectively, were treated as noise data.

6 CONCLUSION

In this paper, we have evaluated the effectiveness of Quad Tree-
based K-Means clustering algorithm in predicting faulty software
modules as compared to the original K-Means algorithm. Quad
Trees are applied for finding the initial cluster centers for K-Means
algorithm. In case the user intends to form a desired (sayK)
number of clusters for K-Means algorithm, the Quad Tree-based
algorithm can give K initial cluster centers to be used as input to
the simple K-Means algorithm. This is facilitated by varying the
value of the threshold parameter which is input to the Quad Tree
algorithm. The overall error rates of software fault prediction
approach by QDK algorithm are found comparable to other
existing algorithms and are presented in Table 4. In fact, in the case
of AR4 and AR5 data sets, the overall error rates of QDK are
comparable with the supervised learning approaches NB and DA.
The results of Table 5 show that the QDK algorithm works as an
effective initialization algorithm. The number of iterations of
K-Means algorithm is less in the case of QDK except for AR5, and
the SSE as well as percent Error also give fairly acceptable values.

ACKNOWLEDGMENTS

This research work has been partially funded by University Grant
Commission [F.No.: 33-61/2007 (SR)] under financial grants for
Major Research Project. The authors thank their postgraduate
student, Mr. Akhilesh K. Yadav, for his assistance.

REFERENCES

[1] C. Catal, U. Sevim, and B. Diri, “Clustering and Metrics Threshold Based
Software Fault Prediction of Unlabeled Program Modules,” Proc. Sixth Int’l
Conf. Information Technology: New Generations, pp. 199-204, 2009.

[2] S. Zhong, T.M. Khoshgoftaar, and N. Seliya, “Unsupervised Learning for
Expert-Based Software Quality Estimation,” Proc. IEEE Eighth Int’l Symp.
High Assurance Systems Eng., pp. 149-155, 2004.

[3] S. Zhong, T.M. Khoshgoftaar, and N. Seliya, “Analyzing Software
Measurement Data with Clustering Techniques,” IEEE Intelligent Systems,
vol. 19, no. 2, pp. 20-27, Mar./Apr. 2004.

[4] N. Seliya and T.M. Khoshgoftaar, “Software Quality Classification
Modeling Using the PRINT Decision Algorithm,” Proc. IEEE 14th Int’l
Conf. Tools with Artificial Intelligence, pp. 365-374, 2002.

[5] J. Han and M. Kamber, Data Mining Concepts and Techniques, second ed,
pp. 401-404. Morgan Kaufmann Publishers, 2007.

[6] M. Ester, H.P. Kriegel, J. Sander, and X.Xu., “A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise,” Proc.
Second Int’l Conf. Knowledge Discovery and Data Mining (KDD ’96), pp. 226-
231, 1996.

[7] http://archive.ics.uci.edu/ml/datasets/Iris, 2012.
[8] P.S. Bishnu and V. Bhattacharjee, “A New Initialization Method for K-

Means Algorithm Using Quad Tree,” Proc. Nat’l Conf. Methods and Models in
Computing (NCM2C), pp. 73-81, 2008.

[9] M. Laszlo and S. Mukherjee, “A Genetic Algorithm Using Hyper-Quadtrees
for Low-Dimensional K-Means Clustering,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 28, no. 4, pp. 533-543, Apr. 2006.

[10] D. Pelleg and A. Moore, “X-Means: Extending K-Means with Efficient
Estimation of the Number of Cluster,” Proc. 17th Int’l Conf. Machine
Learning, pp. 727-734, 2000.

[11] R. Marinescu, “Detection Strategies: Metrics-Based Rules for Detecting
Design Flaws,” Proc. 20th Int’l Conf. Software Maintenance, pp. 350-359, 2004.

[12] N. Seliya, T.M. Khoshgoftaar, and S. Zhong, “Analyzing Software Quality
with Limited Fault- Proneness Defect Data,” Proc. IEEE Ninth Int’l Symp.
High-Assurance Systems Eng., pp. 89-98, 2005.

[13] K.E. Emam, S. Benlarbi, and N. Goel, “Comparing Case Based Reasoning
Classifiers for Predicting High Risk Software Component,” J. Systems and
Software, vol. 55, no. 3, pp. 301-320, 2001.

[14] V. Bhattacherjee, P.K. Mohanti, and S. Kumar, “Complexity Metrics for
Analogy Based Effort Estimation,” J. Theoretical and Applied Information
Technology, vol. 6, no. 1, pp. 001-008, 2009.

[15] S. Vicinanza, M.J. Prietulla, and T. Mukhopadhyay, “Case Based Reasoning
in Software Effort Estimation,” Proc. 11th Int’l Conf. Information Systems.
pp. 149-158, 1990.

[16] V. Bhattacherjee and P.S. Bishnu, “Unsupervised Learning Approach to
Fault Prediction in Software Module,” Proc. Nat’l Conf. Computing and
Systems, pp. 101-108, 2010.

[17] S. Wang and M.P. Armstrong, “A Quad Tree Approach to Domain
Decomposition for Spatial Interpolation in Grid Computing Environment,”
J. Parallel Computing: High Performance Computing with Geographical Data:
vol. 29, no. 10, pp. 1481-1504, 2003.

[18] M.D. Berg, O. Cheong, M. Kreveld, and M. Overmars, Computational
Geometry Algorithms and Applications, third ed., pp. 309-315. Springer, 2008.

[19] R.A. Finkel and J.L. Bentley, “Quad Trees: A Data Structure for Retrieval on
Composite Key,” Acta information, vol. 4, no. 1, pp. 1-9, 1974.

[20] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the Number of
Clusters in a Dataset via the Gap Statistic,” J. Statistical Soc., vol. 63, no. 2,
pp. 411-423, 2001.

[21] Y. Jung, H. Park, and D.Z. Du, “A Decision Criterion for the Optimal
Number of Clusters in Hierarchical Clustering,” J. Global Optimization,
vol. 25, pp. 91-111, 2003.

[22] http://promisedata.org/, 2012.
[23] D. Steinley and M.J. Brusco, “Initializing K-Means Batch Clustering: A

Critical Evaluation of Several Techniques,” J. Classification, vol. 24, pp. 99-
121, 2007.

[24] A. Likas, N. Vlassis, and J. Verbeek, “The Global K-means Clustering
Algorithm,” Pattern Recognition, vol. 36, pp. 451-461, 2003.

[25] SAS, “The FASTCLUS Procedure,” in SAS/STAT 9.1 User’s Guide vol. 2,
Cary, NC, SAS Inst., Inc., 2004.

[26] P.S. Bishnu and V. Bhattacherjee, “Outlier Detection Technique Using Quad
Tree,” Proc Int’l Conf. Computer Comm. Control and Information Technology,
pp. 143-148, Feb. 2009.

[27] P.S. Bishnu and V. Bhattacherjee, “Application of K-Medoids with kd-Tree
for Software Fault Prediction,” ACM Software Eng. Notes, vol. 36, pp. 1-6,
Mar. 2011.

[28] V. Bhattacherjee and P.S. Bishnu, “Software Fault Prediction Using K-
Medoids Algorithm,” Proc. Int’l Conf. Productivity, Quality, Reliability,
Optimization and Modeling (ICPQROM ’11), p. 191, Feb. 2011.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

1150 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 6, JUNE 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

