
Expert Systems with Applications 40 (2013) 4812–4819
Contents lists available at SciVerse ScienceDi rect 

Expert Systems with Applic ations 

journal homepage: www.elsevier .com/locate /eswa
A non dominated ranking Multi Objective Genetic Algorithm and electre 
method for unequal area facility layout problems 
0957-4174/$ - see front matter � 2013 Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.eswa.2013.02.026

⇑ Corresponding author.
E-mail addresses: giada.lascalia@unipa.it, lascalia@dtpm.unipa.it (G. La Scalia).
Giuseppe Aiello, Giada La Scalia ⇑, Mario Enea 
Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, University of Palermo, Italy 
a r t i c l e i n f o

Keywords:
Facility layout problems 
Non-dominated Ranking Genetic Algorithm 
Slicing structure 
Electre method 
a b s t r a c t

The unequal area facility layout problem (UA-FLP) comprises a class of extremely difficult and widely 
applicable optimization problems arising in diverse areas and meeting the requirements for real-world 
applications. Genetic Algorithms (GAs) have recently proven their effectiveness in finding (sub) optimal 
solutions to many NP-hard problems such as UA-FLP. A main issue in such approach is related to the 
genet ic encoding and to the evolutionary mechanism implemented, which must allow the efficient explo- 
ration of a wide solution space, preserving the feasibility of the solutions and ensuring the convergence 
towards the optimum. In addition, in realistic situation s where several design issues must be taken into 
account, the layout problem falls in the broader frame work of multi-objective optimization problems. To
date, there are only a few multi-objective FLP approaches, and most of them employ over-simplified opti- 
mization techniques which eventually influence the quality of the solutions obtained and the perfor- 
mance of the optimization procedure. In this paper, this difficulty is overcome by approaching the 
problem in two subsequent steps: in the first step, the Pareto-optimal solutions are determined by
employing Multi Objective Genetic Algorithm (MOGA) implementing four separate fitness functions 
within a Pareto evolutionary procedure, following the general structure of Non-dominated Ranking 
Genetic Algorithm (NRGA) and the subsequent selection of the optimal solution is carried out by means 
of the multi-criteria decision-making procedure Electre. This procedure allows the decision maker to
express his preferences on the basis of the knowledge of candidate solution set. Quantitative and quali- 
tative objectives are considered referring to the slicing-tree layout representation scheme. The numerical 
results obtained outperform previous referenced approaches, thus confirming the effectiveness of the 
proce dure proposed.

� 2013 Published by Elsevier Ltd.
1. Introduction

The facility layout problem (FLP) is the determination of the
most efficient physical arrangem ent of a number of interacting 
facilities on the factory floor of a manufactur ing system in order 
to meet one or more objectives. Facilities usually represent the 
largest and most expensive assets of the organizati on and are of
crucial importance to the organizati on (Nordin, Zainuddin, Salim,
& Ponnusamy, 2009 ). Tompkins et al. (1996) estimate that between 
20% and 50% of operating cost can be attributed to facility planning 
and material handling., and such costs can be reduced considerably 
by an effective layout design. Several heuristic approaches have 
been proposed in the literature in the recent years to find (sub-)
optimal solutions to the FLP, including simulated annealing algo- 
rithms, tabu search methods , neural networks and genetic algo- 
rithms (GAs). According to Sirinaova kul and Thajchayapong 
(1994), a frequent drawback of such algorithms is that they do
not explore enough possibilit ies while generating their solutions 
thus being extremely sensitive to the initial solution. Heragu and 
Alfa (1992) sited these algorithms as local optimization algorithms 
which, once hit an unattractive region, had no way of backing out 
and exploring other regions. Glover and Greenberg (1989) noted
that reliable heuristic algorithms are not sensitive to their initial 
solutions and that an exhaustive search of the solution space can 
be achieved by parallel processin g. This should avoid the search 
procedure to be trapped into inferior solution regions. A GA is a
stochasti c search techniqu e based on the concept of the survival 
of the best, emulating the mechanisms of the Darwinian evolution,
thus achieving a sub-optim al solution via recursive operation s of
crossove r and mutation (Holland, 1975; Michalewi cz, 1992 ). Most 
of the studies conducted in FLPs have focused on a single objective,
either quantitative or qualitative goodness of the layout (Tuzkaya
& Ertay, 2004 ). In contrast, practical FLPs involve several conflicting
objectives . Therefore, both quantitative and qualitativ e objectives 
must be considered simultaneou sly before arriving at any conclu- 
sion. A layout that is optimal with respect to a given criterion 
might be a poor candidate when another criterion is paramount.
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In general, minimization of the total material handling (MH) cost is
often used as the optimizati on criterion in FLPs. The closeness rat- 
ing, hazardous movement, safety, and the like are also important 
criteria in FLPs. In fact, these qualitative factors have significant
influence on the final layout and should give considerati on. Conse- 
quently, the FLP falls into the category of multi-objecti ve optimiza- 
tion problem (MOOP). Multi-ob jective optimization is a techniqu e
to treat several objectives simultaneously without converting them 
into one. The objective of MOOPs is to find a set of Pareto-optima l
solutions, which are the superior solutions when considering all 
the objectives. In MOOPs, the absolute optimal solution is absent 
and the designer must select a solution that offers the most profit-
able trade-off between the objectives as an alternative. Thus, in- 
stead of offering a single solution, it is more realistic and 
appropriate to generate a number of ‘‘good’’ layouts that meet sev- 
eral criteria laid down by the facility designer and let decision 
makers choose between them based on the current requirement.
Presumably, the most comprehens ive way to take all these features 
into consideration in the selection process is to personall y involve 
the decision maker(s) in the selection process, which is the 
procedure adopted in the Interactive Genetic Algorithms (Brintup,
Takagi, Tiwari, & Ramsden, 2006 ) which have been recently applied 
to FLP (Hernandez, Morera, & Azofra, 2011 ). Such procedure, how- 
ever, may expose the decision maker to a time consuming activity,
and may result unpractical in many contexts, where a structured 
and transparent decision making is required. In such cases a fully 
automated procedure is preferred to select at least a set of best 
solution candidates, thus allowing the decision maker to evaluate 
a limited number of alternatives . For such purpose the different 
objectives are frequently combined into a single one by means of
some aggregat ion procedures such as in the weighted sum method.
The drawbacks of these methodologi es are well documented in the 
multi-objecti ve decision theory, as well as the benefits of a ‘‘true’’
multi-objecti ve exploration of the solution space, resulting from a
Pareto based approach. Pareto approaches (Goldberg , 1989 ) in- 
volve the evolution of the Pareto front constituted by the fitness
of a generic individua l correspondi ng to each optimalit y criterion 
considered. It has been recognized the GAs belonging to this class 
generally outperform the non-Pareto Based approaches (Tamaki,
Kita, & Kobayashi , 1996; Zitzler & Thiele 1999 ). The methodology 
here proposed refers to the class of Pareto-based and is developed 
according to the framework of non-dominated sorting GA (NSGA)
proposed by Srinivas and Deb (1995). More specifically, in this pa- 
per we propose a novel Multi Objective Genetic Algorithm (MOGA)
to solve the facility layout problem considering four separate 
objectives based on an advanced encoding structure in order to en- 
sure an efficient exploration of the search space. The objectives 
considered are commonly employed in the literature (Aiello, La
Scalia, & Enea, 2012; Harmonosk y & Tothero, 1992; Meller &
Gau, 1996; Srinivas & Deb 1995 ), namely the minimization of the 
total Material Handling Cost the distance and the closeness 
requiremen ts among the department s, and the desired aspect ra- 
tio. Addition ally, the presence of feasibility constraints, required 
to ensure the practicability of the solution determined, may signif- 
icantly hamper the convergence of the algorithm, which conse- 
quently requires a solid and efficient structure. In particular , it is
well known that the very basic and most crucial component of a
GA is related to the solution representation (i.e. the chromosom e
encoding scheme), as it significantly affects the overall perfor- 
mance of the algorithm and the quality of the solutions obtained 
(Datta, Amaral, & Figueira, 2011 ). In order to be implemented in
a genetic algorithm, a layout representat ion scheme must be en- 
coded into a string form, suitable for being employed within the 
common genetic operator s such as mutation and crossove r. The 
simplifications introduced in the layout representat ion in order 
to cope with these requirements, and to ensure that a chromosom e
can be easily decoded to a unique layout scheme, generally restrict 
the flexibility of the representation , thus limiting the feasible 
search space. The two general mechanism s reported in the litera- 
ture for constructing such layouts are the flexible bay structure 
(FBS) developed by Goetschalckx (1992), and the more recent slic- 
ing tree structure (Arapoglu, Norman, & Smith, 2001; Moghaddam 
& Shayan, 1998 ). The slicing structure results from dividing an ini- 
tial rectangle either in horizontal or vertical direction completely 
from one side to the other (guillotine cut) and recursively going 
on with the newly generate d rectangles (Scholz, Jaehn, & Junker 
2010). The Multi Objective Genetic Algorithm (MOGA) here pro- 
posed is hence based on a slicing tree encoding in order to ensure 
an efficient convergence towards the Pareto frontier, outperform -
ing the current referenced approaches. Finally, the best block lay- 
out is determined by employin g the well known multi-criter ia
decision- making procedure Electre. The remainder of this paper 
is organized as follows. Section 2 describes the genetic algorithm 
impleme nted in this study for the facility layout problem and in
particular the ranking procedure adopted. To show performanc e
of the suggested algorithm, comparative experiments are done in
Section 3. In Section 4 the best solution is determined by means 
the Electre method and Section 5 concludes the paper with a short 
summary of the results obtained.
2. Genetic Algorithm 

A lot of optimal and heuristic algorithms for solving FLPs have 
been develope d in the past few decades. The majority of these ap- 
proaches adopt a problem formulat ion known as the quadratic 
assignment problem (QAP) that is particularly suitable for equal 
area facilities. The main drawback of these approaches is that geo- 
metric constraints, e.g. unequal sizes of facilities, are not taken into 
account. In such situations, random search algorithms are the only 
practicab le alternative, although they may just lead to a near-opti- 
mal solution. In its classical formulat ion the UA-FLP involves the 
minimiza tion of the total material handling cost, however the 
needs of the real world of dealing with several design criteria such 
as the space utilization, flexibility, employee satisfaction and safety 
emerged already in the early stages of research (Muther & Boston,
1973). Consequently, to be more realistic, some researche rs have 
considered more than a single objective in their solution approach 
to the UA-FLP. The presence of multiple objectives in a single opti- 
mization problem, however , significantly affects the optimization 
procedure since, for example, it gives rise not only to a single opti- 
mal solution but to a set of optimal solutions (largely known as
Pareto-op timal solutions). In the absence of any additional infor- 
mation, each one of these Pareto-optima l solutions cannot be said 
to outperfor m any other. Classical optimization methods (includ-
ing the multi-criteria decision-ma king methods) suggest convert- 
ing the multi-objecti ve optimizati on problem to a single- 
objective optimization problem thus emphasizing one particular 
Pareto optimal solution. According to this concept several authors 
combine the different objectives into a single one for example 
by means of Analytic Hierarch y Process (AHP) methodology 
(Harmonosk y & Tothero, 1992; Yang & Kuo, 2003 ) or using a linear 
combinati on of the different objectives (Chen & Sha, 2005 ). Lee,
Roh, and Jeong (2005) propose a genetic algorithm (GA) for multi- 
floor design consideri ng inner walls and passages, using the 
weighted method approach to minimize the department al material 
handling cost and maximizing closeness rating. A similar approach 
is proposed by Ye and Zhou (2007), who developed a hybrid GA- 
Tabu search (TS) algorithm. Over the past two decades, more ad- 
vanced researche s have led to the formulation of multi-objective 
evolutionary algorithms (MOEAs) (Coello et al., 2007; Day, 2005;
Deb, 2001 ), with the objective to find multiple Pareto-op timal 
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Fig. 1. Flow chart of GA optimization procedure.
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solutions in a single run. In fact, since evolutionary algorithms 
work with a population of solutions, they can be extended to main- 
tain a diverse set of solutions within the same optimization pro- 
cess. As a consequence in the recent years a number of different 
GAs were suggested to solve multi-objective optimization prob- 
lems. These approaches resulted in the developmen t of MOGAs 
with different structures, namely: MOGA-III (Fonseca & Fleming,
1993), SPEA2 (Zitzler, Laumanns, & Thiele, 2001 ), NSGA-II (Deb,
Pratap, Agarwal, & Meyarivan, 2002 ), NSGA (Srinivas and Deb,
1995), NPGA (Horn, Nafploitis, & Goldberg , 1994 ), MOMGA (Van
Veldhuizen & Lamont, 2000 ). In this paper, a Non-domi nated Rank- 
ing Genetic Algorithm (NRGA) Al Jadaan, Rajamani, and Rao (2008)
is proposed, involving a random population P to be sorted based on
the non-domina tion of individuals. Each individual is assigned a
fitness (or rank) equal to its non-dominatio n level (1 is the best le- 
vel, 2 is the next-bes t level, and so on). The usual Ranked based 
Roulette wheel selection, recombinati on, and mutation operators 
are used subsequently to create an offspring population. The NRGA 
developed operates through the following structure : at each itera- 
tion the objective functions are evaluated and the population is
ranked, subsequently N/2 couples are selected for crossover, gener- 
ating two offspring from each couple of parents. The population 
thus obtained involves 2N elements, which are ranked according 
to their dominance level and the first N elements are selected to
create the new generation. Subsequently the mutation operator 
is applied with a specific probabili ty, and a clone control routine 
is employed . The process is iterative until a specific stopping crite- 
rion (e.g. the maximum number of iterations) is reached. The 
scheme of the genetic search process used in this paper is summa- 
rized in figure (Fig. 1).

2.1. Diversity mechanism and raking procedure 

A crucial aspect that drastically affects the convergence of a
MOGA is the procedure for the selection of best individuals in
the population. Being a Pareto-Bas ed approach, the ranking proce- 
dure here employed is referred to the degree of dominan ce.
According to this approach, first non-dominated individuals within 
the population are identified, they are given the rank 1, and re- 
moved from the population. Then, the non-dominated individuals 
within the reduced population are identified and given the rank 
2, followed by their removal from the population. This procedure 
is repeated until the whole population is ranked The correspondi ng
macro-code is reported in the figure below (Fig. 2).

The least dominated solutions thus determined survive to make 
the population of the next generation. It must be pointed out that 
individuals belonging to the non-dominated front cannot be fur- 
ther differentiate d (and ranked) unless an additional elitism mech- 
anism is introduced. On one hand this means that the population 
size must be big enough to involve the whole set of non-dominated 
solutions, and to maintain the population well differentiated, while 
on the other hand this suggests the employment of specific opera- 
i =0, rank =0, dom=0; Nranked =0; 
while (Nranked<N)  
 {Increase rank;
  For each element i in the population  

{dom=0; 
For each j element in the
If  dom=0  

{assign rank to 
increase Nranke
} 

   } 
  }

Fig. 2. The rankin
tors to maintain a good spread of solutions. For such reason addi- 
tional elitism mechanis m can be introduce d, for example in NSGA- 
II the crowded-co mparison approach is used along with the 
crowded -comparison operator. The algorithm here presente d
hence includes a distance-ba sed elitist mechanism and a clone 
control routine which counts the clones in the population and 
operates a recursive mutation until the mutated element is differ- 
ent from all the others. This is performed until the number of
clones is null or lower than a pre-established acceptance threshold.

3. Benchmark ing procedure 

The facilities layout problem is characterized by an extremely 
wide solution space, consequently iterative heuristics can inevita- 
bly explore a limited number of solutions. Therefore any solution 
procedure offered so far, is able to cover solution space only partly.
Addition ally the objectives, the constraints, the data structure and 
the evolutionary mechanis ms vary from one application to the 
other thus making the benchmarking of the performanc e a tough 
issue. In this paper we propose a benchmarki ng procedure based 
on the comparison with a previously proposed algorithm, and a
performanc e analysis considering different setup configurations.
 population If (j dominates i) then dom =1; 

element i; 
d; 

g macrocode.
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In order to validate the proposed algorithm, we consider the 
case from Aromur and Buffa (1963) to undertake experiments 
and comparisons , and the solutions obtained by Wanga, Hub, and 
Kub (2005), as benchmark values. Desired department al areas,
product flows between department s and material handling costs 
are given by the authors and reported below (Tables 1–3).

It must be pointed out that the reference case and the solution 
proposed are referred to a single objective considering the material 
handling cost only, with a penalty function on the shape and area 
ratio. The solutions we determined are on the contrary referred to
the multi-object context previously described, with a feasibility 
constraint on the aspect ratio. The features of the AR functions,
the values of the closeness/dista nce ratings, and the mutation 
Table 1
Desired departmental areas for the case considered.

Facility 1 2 3 4 5 6 7 8 9 10
Area 27 18 27 18 18 18 9 9 9 24

Table 2
Departments flows.

Dep 1 2 3 4 5 6 7 8 9 10

1 0 120 80 0 0 0 0 0 0 40
2 120 0 80 1630 30 0 930 0 80 90
3 80 80 0 0 0 130 0 0 210 260 
4 0 1630 0 0 60 380 500 0 130 0
5 0 30 0 60 0 0 150 90 0 60
6 0 0 130 380 0 0 410 0 0 0
7 0 930 0 500 150 410 0 1600 0 110 
8 0 0 0 0 90 0 1600 0 0 0
9 0 80 210 130 0 0 0 0 0 0

10 40 90 260 0 60 0 110 0 0 0
11 80 0 0 0 0 0 0 0 0 30
12 0 0 0 70 0 30 0 0 0 800 
13 0 0 0 0 0 0 0 40 0 0
14 80 0 870 0 0 0 60 0 500 1240 
15 0 0 0 0 90 0 0 0 0 160 
16 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 500 0
18 0 0 0 100 0 70 110 0 0 0
19 0 460 910 1050 0 0 0 500 0 350 
20 0 0 0 0 0 0 250 2230 0 0

Table 3
Departments material handling cost.

Dep 1 2 3 4 5 6 7 8 9 10

1 0 0.015 0.015 0 0 0 0 0 0 0.026 
2 0.015 0 0.012 0.015 0.026 0 0.015 0 0.015 0.015 
3 0.015 0.012 0 0 0 0.017 0 0 0.015 0.015 
4 0 0.015 0 0 0.018 0.015 0.015 0 0.018 0
5 0 0.026 0 0.018 0 0 0.015 0.015 0 0.026 
6 0 0 0.017 0.015 0 0 0.015 0 0 0
7 0 0.015 0 0.015 0.015 0.015 0 0.015 0 0.017 
8 0 0 0 0 0.015 0 0.015 0 0 0
9 0 0.015 0.015 0.018 0 0 0 0 0 0
10 0.026 0.015 0.015 0 0.026 0 0.017 0 0 0
11 0.014 0 0 0 0 0 0 0 0 0.012 
12 0 0 0 0.020 0 0.015 0 0 0 0.015 
13 0 0 0 0 0 0 0 0.015 0 0
14 0.015 0 0.015 0 0 0 0.016 0 0.015 0.015 
15 0 0 0 0 0.015 0 0 0 0 0.012 
16 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0.015 0
18 0 0 0 0.015 0 0.015 0.015 0 0 0
19 0 0.015 0.015 0.015 0 0 0 0.015 0 0.015 
20 0 0 0 0 0 0 0.015 0.015 0 0
and crossover mechanism s are those previously employed in Aiello
et al. (2012), while the most significant genetic parameters are gi- 
ven in the table below (Table 4).

The comparison clearly refers to the material handling cost 
function only, calculated by using the flow informat ion of unit 
loads and the manhattan distances between the centroids of the 
department s. The results, given in Table 5, have been determined 
in unconstrained conditions initially, and subsequent ly the AR con- 
straint has been enforced. In both cases the proposed algorithm 
outperfor ms the reference results, with 16.5% cost reduction in
the first case and 33.6% in the second, and these values are reached 
in approximat ely 650 iterations. Computati on has been performed 
employin g a general purpose workstation , with a computati onal 
11 12 13 14 15 16 17 18 19 20
60 42 18 24 27 75 64 41 27 45

11 12 13 14 15 16 17 18 19 20

80 0 0 80 0 0 0 0 0 0
0 0 0 0 0 0 0 0 460 0
0 0 0 870 0 0 0 0 910 0
0 70 0 0 0 0 0 100 1050 0
0 0 0 0 90 0 0 0 0 0
0 30 0 0 0 0 0 70 0 0
0 0 0 60 0 0 0 110 0 250 
0 0 40 0 0 0 0 0 500 2230 
0 0 0 500 0 0 500 0 0 0

30 800 0 1240 160 0 0 0 350 0
0 150 0 200 80 1500 350 90 0 0

150 0 0 0 110 0 1000 0 560 0
0 0 0 500 40 500 0 40 0 0

200 0 500 0 650 0 0 60 0 0
80 110 40 650 0 0 350 0 0 0

1500 0 500 0 0 0 1000 0 0 0
350 1000 0 0 350 1000 0 0 500 0

90 0 0 60 0 0 0 0 310 0
0 560 0 0 0 0 500 310 0 0
0 0 0 0 0 0 0 0 0 0

11 12 13 14 15 16 17 18 19 20

0.014 0 0 0.015 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.015 0
0 0 0 0.015 0 0 0 0 0.015 0
0 0.020 0 0 0 0 0 0.015 0.015 0
0 0 0 0 0.015 0 0 0 0 0
0 0.015 0 0 0 0 0 0.015 0 0
0 0 0 0.016 0 0 0 0.015 0 0.015 
0 0 0.015 0 0 0 0 0 0.015 0.015 
0 0 0 0.015 0 0 0.015 0 0 0
0.012 0.015 0 0.015 0.012 0 0 0 0.015 0
0 0.015 0 0.015 0.012 0.015 0 0 0.015 0
0.015 0 0 0 0.015 0 0.015 0 0.015 0
0 0 0 0.016 0.026 0.012 0 0 0 0
0.015 0 0.016 0 0.015 0 0 0.015 0 0
0.012 0.015 0.026 0.015 0 0 0.015 0 0 0
0 0 0.012 0 0 0 0.012 0 0 0
0 0.015 0 0 0.015 0.012 0 0 0.015 0
0 0 0 0.015 0 0 0 0 0.015 0
0.015 0.015 0 0 0 0 0.015 0.015 0 0
0 0 0 0 0 0 0 0 0 0



Table 4
Comparisons of the results.

Most significant genetic parameters 

Mutation probability 40%
Population size 50
Number of generations 2500 
Number of clones 2

Table 5
Comparisons of the results.

Wanga et al.
(2005)

Proposed GA Proposed GA
(constrained)

Material handling 
cost (MHC)

5926.6 3092.34 
(�47.82%)

3900 (�33.6%)

Aspect ratio (AR) – – 0.74 
Closeness request – 1077.26 1336 
Distance request – 15.29 13.1 
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time less than one minute (the determinati on of a reliable value for 
the computational time would require specific machine- time anal- 
ysis which is outside the scope of this paper).

The block layouts of the optimal solutions generated by means 
the proposed algorithm are reported in the figures below. The first
layout (Fig. 3(a)) refers to the case in which only the total material 
(a)

Fig. 3. Block layouts corresponding to the optimal solution

.

.

.

.

.

.

. . .

Fig. 4. Evolution progres
cost is considered and it shows the presence of three department s,
7, 8 and 9 with a bad aspect ratio. On the other hand, adding the 
objective function related to the aspect ratio (Fig. 3(b)) the corre- 
sponding layout has changed substantially and the MHC, still 
shows an improvem ent compared to the reference case.

In Fig. 3, the department s having an adjacency and distance re- 
quests are highlighted in light grey and dark grey areas,
respectivel y.

Addition ally, the evolution of Pareto-fr ont obtained taking into 
account the objective functions related to the material handling 
cost and to the aspect ratio has been determined. In this case,
the set of all the non-dom inated elements in the population (i.e.
the Pareto front) has been extracted in each step, and four repre- 
sentative cases at different stages of evolution progress (namely
500, 1000, 1500 and 2500 iteration s) are reported in Fig. 4. The re- 
sults show that in the initial steps of the evolution, the Pareto 
fronts are not clearly defined, and they may even overlap with each 
other. As the population evolves, however, better solutions are 
generate d and the frontier moves to the upper right corner, in a
clear distingui shable way.
4. Selection with electre 

Electre is a multi-criteri a decision-ma king procedure that can 
be applied when a set of alternatives must be ranked according 
(b)

s in constrained (a) and un-constrained (b) conditions.

. .

s of the Pareto front.
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to a set of criteria reflecting the decision maker’s preferences . Rela- 
tionships between alternatives and criteria are described using 
attributes referred to the aspects of alternatives that are relevant 
according to the established criteria. In multi-criter ia decision 
problems, although logical and mathematical conditions required 
to determine an optimum do not exist, a solution representing a
good compromi se according to the conflicting criteria established 
can be individua ted. Electre method is based upon pseudo-criteria.
A pseudo-criterion allows, by using proper thresholds, to take into 
account the uncertainty and ambiguity that can affect the evalua- 
tion of the performanc e, so that, if the difference in the perfor- 
mance of two alternatives is minimal, according to a certain 
criterion, such alternatives can be considered indifferent accordin g
to that criterion. Another peculiarity which differentiate s Electre 
from other methodologi es is that it is not compens ative, which 
means that a very bad score in one objective function is not com- 
pensated by good scores in other objectives. In other words, the 
decision maker will not choose an alternative if it is very bad com- 
pared to another one, even on a single criterion. This occurs if the 
difference between the values of an attribute of two alternatives is
greater than a fixed veto threshold. Electre is based upon outran- 
king relations: an alternative a outranks another alternative b if
sufficient reasons exist to assert that a is as good as b and good rea- 
sons to reject such assertion do not exist. Outranking is therefore 
based upon concordance/d iscordance principle, which consists in
the verification of the existence of a concordanc e of criteria in favor 
of the assertion that an alternative is as good as another one, and 
upon the verification that strong discordance among the score val- 
ues that may reject the previous assertion does not exist. For each 
criterion, the following thresholds are introduced:

qj – indifference threshold,
pj – preference threshold,
vj – veto threshold,

where qj 6 pj 6 vj.
By means of these thresholds, the following six preferenc e rela- 

tions between alternatives a and b may be established, referring to
the values gj(a) and gj(b) of the attribute j:

(1) (a I b)j – a is indifferent to b with respect to the criterion j if
jgjðaÞ � giðbÞj 6 qj;

(2) (a WP b)j – a is weakly preferred to b with respect to the cri- 
terion j if;qj 6 gjðaÞ � gjðbÞ 6 pj;

(3) (a SP b)j – a is strongly preferred to b with respect to the cri- 
terion j if gjðaÞ � gjðbÞP pj;

(4) (a NR b)j – the assertion that a outranks b cannot be refused 
with respect to the criterion j ifgjðbÞ � gjðaÞ 6 pj;

(5) (a WR b)j – the assertion that a outranks b is weakly refused 
with respect to the criterion j if pj < gjðbÞ � gjðaÞ 6 mj;

(6) (a SR b)j – the assertion that a outranks b is strongly refused 
with respect to the criterion j if gjðbÞ � gjðaÞ > mjj:

For each criterion, thresholds (qj, pj and vj) can either be fixed
values or functions of the performanc e, accordin g to the expression 
SjðaÞ ¼ agiðaÞ þ bpj ð1Þ

The relations related to the minimization of the material han- 
dling cost and the maximization of the adjacency and the distance 
between the department s are named ‘‘concordan ce’’ relations and 
are used to evaluate the reasons favorable to the assertion that 
alternative a outranks alternativ e b, accordin g to criterion j.
Expressions related to the aspect ratio are named ‘‘discordance’’
expressions and are used to measure the strong reasons that lead 
to reject the assertion that a outranks b with respect to criterion 
j. Concordance, indicated by cj(a,b), is equal to 1 if gj(a) is greater
than gj(b) or, in any case, expression (1) is verified, is equal to 0
if gjðbÞ � gjðaÞP pj;, while it is evaluated by the following equation 
when qj 6 gjðbÞ � gjðaÞ 6 pj :

Cjða; bÞ ¼
pj þ gjðaÞ � gjðbÞ

pj � qj
ð2Þ

Discorda nce, indicated with dj(a,b), is 0 when expression re- 
lated to the aspect ratio is verified, 1 when expression aspect 
ratio =

Q
arsi is verified (arsi, represents the aspect ratio satisfac- 

tion function) while it is expressed by the following equation when 
expression aspect ratio = min(arsi) is verified:

djða; bÞ ¼
gjðbÞ � gjðaÞ � pj

v j � pj
ð3Þ

For each pair of alternatives a and b, the values of concordanc e
cj(a,b) with respect to each criterion j, are aggregated in the global 
concordanc e matrix, by means of a weight kj assigned to each cri- 
terion. The generic element of such a matrix is expresse d by:

Cða; bÞ ¼
X

j

kjcjða; bÞ ð4Þ

A further step consists in the definition of the credibility of ‘‘a 
outranks b’’, that summarizes the information expressed by con- 
cordance and discordance:

Sða; bÞ ¼

Cða; bÞ
If djða; bÞ 6 cða; bÞ 8j

Cða; bÞ
Y

8j jdjða;bÞ>cða;bÞ

1�djða;bÞ
1�cða;bÞ

8>>><
>>>:

ð5Þ

The next step of the method is the so-called descending distilla- 
tion: on the basis of the credibility parameter, the alternatives are 
ranked in descending order. A further threshold is considered:

k ¼max
8a;b

Q j ð6Þ

A credibility level k0, less but close to k, is established so that the 
interval (k–k0) can be considered as an indifference interval of
credibility. A Boolean matrix is then calculated as follows:

Bða; bÞ ¼
18a; bjsða; bÞ > k0

0 otherwise

�
ð7Þ

Finally, for each alternative i, the difference Q(i) between the 
number of alternatives j that are outranked by alternative i at level 
k0 or higher (i.e. the alternativ es j having B(i, j) = 1) and the number 
of alternativ es k that outrank the alternative i, at level k0 or higher 
(i.e. the alternatives k having B(k, i) = 1), is calculated. The first dis- 
tillates are the alternatives i having

QðiÞ ¼max
8a;b

Q j: ð8Þ

If the set containing all the alternatives, for which the previous 
relation is verified, has a cardinali ty higher than 1, the described 
procedure is applied recursively until the set contains only one 
alternativ e or a group of alternatives that cannot be differentiated 
further. In this last case, an ascending distillation can be applied,
ranking the alternativ es in ascending order. This new ranking, cou- 
pled with that obtained by descending distillation, leads to a un- 
ique final ranking. Among the different versions of the Electre 
method, Electre III (Roy, 1996 .) has been employed.

4.1. Electre parameters 

The values of the thresholds required by Electre method have 
been calculated as percentage of the value of the respective 



Table 6
The best solution obtained by means Electre III.

Solution Chromosome Aspect ratio Handling cost Adjacency Distance

1 0-0-0-0-0-15-8-7-6-4-1-20-11-19-2-16-9-5-14-17-10-12-3-18-13 0.71 5128 150 1227
2 0-0-0-0-0-1-11-20-15-8-7-6-19-9-4-2-17-16-12-5-3-14-10-18-13 0.69 6211 91.5 2218

Fig. 5. Block layout corresponding to the optimal solutions.
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objective function. In particular, a difference less or equal than 15%
has been considered indifferent, while preference and veto thresh- 
olds have been fixed equal to 30% and 50%, respectively . The 
weights of the objectives are assumed all equal to 1.

4.2. Results 

The feasible and non-domina ted solutions with rank 1, obtained 
by the genetic algorithm, are in number of 6 on a population of 50
individuals. These solutions constitute the Electre input, which, by
ascending and descending distillatio n procedure, has given the 
best solution. The structure of the solution obtained is reported 
in Table 6 and the correspondi ng layouts are shown in Fig. 5. The 
department s having an adjacency and distance requests are high- 
lighted in the same grey scale used in Fig. 3.
5. Conclusions

The unequal area FLP has been an emerging topic in the recent
years. A large volume of current research in unequal area FLPs has 
been conducte d to satisfy both quantitative and qualitative aspects 
in the layout. In particular the topic of the Multi Objective optimi- 
zation problems approached by Genetic Algorithms is nowadays 
one of the most promising and investigated research field. The 
proposed approach is capable of finding in a first phase a set of
Pareto-optima l layouts that optimizes the objective functions 
simultaneou sly througho ut the entire evolutionary process, giving 
the decision maker a restricted number of solutions among which 
he can chose those that he considers the best. This choice is simpli- 
fied by the employment of a structured multi-criteria decision pro- 
cedure. In this phase only, the decision maker must provide further 
information on the problem also on the basis of the results 
obtained in the previous step. The proposed approach falls 
within the search before multi-critera decision category. Such 
methodology is generally preferable compared with traditional 
multi-objecti ve optimization algorithms named multi-criteri a
decision-ma king before search, which rely upon the establishment 
of a normalized weight vector.

The benefits of the proposed method have emerged in the com- 
parison with referenced results. Further improvem ents of the pro- 
posed methodology will include the development of a more 
comprehens ive procedure to approach the decision process,
including the aspects related to the intrinsic uncertainty and refer- 
ring to the typical methodologies of the approximat e reasoning,
such as the fuzzy theory.
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