
ENERGY AND BUILDINGS 1 

 

Accurate quantitative estimation of energy 
performance of residential buildings using 

statistical machine learning tools 
Athanasios Tsanas, Angeliki Xifara 

Abstract—We develop a statistical machine learning framework to study the effect of eight input variables (relative 

compactness, surface area, wall area, roof area, overall height, orientation, glazing area, glazing area distribution) on two output 

variables, namely heating load (HL) and cooling load (CL), of residential buildings. We systematically investigate the association 

strength of each input variable with each of the output variables using a variety of classical and non-parametric statistical 

analysis tools, in order to identify the most strongly related input variables. Then, we compare a classical linear regression 

approach against a powerful state of the art nonlinear non-parametric method, random forests, to estimate HL and CL. 

Extensive simulations on 768 diverse residential buildings show that we can predict HL and CL with low mean absolute error 

deviations from the ground truth which is established using Ecotect (0.51 and 1.42, respectively). The results of this study 

support the feasibility of using machine learning tools to estimate building parameters as a convenient and accurate approach, 

as long as the requested query bears resemblance to the data actually used to train the mathematical model in the first place. 

Index Terms—Building energy evaluation, Heating load, Cooling load, Non-parametric statistics, Statistical machine learning 

——————————      —————————— 

1 INTRODUCTION 

 
HERE has been a considerable body of research on the 
topic of energy performance of buildings (EPB) recently 

due to growing concerns about energy waste and its per-
ennial adverse impact on the environment [1], [2]. Moreo-
ver, buildings in European countries are legally bound to 
conform to appropriate minimum requirements regarding 
energy efficiency following the European Directive 
2002/91/EC [1]. Reports suggest that building energy con-
sumption has steadily increased over the past decades 
worldwide [3], [4], and heating, ventilation and air condi-
tioning (HVAC), which have a catalytic role in regulating 
the indoor climate [5], account for most of the energy use in 
the buildings [6]. Therefore, one way to alleviate the ever 
increasing demand for additional energy supply is to have 
more energy-efficient building designs with improved en-
ergy conservation properties. 

When it comes to efficient building design, the compu-
tation of the heating load (HL) and the cooling load (CL) is 
required to determine the specifications of the heating and 
cooling equipment needed to maintain comfortable indoor 
air conditions. In order to estimate the required cooling 
and heating capacities, architects and building designers 
need information about the characteristics of the building 

and of the conditioned space (for example occupancy and 
activity level), the climate, and the intended use (residen-
tial buildings have generally different requirements com-
pared to industrial buildings).  

Building energy simulation tools are currently widely 
used to analyze or forecast building energy consumption, 
in order to facilitate the design and operation of energy 
efficient buildings since practice has shown that the results 
of the simulations can often accurately reflect actual meas-
urements [7]. Simulation tools are used extensively across 
diverse disciplines because they enable experimentation 
with parameters that would otherwise be infeasible, or at 
least very difficult to control in practice [8]. In the context 
of building energy design for example, simulations could 
facilitate the comparison of identical buildings where only 
a single parameter is modified across a range of possible 
values to investigate its effects on some observed quantity 
of interest. For an overview and comparison of building 
simulation tools we refer to Yezioro et al. [7] and to Craw-
ley et al. [9]. 

Using advanced dedicated building energy simulation 
software may provide reliable solutions to estimate the 
impact of building design alternatives; however this pro-
cess can be very time-consuming and requires user-
expertise in a particular program. Moreover, the accuracy 
of the estimated results may vary across different building 
simulation software [7]. Hence, in practice many research-
ers rely on machine learning tools to study the effect of 
various building parameters (e.g. compactness) on some 
variables of interest (e.g. energy) because this is easier and 
faster if a database of the required ranges of variables is 
available [10], [11], [2]. Using statistical and machine learn-
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ing concepts has the distinct advantage that distilled exper-
tise from other disciplines is brought in the EPB domain, 
and by using these techniques it is extremely fast to obtain 
answers by varying some building design parameters once 
a model has been adequately trained. Moreover, statistical 
analysis can enhance our understanding offering quantita-
tive expressions of the factors that affect the quantity (or 
quantities) of interest that the building designer or architect 
may wish to focus on. Therefore, the integration of ma-
chine learning in EPB has sparked enormous interest lately.  

Various machine learning techniques such as polynomi-
al regression [11], support vector machines (SVM) [10], [12] 
artificial neural networks (ANN) [13], [14], and decision 
trees [2] have been explored to predict various quantities of 
interest in the context of EPB. Machine learning tools have 
also been explicitly used in predicting HL and CL. Catalina 
et al. [11] used polynomial regression (including up to 
quadratic terms) to predict monthly heating demand for 
residential buildings. They used as inputs for the regres-
sion model the building shape factor, the envelope U-
value, the window-to-floor area ratio, the building time 
constant, and climate. Wan et al. [15] studied the impact of 
climate change on HL and CL for office buildings in China. 
Schiavon et al. [16] focused on the influence of raised floor, 
structure type, window-to-wall ratio and the presence of 
carpet to determine CL for different zones, and reported 
that orientation and the presence of carpet are the most 
important predictors. Li et al. [12] forecast hourly building 
CL based mainly on preceding environmental parameters. 
Of particular interest to this study, HL and CL have been 
associated with variables such as relative compactness (RC) 
[17], climate [15], surface area, wall area, and roof area [16], 
[17], orientation [16], [17], and glazing [17]. The rationale 
for studying these variables is that designers and engineers 
have found that they are correlated with energy perfor-
mance, and HL and CL in particular. 

Many studies in the general research area of EPB have 
made rigid simplifying mathematical assumptions relying 
on linear correlations and classical least squares regression 
techniques, tools which are known to be ill-suited for many 
complicated applications where normality assumptions do 
not hold. Other studies have used complicated machine 
learning tools, but have failed to rigorously examine the 
available data (data mining), for example to report which 
variables are the most important for the particular problem 
addressed, thus failing to leverage on important infor-
mation that can be inferred when using statistical tools. 

In this study, we investigate the effect of eight input var-
iables: (RC), surface area, wall area, roof area, overall 
height, orientation, glazing area, and glazing area distribu-
tion, to determine the output variables HL and CL of resi-
dential buildings. Those eight variables have been fre-
quently used in the EPB literature to study energy-related 
topics in buildings, and this study builds on the work of 
Pessenlehner and Mahdavi [17] who used those particular 
eight variables to investigate their effect on HL. We statisti-
cally formally explore the data, provide meticulous statisti-
cal analysis to gain important insight of the underlying 

properties of input and output variables, and use robust 
classical regression and state of the art nonlinear and non-
parametric statistical machine learning tools (random for-
ests) to map the input variables to HL and CL. 

2 DATA 

Taking the elementary cube (3.5 × 3.5 × 3.5) we generated 
12 building forms where each building form is composed of 
18 elements (elementary cubes). The simulated buildings 
were generated using Ecotect. All the buildings have the 
same volume, which is 771.75 m3, but different surface areas 
and dimensions. The materials used for each of the 18 ele-
ments are the same for all building forms. The selection was 
made by the newest and most common materials in the 
building construction industry and by the lowest U-value. 
Specifically, we used the following building characteristics 
(the associated U-values appear in parenthesis): walls 
(1.780), floors (0.860), roofs (0.500), windows (2.260). The 
simulation assumes that the buildings are in Athens, Greece, 
residential with seven persons, and sedentary activity (70W). 
The internal design conditions were set as follows: clothing: 
0.6 clo, humidity: 60%, air speed: 0.30 m/s, lighting level: 300 
Lux. The internal gains were set to sensible (5) and latent (2 
W/m²), while the infiltration rate was set to 0.5 for air 
change rate with wind sensitivity 0.25 air changer per hour. 
For the thermal properties we used mixed mode with 95% 
efficiency, thermostat range 19 oC – 24 oC, with 15-20 hours 
of operation on weekdays and 10-20 hours on weekends. 

We used three types of glazing areas, which are ex-
pressed as percentages of the floor area: 10%, 25%, and 40%. 
Furthermore, five different distribution scenarios for each 
glazing area were simulated: 1) uniform: with 25% glazing 
on each side, 2) north: 55% on the north side and 15% on 
each of the other sides, 3) east: 55% on the east side and 15% 
on each of the other sides, 4) south: 55% on the south side 
and 15% on each of the other sides, and 5) west: 55% on the 
west side and 15% on each of the other sides. In addition, we 
obtained samples with no glazing areas. Finally, all shapes 
were rotated to face the four cardinal points. 

Thus, considering twelve building forms and three glaz-
ing area variations with five glazing area distributions each, 
for four orientations, we obtained 12 × 3 × 5 × 4 = 720 
building samples. In addition, we considered twelve build-
ing forms for the four orientations without glazing. There-
fore, in total we studied 12 × 3 × 5 × 4 + 12 ∗ 4 = 768 
buildings. Each of the 768 simulated buildings can be charac-
terized by eight building parameters (to conform to standard 
mathematical notation and facilitate the analysis in this 
work, henceforth these building parameters will be called 
input variables and will be represented with X) which we are 
interested in exploring further. Also, for each of the 768 
buildings we recorded HL and CL (henceforth these param-
eters will be called output variables and will be represented 
with y). Table 1 summarizes the input variables and the out-
put variables in this study, introduces the mathematical rep-
resentation for each variable, and indicates the number of 
possible values. 
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Simulating building energy aspects is a widely used ap-
proach despite the fact that it is impossible to guarantee that 
the simulation findings will perfectly reflect actual data in 
the real world (here HL and CL). Nevertheless, the simulat-
ed results provide good indication of the likely percentage 
change and any underlying trend of the actual data, ena-
bling energy comparisons of buildings [15]. That is, even if 
the data used in this study obtained via the simulations 
could be biased in some way, they represent actual real data 
with high probability and as such will be considered as 
ground truth. Moreover, any inconsistency in the simulated 
data and actual real-world data does not affect whatsoever 
the methodology developed in this study. 

3 METHODS 

This Section briefly summarizes the data-driven statistical 
concepts and the machine learning techniques which are 
used to analyze the data.  
 

3.1 Figures and Tables 

The first step in most data analysis applications is the ex-
ploration of the statistical properties of the variables. This is 
typically achieved by plotting the probability densities, 
which succinctly summarize each variable for visualization. 
One way to obtain an empirical non-parametric density es-
timate is by using histograms. Although histograms are con-
sidered crude for most advanced statistical applications, 
they have the great advantage of making no prior assump-
tions regarding the distribution of the examined variable 
and are very simple to compute. Often, this preliminary step 
can reveal whether the variable follows a Gaussian (normal) 
distribution, which is characterized by a unimodal peak in 
the middle of the variable’s possible range of values, is com-
pletely symmetric, and is particularly useful because a large 
number of mathematical functions are applicable [18]. 
Moreover, we present scatter plots for each input variable 
with each of the two output variables. For simplicity, scatter 
plots often use normalized data (i.e. all the variables are 
normalized to lie between 0 and 1) to facilitate comparison 

between measures that possibly span orders of magnitude 
different ranges of values [22]. 

The data is non-Gaussian, so we used the Spearman rank 
correlation coefficient to obtain a statistical metric regarding 
the association strength of each input variable with each of 
the two outputs [19]. The Spearman rank correlation coeffi-
cient can characterize general monotonic relationships and 
lies in the range [-1 1], where negative sign indicates inverse-
ly proportional and positive sign indicates proportional rela-
tionship, whilst the magnitude denotes how strong this rela-
tionship is. In addition, we evaluate whether this relation-
ship is statistically significant using p-values, and check for 
significance at the 0.01 level. Moreover, we used the mutual 
information (MI) [20] which can be used to quantify any 
arbitrary relationships between the input and output varia-
bles. Because MI is not upper bounded we normalize it to lie 
in the range [0 1] (see Tsanas et al. [21] for details). The larger 
the MI value, the stronger the association strength between 
the two variables. 

3.2 Statistical mapping of the input variables to the 
output variables 

Given 𝑁 samples (here 𝑁 = 768) and 𝑀 input variables 
(here 𝑀 = 8), we construct a matrix X ϵ ℝ ×  which in-
cludes the available information in compact matrix for-
mat:  

𝐗 = [

𝑥  ⋯ 𝑥  

⋮ ⋱ ⋮
𝑥  ⋯ 𝑥  

] 

 
This is typically associated with a response variable 

vector 𝑦 ϵ ℝ ×  and we need to find the functional rela-
tionship f to relate X and 𝑦 (here 𝑦 is either HL or CL) 
such that 𝑦 = f(X). For convenience in later analysis, we 
denote 𝑦1 to represent HL, and 𝑦2 to represent CL. The 
tool that performs the functional mapping is commonly 
referred to as learner in the machine learning literature. In 
this study, we approach the problem of inferring this 
functional relationship from two perspectives (i.e. we use 
two learners): a standard robust linear regression tech-
nique, and a powerful nonlinear non-parametric classifi-

TABLE 1 

Mathematical representation of the input and output variables to facilitate the presentation of the subsequent analy-

sis and results. 

Mathematical representation Input or output variable Number of possible values 

X1 Relative Compactness 12 
X2 Surface Area 12 
X3 Wall Area 7 
X4 Roof Area 4 
X5 Overall Height 2 
X6 Orientation 4 
X7 Glazing area 4 
X8 Glazing area distribution 6 
y1 Heating Load 586 
y2 Cooling Load 636 

Following the classical mathematical convention, we use X to denote input variables and y to denote output varia-
bles. Although 768 different buildings were simulated, in some cases the output variables of different buildings 
might coincide. The probability densities for each variable are shown in Figure 1. 
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er. Given that the output variables span a continuous 
range of values, using a regression technique may seem 
obvious; the use of a classification tool may initially seem 
counterintuitive. However, in practice it may be conven-
ient to discretize the output variable and treat the given 
application as a multi-class classification problem because 
there are powerful classification tools available. For a re-
cent study that demonstrated the potential of this concept 
(discretizing an originally continuous valued output vari-
able and using multi-class classification tools to deter-
mine the functional relationship) see Tsanas et al. [21]. 
 

3.2.1 Iteratively reweighted least squares 

The simplest and most common regression method is the 
ordinary least squares method. However, in many applica-
tions the residuals often depart markedly from the Gaussian 
distribution (these points are known as outliers), and for this 
reason it is good practice to use a slightly more complicated 
method, the iteratively reweighted least squares (IRLS). In 
short, IRLS adjusts weights in the coefficients of the classical 
regression scheme to lessen the effect of the outliers in pro-
ducing the fitting curve, and provide an improved least 
squares estimate. We refer to Bishop [18] and to Tsanas et al. 
[22] for more technical details. 

 
 

 

3.2.2 Classification using Random Forests 

In many practical applications it is possible that the in-
puts exhibit a complicated functional relationship to deter-
mine the output. The classification and regression tree 
(CART) method is a conceptually simple, yet powerful non-
linear method that often provides excellent results [22], [23]. 
CART works by successively splitting the input feature 
space into smaller and smaller sub-regions. This procedure 
can be visualized as a tree that splits into successively small-
er branches, each branch representing a sub-region of the 
input variable ranges. The tree grows until it is not possible 
to split it any more or a certain criterion has been met. A 
natural extension of CART is random forests (RF), which is 
simply a collection of many trees [24]. The training proce-
dure is the same as in CART with the difference that a ran-
domly chosen subset of candidate variables can be used to 
select the optimal variable for each split; practice has shown 
the RF algorithm works extremely well in many diverse ap-
plications [21], [24]. 

Moreover, RF have the desirable ability of promoting 
the most important input variables towards predicting 
the output variable as part of their inherent learning 
strategy [23]. This wrapper aspect is particularly useful in 
practical applications pointing the input variables that are 
particularly well suited with the RF learner for the de-

 

 

 

 

 

 

 

 

Fig. 1. Probability density estimates using histograms of (a) the eight 
input variables, and (b) the two output variables. 

 

 

 

 

 

 

 

 

Fig. 2. Scatter plot demonstrating visually the relationship between 
each normalized input variable and the normalized outputs a) the 
heating load, or b) the cooling load. 
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signed problem. In this study we do not explore the 
wrapper aspect of RF to actually select features in order to 
use the selected subset as input into the learner (for a re-
cent application of this see [25]), but merely use this 
property to report the most strongly associated input var-
iables with the output variables. We stress that variable 
importance is not assessed for each variable independently; 
instead, it is jointly assessed for the feature subset used in 
the RF, making use of relevance (association strength of 
variable and response), redundancy (association strength 
between variables), and complementarity (joint association 
strength of variables with the response) concepts. Effec-
tively, this means that highly correlated variables (which 
exhibit high correlations between/amongst variables) are 
penalised and hence the redundant variables are not as-
signed large importance even though they may be highly 
correlated with the response [24]. Further particulars on 
CART and RF can be found in Hastie et al. [23]. 
 
3.2.3 Cross-validation and model generalization 

Having trained the learner, it is necessary to test its 
generalization performance, i.e. the performance we can 
expect in a new dataset with similar characteristics. We 
use cross validation (CV), a standard statistical re-
sampling technique. Specifically, the dataset is split into a 
training subset with which the learner is trained, and a 
testing subset which is used to assess the learner’s gener-
alization performance. Typically some percentage of the 

data is left out for testing the learner, and this is known as 
K-fold CV, where K is usually 5 or 10 [23]. In this study, 
we used 10-fold CV. The model parameters are derived 
using the training subset, and errors are computed using 
the testing subset (out-of-sample error or testing error). 
For statistical confidence, the training and testing process 
is repeated 100 times with the dataset randomly permut-
ed in each run prior to splitting in training and testing 
subsets. On each test repetition, we record the mean abso-
lute error (MAE), the mean square error (MSE), and the 
mean relative error (MRE) for both training and testing 
subsets. In all cases we report the out-of sample error. 

 
MAE =

1

𝑆
∑|𝑦 − �̂� |

   

 (1) 

 
MSE =

1

𝑆
∑|𝑦 − �̂� |

 

   

 (2) 

 
MRE = 100 ∙

1

S
∑|𝑦 − �̂� | 𝑦 ⁄

   

 (3) 

where �̂�  is the predicted output variable and 𝑦  is the 
actual output variable for the ith entry in the training or 
testing subset, 𝑆 is the number of samples in the training 
or testing subset, and Q contains the indices of that set. 
Errors over the 100 CV realisations were averaged.  The 
MAE has often been used in recent studies that relied on 
decision trees and RF because of its ease of interpretation 

TABLE 2 

Association strength estimated using the mutual information and the Spearman rank correlation coefficient of the 

eight input variables (X1. . . X8) with heating load (𝑦 ). 

Input variable Mutual information 
(normalized) 

Spearman rank correla-
tion coefficient 

p-value 

X1 0.605 0.622 <0.001 
X2 0.602 -0.622 <0.001 
X4 0.567 -0.804 <0.001 
X5 0.548 0.861 <0.001 
X3 0.402 0.471 <0.001 
X7 0.149 0.323 <0.001 
X8 0.051 0.068 fail (p>0.05) 
X6 0 -0.004 fail (p>0.05) 

 
 

TABLE 3 

Association strength estimated using the mutual information and the Spearman rank correlation coefficient of the 

input variables (X1. . . X8) with cooling load (𝑦 ). 

Input variable Mutual information 
(normalized) 

Spearman rank correla-
tion coefficient 

p-value 

X1 0.616 0.651 <0.001 
X2 0.615 -0.651 <0.001 
X4 0.612 -0.803 <0.001 
X5 0.59 0.865 <0.001 
X3 0.423 0.416 <0.001 
X7 0.092 0.289 <0.001 
X8 0.028 0.046 fail (p>0.05) 
X6 0.001 0.018 fail (p>0.05) 
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[21], [22], whilst the MSE is commonly used in domains 
relying on minimizing the least squares (e.g. in IRLS). 
Moreover, the MAE has often been used in some EPB-
related studies, e.g. [7].  

4 RESULTS 

This Section applies the methodology outlined in Sec-
tion 3 for the input and output variables. 

 
4.1 Statistical analysis 

Figure 1 presents the empirical probability distribu-
tions of all the input and output variables. These distribu-

tions demonstrate that none of the variables follows the 
normal distribution. Figure 2 displays the scatter plots for 
each of the (normalized) input variables with each of the 
two output variables. These scatter plots show that any 
functional relationship of the input variables and the out-
put variables is not trivial. This suggests that we can rea-
sonably expect that classical learners such as linear re-
gression may fail to find an accurate mapping of the input 
variables to the output variables. Therefore, these plots 
intuitively justify the need to experiment with complicat-
ed learners such as RF. 

Table 2 and Table 3 report the association strength 
(quantified using MI and the rank correlation coefficient) 

TABLE 8 

Importance of the input variables as determined by the 

RF for the output variables. 

Measure Importance for y1 Importance for y2 

X1 50.51 ± 1.15 43.74 ± 1.11 

X2 50.41  ± 1.41 43.55 ± 1.08 

X3 40.16  ± 1.09 32.16  ± 0.83 

X4 20.40  ± 0.95 20.12  ± 0.87 

X5 8.97  ± 0.68 9.41  ± 0.72 

X6 18.51 ± 0.44 22.03  ± 0.48 

X7 93.12  ± 1.50 86.92  ± 1.58 

X8 38.84  ± 0.94 39.07 ± 0.97 
The importance was computed for each of the 100 cross-
validation repetitions. The results are given in the form mean ± 
standard deviation. 

TABLE 6 

Out of sample MSE for predicting the output variables 

when all the input variables are fed into the IRLS or RF 

learner, using 10-fold cross-validation with 100 repeti-

tions. 

 IRLS RF 

y1 9.87 ± 2.41 1.03 ± 0.54 

y2 11.46 ± 3.63 6.59 ± 1.56 
MSE stands for Mean Squared Error, a metric which is robust to 
outliers in the data, and which is easy to interpret.  The results are 
given in the form mean ± standard deviation.  

 

TABLE 5 

Out of sample MAE for predicting the output variables 

when all the input variables are fed into the IRLS or RF 

learner, using 10-fold cross-validation with 100 repeti-

tions. 

 IRLS RF 

y1 2.14 ± 0.24 0.51 ± 0.11 

y2 2.21 ± 0.28 1.42 ± 0.25 
MAE stands for Mean Absolute Error, a metric which is robust to 
outliers in the data, and which is easy to interpret.  The results are 
given in the form mean ± standard deviation.  

 

TABLE 4 

Correlation matrix using Spearman rank correlations between the eight input variables. 

 X1 X2 X3 X4 X5 X6 X7 X8 

X1 1 -1 -0.256 -0.871 0.869 0 0 0 

X2 -1 1 0.256 0.871 -0.869 0 0 0 

X3 -0.256 0.256 1 -0.193 0.221 0 0 0 

X4 -0.871 0.871 -0.193 1 -0.937 0 0 0 

X5 0.869 -0.869 0.221 -0.937 1 0 0 0 

X6 0 0 0 0 0 1 0 0 

X7 0 0 0 0 0 0 1 0.188 

X8 0 0 0 0 0 0 0.188 1 

 
 

 

TABLE 7 

Out of sample MRE for predicting the output variables 

when all the input variables are fed into the IRLS or RF 

learner, using 10-fold cross-validation with 100 repeti-

tions. 

 IRLS RF 

y1 10.09 ± 1.01 2.18 ± 0.64 

y2 9.41 ± 0.80 4.62 ± 0.70 
MRE stands for Mean Relative Error, a metric which is robust to 
outliers in the data, and which is easy to interpret.  The results are 
given in the form mean ± standard deviation.  
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for each input variable with HL and with CL, respective-
ly. From these results we infer that the first five input var-
iables appear reasonably strongly associated with the 
output variables. Table 4 presents the covariance matrix 
which denotes the rank correlations between input varia-
bles. The results in this Table indicate that X1 (RC) and X2 
(surface area) are inversely proportional, which is because 
in our simulations we have assumed that the volume of 
the buildings is constant (there is an analytic formula 
linking the surface area to RC and volume). Interestingly, 
the results in Table 4 reveal that some of the input varia-
bles are also highly correlated, for example X4 (roof area) 
and X5 (height). As we intuitively expected, these varia-
bles are almost inversely proportional, which is revealed 
from the sign and the magnitude of the rank correlation 
coefficient (-0.937). 
 

4.2 Cross-validation results using IRLS and RF 

Having completed the preliminary statistical analysis 
which provides important insight into the association 
strength of the input variables with the output variables, we 
study how accurate the actual statistical mapping is report-
ing out-of-sample errors. The IRLS coefficients for predicting 
HL are presented in Eq. (4), and the IRLS coefficients for 
predicting CL are presented in Eq. (5). We present the mean 
value of each IRLS coefficient over the 100 CV iterations: all 
coefficients were very stable across the 100 iterations. 

 𝐼𝑅𝐿𝑆 𝐿 = −4.75 ∙ X1 − 0.03 ∙ X2 + 0.07 ∙ X3 + 0

∙ X4 − 3.44 ∙ X5 − 0.01 ∙ X6

+ 18.13 ∙ X7 + 0.09 ∙ X8 

(4) 

 𝐼𝑅𝐿𝑆 𝐿 = −9.02 ∙ X1 − 0.01 ∙ X2 + 0.04 ∙ X3 + 0

∙ X4 − 4.30 ∙ X5 + 0.12 ∙ X6

+ 14.49 ∙ X7 + 0.03 ∙ X8 

(5) 

Tables 5, 6 and 7 present the out-of-sample MAE, MSE, 
and MRE of predicting the two output variables. Collective-
ly, these results suggest that it is possible to estimate HL and 
CL very accurately simply using the eight variables that this 
study makes use of. Not unexpectedly, RF demonstrates 
consistently superior performance since the underlying rela-
tionships are quite complicated to be adequately captured 
by a simple linear learner. Finally, Table 8 presents the im-
portance of the input variables estimated using RF. Interest-
ingly, the importance results in Table 8 suggest that X7 (glaz-
ing area) is the most important predictor for both HL and 
CL. To verify these findings and further support our confi-
dence on those results, we introduce an artificial probe in the 
original design matrix (a random Gaussian variable) which 
is a standard methodology in the RF literature [26]. Hence, 
we now have the original eight variables and an additional 
(non-predictive) variable. We have repeated the learning 
process with the nine variables, and found that the artificial 
probe exhibits considerably lower importance score com-
pared to the most predictive original variables (as expected). 

The findings in Table 8 are in broad agreement with those 
inferred from observing the IRLS coefficients. Although we 
caution against the direct interpretation of variable im-
portance in a linear regression setting due to collinearity 
problems, in some cases we can infer which variables may 
be most predictive of the response by looking at the associat-

ed IRLS coefficients. From Eqs. (4) and (5) we see that X7 
appears to have the largest coefficient, verifying the results 
in Table 8 suggesting that this variable may be indeed most 
predictive of both HL and CL. We elaborate further on this 
finding in the Discussion section. 

5 DISCUSSION 

We have developed a comprehensive framework to 
study HL and CL using a range of diverse input variables 
which included compactness, orientation and glazing 
properties. We demonstrated that we can accurately esti-
mate HL with only 0.5 points deviation and CL with 1.5 
points deviation from the ground truth (the simulated 
results). These findings are particularly compelling given 
the accurate prediction, and also because we can easily 
infer the output variables in a matter of few seconds 
without requiring the painstaking design of a new build-
ing in a simulation tool such as Ecotect. We remark that 
the values provided by Ecotect for HL and CL are consid-
ered to reflect the true actual values; a detailed compari-
son of the provided output values from different simula-
tion programs is beyond the scope of this study. Moreo-
ver, the presented methodology is applicable regardless 
of the simulation program that generates values which 
are believed to be accurate. 

We explored the statistical relationship between eight 
input variables (RC, surface area, wall area, roof area, 
overall height, orientation, glazing area, glazing area dis-
tribution) and the two output variables (HL and CL). The 
statistical tools used here indicate that RC, wall area and 
roof area appear mostly associated with HL and CL. We 
remark that the surface area is inversely proportional to 
RC in this study because of the assumption we made 
when performing the building simulations; hence, we do 
not elaborate further on discussing both variables.  

We argue that the statistical analysis methodology pre-
sented in this study provides essential insight into the 
given problem, and is unfairly skipped in most papers in 
the literature in this discipline. For example, the density 
plots and the scatter plots give ample evidence that linear 
techniques are not appropriate for the available data in 
this application. However, it is well known that statistical 
correlation should not be conflicted with causality. For 
that reason, in addition to statistically formally exploring 
the data with rank correlation coefficients and MI, we 
have computed the importance of the variables using RF. 
Interestingly, the most important variable (glazing area) 
is not the most correlated with either output variable. 
From an engineering perspective, it can be intuitively 
understood that the glazing area is of paramount signifi-
cance to determine EPB. This is because the amount of 
glazing determines the heat absorbed in a building due to 
the sun, and similarly glazing is a source of heat leakage 
from the building to the environment. 

The findings of this study agree with those in the ma-
chine learning literature strongly endorsing the use of RF 
in complex applications [21]. The RF massively outper-
formed IRLS in finding an accurate functional relation-
ship between the input and output variables. Classical 
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regression settings (such as IRLS) may fail to account for 
multi-collinearity, where variables appear to have large 
magnitude but opposite side sign coefficients with regard 
to predicting the response [23]. On the contrary, the deci-
sion tree mechanism (and as an extension RF) optimizes 
the selection of the variable for each split, and thus can 
internally account for redundant and interacting variables 
[23], [24], [26]. Therefore, the problem of collinearity in RF 
is implicitly solved as part of the internal optimisation 
algorithm. The nature of the EPB topic where different 
authors introduce different input variables to study simi-
lar but different output variables in their simulations hin-
ders direct comparisons amongst studies. Therefore, we 
tentatively approach this subject when referring to previ-
ously published works of other researchers. In general, 
the reported errors are similar to errors reported in the 
literature in the EPB domain, for example see [7], [10], 
and [11]. Similarly to Wan et al. [15] (Table 7 in that 
study), HL can be estimated more accurately than CL (see 
Tables 5-7). This may be slightly surprising given that the 
univariate association strength of the eight variables with 
HL and CL is very similar (see Tables 2 and 3). We tenta-
tively suggest that HL is estimated with considerably 
greater accuracy than CL because some of the variables in 
this study interact more efficiently to provide an estimate 
of HL. More formal tests need to be carried out to provide 
additional insight into this aspect of the dataset. 

We believe the results of this study strongly caution 
against blindly using widely available mathematical tools 
which often rely on normality of the data. The methodol-
ogy presented here is very general and could, in princi-
ple, be extended to encompass additional input variables 
(for example some of the parameters assumed constant 
such as the climate or occupancy could be introduced as 
input variables). Similarly, additional output variables 
could be studied using the approach developed in this 
study. We envisage the proposed method finding use as a 
simple, off-the-shelf approach to obtain accurate esti-
mates of heating load and cooling load. 
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