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The combination of forecasts resulting from an ensemble of neural networks has been shown to outper-
form the use of a single ‘‘best’’ network model. This is supported by an extensive body of literature, which
shows that combining generally leads to improvements in forecasting accuracy and robustness, and that
using the mean operator often outperforms more complex methods of combining forecasts. This paper
proposes a mode ensemble operator based on kernel density estimation, which unlike the mean operator
is insensitive to outliers and deviations from normality, and unlike the median operator does not require
symmetric distributions. The three operators are compared empirically and the proposed mode ensemble
operator is found to produce the most accurate forecasts, followed by the median, while the mean has
relatively poor performance. The findings suggest that the mode operator should be considered as an
alternative to the mean and median operators in forecasting applications. Experiments indicate that
mode ensembles are useful in automating neural network models across a large number of time series,
overcoming issues of uncertainty associated with data sampling, the stochasticity of neural network
training, and the distribution of the forecasts.
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1. Introduction

With the continuing increase in computing power and availabil-
ity of data, there has been a growing interest in the use of artificial
Neural Networks (NNs) for forecasting purposes. NNs are typically
used as ensembles of several network models to deal with sam-
pling and modelling uncertainties that may otherwise impair their
forecasting accuracy and robustness. Ensembles combine forecasts
from the different models that comprise them. This paper proposes
a new fundamental ensemble operator for neural networks that is
based on estimating the mode of the forecast distribution, which
has appealing properties compared to established alternatives.

Although the use of ensembles is nowadays accepted as the
norm in forecasting with NNs (Crone, Hibon, & Nikolopoulos,
2011), their performance is a function of how the individual fore-
casts are combined (Stock & Watson, 2004). Improvements in the
ensemble combination operators have direct impact on the result-
ing forecasting accuracy and the decision making that forecasts
support. This has implications for multiple forecasting applications
where NN ensembles have been used. Some examples include di-
verse forecasting applications such as: economic modelling and
policy making (Inoue & Kilian, 2008; McAdam & McNelis, 2005),
financial and commodities trading (Bodyanskiy & Popov, 2006;
Chen & Leung, 2004; Versace, Bhatt, Hinds, & Shiffer, 2004; Yu,
Wang, & Lai, 2008; Zhang & Berardi, 2001), fast-moving consumer
goods (Trapero, Kourentzes, & Fildes, 2012), tourism (Pattie &
Snyder, 1996), electricity load (Hippert, Pedreira, & Souza, 2001;
Taylor & Buizza, 2002), temperature and weather (Langella, Basile,
Bonfante, & Terribile, 2010; Roebber, Butt, Reinke, & Grafenauer,
2007), river flood (Campolo, Andreussi, & Soldati, 1999) and
hydrological modelling (Dawson & Wilby, 2001), climate (Fildes &
Kourentzes, 2011), and ecology (Araújo & New, 2007) to name a
few. Zhang, Patuwo, and Hu (1998) lists multiple other forecasting
applications where they have been employed successfully.

NN ensembles are fundamental for producing accurate forecasts
for these various applications; hence, improvements in the con-
struction of the ensembles are important. In this paper, the perfor-
mance of the proposed mode operator is investigated together
with the two existing fundamental ensemble operators: the mean
and the median. Two different datasets, having in total 3443 real
time series, are used to empirically evaluate the different opera-
tors. Furthermore, ensembles of both training initialisations and
sampling (bagging) are used to investigate the performance of
the operators. The proposed operator is found to be superior to
established alternatives. Moreover, the robustness and good per-
formance of the median operator is validated. The findings provide
useful insights for the application of NNs in large scale forecasting
systems, where robustness and accuracy of the forecasts are
equally desirable.

The rest of the paper is organised as follows: Section 2 discusses
the benefits of NN ensembles and the limitations of the established
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ensemble operators. Section 3 introduces multilayer perceptrons
that will be used for this paper and Section 4 discusses the three
fundamental ensemble operators and presents the proposed meth-
od for mode ensembles. Sections 5 and 6 discuss the experimental
design and the results, respectively, followed by a discussion of the
findings in Section 7.
2. Forecasting with neural networks

Over the last two decades there has been substantial research in
the use of NNs for forecasting problems, with multiple successful
applications (Zhang et al., 1998). Adya and Collopy (1998) found
that NNs outperformed established statistical benchmarks in 73%
of the papers reviewed. NNs are flexible nonlinear data driven
models that have attractive properties for forecasting. They have
been proven to be universal approximators (Hornik, Stinchcombe,
& White, 1989; Hornik, 1991), being able to fit to any underlying
data generating process. NNs have been empirically shown to be
able to forecast both linear (Zhang, 2001) and nonlinear (Zhang,
Patuwo, & Hu, 2001) time series of different forms. Their attractive
properties have led to the rise of several types of NNs and applica-
tions in the literature (for examples, see Connor, Martin, & Atlas,
1994; Efendigil, Önüt, & Kahraman, 2009; Khashei & Bijari, 2010;
Zhang et al., 1998).

While NNs powerful approximation capabilities and self-adap-
tive data driven modelling approach allow them great flexibility
in modelling time series data, it also complicates substantially
model specification and the estimation of their parameters. Direct
optimisation through conventional minimisation of error is not
possible under the multilayer architecture of NNs and the back-
propagation learning algorithm has been proposed to solve this
problem (Rumelhart, Hinton, & Williams, 1986), later discussed
in the context of time series by Werbos (1990). Several complex
training (optimisation) algorithms have appeared in the literature,
which may nevertheless be stuck in local optima (Hagan, Demuth,
& Beale, 1996; Haykin, 2009). To alleviate this problem, training of
the networks may be initialised several times and the best network
model selected according to some fitting criteria. However, this
may still lead to suboptimal selection of parameters depending
on the fitting criterion, resulting in loss of predictive power in
the out-of-sample set (Hansen & Salamon, 1990). Another chal-
lenge in the parameter estimation of NNs is due to the uncertainty
associated with the training sample. Breiman (1996a) in his work
on instability and stabilization in model selection showed that sub-
set selection methods in regression, including artificial neural net-
works, are unstable methods. Given a data set and a collection of
models, a method is defined as unstable if a small change in the
data results in large changes in the set of models.

These issues pose a series of challenges in selecting the most
appropriate model for practical applications and currently no uni-
versal guidelines exist on how best to do this. In dealing with the
first, the NN literature has strongly argued, with supporting empir-
ical evidence, that instead of selecting a single NN that may be sus-
ceptible to poor initial values (or model setup), it is preferable to
consider a combination of different NN models (Barrow, Crone, &
Kourentzes, 2010; Ben Taieb, Bontempi, Atiya, & Sorjamaa, 2012;
Crone et al., 2011; Hansen & Salamon, 1990; Versace et al., 2004;
Zhang & Berardi, 2001). Naftaly, Intrator, and Horn (1997) showed
that ensembles across NN training initialisations of the same mod-
el can improve accuracy while removing the need for identifying
and choosing the best training initialisation. This has been verified
numerous times in the literature (for example, see Zhang & Berardi,
2001). These ensembles aim at reducing the parameter uncertainty
due to the stochasticity of the training of the networks. Instead of
relying on a single network that may be stuck to a local minima
during its training, with poor forecasting performance, a combina-
tion of several networks is used. In the case of uncertainty about
the training data, Breiman (1996b) proposed Bagging (Bootstrap
aggregation and combination) for generating ensembles. The basic
idea behind bagging is to train a model on permutations of the ori-
ginal sample and then combine the resulting models. The resulting
ensemble is robust to small changes in the sample, alleviating this
type of uncertainty. Recent research has lead to a series of studies
involving the application of the Bagging algorithm for forecasting
purposes with positive results in many application areas (Chen &
Ren, 2009; Hillebrand & Medeiros, 2010; Inoue & Kilian, 2008;
Langella et al., 2010; Lee & Yang, 2006). Apart from improving
accuracy, using ensembles also avoids the problem of identifying
and choosing the best trained network.

In either case, neural network ensembles created from multiple
initialisations or from the application of the Bagging algorithm, re-
quire the use of an ensemble combination operator. The forecast
combination literature provides insights on how to best do this.
Bates and Granger (1969) were amongst the first to show signifi-
cant gains in forecasting accuracy through model combination.
Newbold and Granger (1974) showed that a linear combination
of univariate forecasts often outperformed individual models,
while Ming Shi, Da Xu, and Liu (1999) provided similar evidence
for nonlinear combinations. Makridakis and Winkler (1983) using
simple averages concluded that the forecasting accuracy of the
combined forecast improved, while the variability of accuracy
amongst different combinations decreased as the number of meth-
ods in the average increased. The well known M competitions pro-
vided support to these results; model combination through
averages improves accuracy (Makridakis et al., 1982; Makridakis
& Hibon, 2000). Elliott and Timmermann (2004) showed that the
good performance of equally weighted model averages is con-
nected to the mean squared error loss function, and under varying
conditions optimally weighted averages can lead to better accu-
racy. Agnew (1985) found good accuracy of the median as an oper-
ator to combine forecasts. Stock and Watson (2004) considered
simple averages, medians and trimmed averages of forecast, find-
ing the average to be the most accurate, although one would ex-
pect the more robust median or trimmed mean to perform
better. On the other hand, McNees (1992) found no significant dif-
ferences between the performance of the mean and the median.
Kourentzes, Petropoulos, and Trapero (2014) showed that combin-
ing models fitted on data sampled at different frequencies can
achieve better forecasting accuracy at all short, medium and long
term forecast horizons, and found small differences in using either
the mean or the median.

There is a growing consensus that model combination has
advantages over selecting a single model not only in terms of accu-
racy and error variability, but also simplifying model building and
selection, and therefore the forecasting process as a whole. None-
theless, the question of how to best combine different models
has not been resolved. In the literature there are many different
ensemble methods, often based on the fundamental operators of
mean and median, in an unweighted or weighted fashion. Barrow
et al. (2010) argued that the distribution of the forecasts involved
in the calculation of the ensemble prediction may include outliers
that may harm the performance of mean-based ensemble fore-
casts. Therefore, they proposed removing such elements from the
ensemble, demonstrating improved performance. Jose and Winkler
(2008) using a similar argument advocated the use of trimmed and
winsorised means. On the other hand, median based ensembles,
are more robust to outliers and such special treatment may be
unnecessary. However, the median, as a measure of central ten-
dency is not robust to deviations from symmetric distributions.
The median will merely calculate the middle value that separates
the higher half from the lower half of the dataset, which is not
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guaranteed to describe well the location of the distribution of the
forecasts that are used to construct the ensemble.

Taking a different perspective, ensembles provide an estimate
of where most forecasts tend to be. Mean and median are merely
measures of the central tendency of the forecast distribution. In
the case of normal distribution these coincide. Outliers and devia-
tions from normality harm the quality of the estimation. An appar-
ent alternative, that in theory is free of this problem, is the mode.
This measure of central tendency has been overlooked in the com-
bination literature because of its inherent difficulty in estimating it
for unknown distributions. This paper exploits the properties of the
mode to propose a new fundamental ensemble operator. In the fol-
lowing sections this operator is introduced and evaluated against
established alternatives.

3. Multilayer perceptrons

The most commonly used form of NNs for forecasting is the
feedforward multilayer perceptron. The one-step ahead forecast
ŷtþ1 is computed using inputs that are lagged observations of the
time series or other explanatory variables. I denotes the number
of inputs pi of the NN. Their functional form is:

ŷtþ1 ¼ b0 þ
XH

h¼1

bhg c0i þ
XI

i¼1

chipi

 !
: ð1Þ

In Eq. (1), w ¼ ðb; cÞ are the network weights with b ¼ ½b1; . . . ;bH�;
c ¼ ½c11; . . . ; cHI� for the output and the hidden layers, respectively.
The b0 and c0i are the biases of each neuron, which for each neuron
act similarly to the intercept in a regression. H is the number of hid-
den nodes in the network and gð�Þ is a non-linear transfer function,
which is usually either the sigmoid logistic or the hyperbolic tangent
function. NNs can model interactions between inputs, if any. The
outputs of the hidden nodes are connected to an output node that
produces the forecast. The output node is often linear as in Eq. (1).

In the time series forecasting context, neural networks can be
perceived as equivalent to nonlinear autoregressive models (Con-
nor et al., 1994). Lags of the time series, potentially together with
lagged observations of explanatory variables, are used as inputs
to the network. During training pairs of input vectors and targets
are presented to the network. The network output is compared
to the target and the resulting error is used to update the network
weights. NN training is a complex nonlinear optimisation problem,
and the network can often get trapped in local minima of the error
surface. In order to avoid poor quality results, training should be
initialised several times with different random starting weights
and biases to explore the error surface more fully. Fig. 1 provides
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Fig. 1. Contour plot of the error surface of a neural network. The initial (�) and
ending (�) weights for six different training initialisations are marked.
an example of an error surface of a very simple NN. The example
network is tasked to model a time series with a simple autoregres-
sive input and is of the form ŷtþ1 ¼ g w2g w1yt�1ð Þð Þ, where gð�Þ is
the hyperbolic tangent and w1 and w2 its weights. Six different
training initialisations, with their respective final weights, are
shown. Observe that minor differences in the starting weights
can result in different estimates, even for such a simple model. In
order to counter this uncertainty an ensemble of all trained net-
works can be used. As discussed before, this approach has been
shown to be superior to choosing a single set of estimated weights.

Note that the objective of training is not to identify the global
optimum. This would result in the model over-fitting to the train-
ing sample and would then generalise poorly to unseen data
(Bishop, 1996), in particular given their powerful approximation
capabilities (Hornik, 1991). Furthermore, as new data become
available, the prior global optimum may no longer be an optimum.

In general, as the fitting sample changes, with the availability of
new information, so do the final weights of the trained networks,
even if the initial values of the network weights were kept con-
stant. This sampling induced uncertainty can again be countered
by using ensembles of models, following the concept of bagging.

4. Ensemble operators

Let ŷmt be a forecast from model m for period t, where
m ¼ 1; . . . ;M and M the number of available forecasts to be com-
bined in an ensemble forecast ~yt . In this section the construction
of ~yt using the mean, median and the proposed mode operators
is discussed. To apply any of these operators reliably a unimodal
distribution is assumed.

4.1. Mean ensemble

The mean is one of the most commonly used measures of cen-
tral tendency and can be weighted or unweighted. Let wm be the
weight for the forecasts from model m. Conventionally
0 6 wm 6 1 and

PM
m¼1wm ¼ 1. The ensemble forecast for period t

is calculated as:

~yMean
t ¼

XM

m¼1

wmymt: ð2Þ

If all wm ¼ M�1 the resulting combination is unweighted. The prop-
erties of the mean are well known, as well as its limitations. The
mean is sensitive to outliers and unreliable for skewed distribu-
tions. To avoid some of its problems one might use a winsorised
or truncuted mean (Jose & Winkler, 2008). In this case the mean be-
haves more closely to the median. For distributions with finite var-
iance, which is true for sets of forecasts, the maximum distance
between the mean and the median is one standard deviation
(Mallows, 1991).

4.2. Median ensemble

Similarly the median can be unweighted or weighted, although
the latter is rarely used. The median ensemble ~yMedian

t is simply cal-
culated sorting wmymt and picking the middle value if M is odd or
the mean of the two middle values otherwise. Although the med-
ian is more robust than the mean it still suffers with non-symmet-
ric distributions.

4.3. Mode ensemble

The mode is defined as the most frequent value in a set of data.
The mode is insensitive to outliers, in contrast to the mean and
median. There is no formula to calculate the mode of an unknown
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distribution for continuous variables. There are two common ways
to calculate it: either by discretising the data and identifying the
most frequent bin, or by kernel density estimation. In this work
the second approach is preferred in order to avoid the discretisa-
tion of the data. Furthermore, kernel density estimation lends itself
well to the continuous-valued nature of forecasts.

Kernel density estimation is a non-parametric way to estimate
the probability density function of a random variable, in this case
the forecasts. Given forecasts of a distribution with unknown den-
sity f, we can approximate its shape using the kernel density
estimator

f̂ thðxÞ ¼ ðMhÞ�1
XM

m¼1

K
x� ŷmt

h

� �
; ð3Þ

where Kð�Þ is a function with the property
R

KðxÞdx ¼ 1 that is called
kernel and h > 0 is its bandwidth. The kernel is often chosen to be a
unimodal symmetric density function, therefore making f̂ thðxÞ a
density function itself, which is often, for computational reasons,
the Gaussian kernel /ðxÞ:

/hðxÞ ¼
1ffiffiffiffiffiffiffi
2p
p

h
e�

x2

2h2 : ð4Þ

Fig. 2 shows an example of the calculation of kernel density. A
kernel with bandwidth h is fitted around each observation and
the resulting sum approximates the density function of the sample.

A number of alternative kernel functions have been proposed in
the literature, however the choice of kernel has been found to have
minimal impact on the outcome for most cases (Wand & Jones,
1995). The bandwidth of the kernel h controls the amount of
smoothing. A high bandwidth results in more smoothing. There-
fore, the choice of h is crucial, as either under-smoothing or
over-smoothing will provide misleading estimation of the density
f (Silverman, 1981). The approximation by Silverman (1998) is of-
ten used in practice

h ¼ 4r̂5

3M

� �1
5

; ð5Þ

where r̂ is the standard deviation of the sample of the forecasts.
This approximation is often adequate for Gaussian kernels. Botev,
Grotowski, and Kroese (2010) propose a methodology to automati-
cally select the bandwidth that is free from the arbitrary normal ref-
erence rules used by existing methods. This is preferred in the
calculation of the mode ensemble as the resulting bandwidth h al-
lows fast convergence and good performance of the ensemble, as it
is discussed in the results.

The value x that corresponds to the maximum density approx-
imates the mode of the true underlying distribution for a set of
forecasts, which is also the value of the mode ensemble ŷMode

tþh . This
D
en

si
ty

Observations

Fig. 2. Example calculation of kernel density estimation.
is true as long as the estimated distribution is unimodal. Although
the probability of facing non-unimodal distributions when dealing
with forecasts is low, the following heuristic is proposed to resolve
such cases. Since there is no preference between the modes, the
one closer to the previous (forecasted or actual) value is retained
as the mode. This results in smooth trace forecasts. Eq. (3) results
in unweigthed ŷMode

tþh . It is trivial to introduce wm individual weights
for each model.

For kernel density estimation to adequately reveal the underly-
ing density a relatively large number of observations are required.
A small number of observations will lead to a bad approximation.
This is illustrated in Fig. 3. It shows the mean, median, mode
ensembles as well as the selected ‘‘best’’ model forecast, as selected
using a validation sample for four different forecast horizons. Fur-
thermore, the estimated kerned density for each horizon is plotted.
It is apparent by comparing Fig. 3a and b that the kernel density
estimation using only 10 models is very poor. While in Fig. 3a
the shape of the distribution is successfully approximated, in
Fig. 3b there are not enough forecasts to identify the underlying
shape of the distribution of the forecasts. Furthermore, in Fig. 3a
it is easy to see that neither the mean, median or the ‘‘best’’ model
are close to the most probable value of the forecast distribution.
The mode ensemble offers an intuitive way of identifying where
forecasts from different models converge and provide a robust
forecast, independent of distributional assumptions.
5. Empirical evaluation

5.1. Datasets

To empirically evaluate the performance of the mean, median
and the proposed mode ensemble for NNs, two large datasets of
real monthly time series are used. The first dataset comes from
Federal Reserve Economic Data (FRED) of St. Luis.1 From the com-
plete dataset 3000 monthly time series that contain 108 or more
observations (9 years) were sampled. Long time series were pre-
ferred to allow for adequate training, validation and test sets. The
second dataset comes from the UK Office for National Statistics
and contains 443 monthly retail sales time series.2 Again, only time
series with 108 or more observations were retained for the empirical
evaluation.

A summary of the characteristics of the time series in each data-
set is provided in Table 1. To identify the presence of trend in a
time series the cox-stuart test was employed on a 12-period cen-
tred moving average fitted to each time series. The test was per-
formed on the centred moving average to smooth any effects
from irregularities and seasonality. To identify the presence of sea-
sonality, seasonal indices were calculated for the de-trended time
series and then these were tested for significant deviations from
each other by means of a Friedman test. This procedure, based
on non-parametric tests, is robust, however different tests may
provide slightly different percentages to those in Table 1.

The last 18 observations from each time series are withheld as
test set. The prior 18 observations are used as validation set to
accommodate NNs training.
5.2. Experimental design

A number of NN ensemble models are fitted to each time series.
Two are based on mean, two on median and two on mode
ensembles. Hereafter, these are named NN-Mean, NN-Median and
1 The dataset can be accessed at http://research.stlouisfed.org/fred2/.
2 The dataset can be accessed at http://www.ons.gov.uk/ons/rel/rsi/retail-sales/

January-2012/tsd-retail-sales.html.

http://research.stlouisfed.org/fred2/
http://www.ons.gov.uk/ons/rel/rsi/retail-sales/January-2012/tsd-retail-sales.html
http://www.ons.gov.uk/ons/rel/rsi/retail-sales/January-2012/tsd-retail-sales.html


Fig. 3. Example of the distribution of NN forecasts of different number of models, as estimated by Gaussian kernel density estimation, for the first four steps ahead. The
forecasts by model selection, mean, median and mode ensembles are provided.

Table 1
Dataset characteristics.

Dataset Series Series length Series patterns

Min. Mean Max. Level (%) Trend (%) Season (%) Trend–Season (%)

FRED 3000 111 327 1124 5.37 40.70 5.80 48.13
Retail 443 179 270 289 15.12 48.98 1.81 34.09
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NN-Mode, respectively. All combination operators are applied in
their unweighted version, as the objective is to test their funda-
mental performance. In each pair of ensembles, the first is a train-
ing ensemble, combining multiple training initialisations and the
second is based on bagging, bootstrapped as described by Kunsch
(1989). This moving block bootstrap samples the original time ser-
ies while preserving the temporal and spatial covariance structure,
as well as the serial correlation of the time series data. By assessing
the operators using different types of ensembles we aim to assess
the consistency of their performance. Furthermore, different sizes
of ensembles are evaluated, from 10 members up to 100 members,
with steps of 10. Results for single NN models, based on selecting
the best one, are not provided as there is compelling evidence in
the literature that ensembles are superior (for examples, see
Barrow et al., 2010; Zhang & Berardi, 2001). This was validated in
our experiments as well.

The individual neural networks have identical setup. Following
the suggestions of the literature, if trend is identified in a time ser-
ies it is removed through first differencing (Zhang & Qi, 2005). The
time series is then linearly scaled between�0.5 and 0.5 to facilitate
the NN training. The inputs are identified through means of
stepwise regression, which has been shown to perform well for
identifying univariate input lags for NNs (Crone & Kourentzes,
2010; Kourentzes & Crone, 2010). All networks use the hyperbolic
tangent transfer function for the hidden nodes and a linear output
node. The number of hidden nodes was identified experimentally
for each time series. Up to 60 hidden nodes were evaluated for
each time series and the number of hidden nodes that minimised
the validation Mean Squared Error (MSE) was chosen.

Each network was trained using the Levenberg–Marquardt (LM)
algorithm. The algorithm requires setting a scalar lLM and its in-
crease and decrease steps. When the scalar is zero, the LM algo-
rithm becomes just Newton’s method, using the approximate
Hessian matrix. On the other hand, when lLM is large, it becomes
gradient descent with a small step size. Newton’s method is more
accurate and faster near an error minimum, so the aim is to shift
toward Newton’s method as quickly as possible. If a step would in-
crease the fitting error then lLM is increased. Here lLM ¼ 10�3, with
an increase factor of linc ¼ 10 and a decrease factor of ldec ¼ 10�1.
For a detailed description of the algorithm and its parameters see
Hagan et al. (1996). MSE was used as the training cost function.
The maximum training epochs are set to 1000. The training can
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stop earlier if lLM becomes equal or greater than lmax ¼ 1010. The
MSE error at the validation set is tracked while training. If the error
increases consequently for 50 epochs then training is stopped. The
weights that give the lowest validation error are selected at the
end of each training. This is common practice in the literature
and helps to achieve good out-of-sample performance, since it
avoids over-fitting to the training sample (Haykin, 2009).

Following the suggestions of the forecasting literature (Adya &
Collopy, 1998) two statistical benchmarks are used in this study,
namely the naive forecast (random walk) and exponential smooth-
ing. This is done to assess the accuracy gains of using NNs against
established simpler statistical methods. The Naive requires no
parameterisation or setup, hence is used as a baseline that any
more complex model should outperform. The appropriate expo-
nential smoothing model is selected for each time series, depend-
ing on the presence of trend and/or seasonality using Akaike’s
Information Criterion. Model parameters are identified by optimis-
ing the log-likelihood function (Hyndman, Koehler, Snyder, &
Grose, 2002; Hyndman, Koehler, Ord, & Snyder, 2008). Exponential
smoothing was selected as a benchmark based on its widely dem-
onstrated forecasting accuracy and robustness (Gardner, 2006;
Makridakis & Hibon, 2000) and will be named ETS in this work.
The use of these benchmarks can help establish the relative perfor-
mance of the NN models. In total, eight forecasting models are fit-
ted to each time series, six NNs and two statistical benchmarks.

Rolling trace forecasts of 12 months are produced using each
model. The rolling origin evaluation enables collecting a large sam-
ple of forecasts and their errors, while being robust to irregular
forecast origins and outliers, thus providing reliable error measure-
ments. Based on the long test set, 7 trace forecasts from t + 1 up to
t + 12 months are collected for each time series. The reader is re-
ferred to Tashman (2000) for a detailed description of the evalua-
tion scheme and its advantages.

The forecasting accuracy is assessed using the Mean Absolute
Scaled Error (MASE). This is preferred due to its favourable statis-
tical properties. MASE is calculated for each trace forecast as:

MASE ¼ m�1
Xm

j¼1

j yj � ŷj j
ðn� 1Þ�1Pn

r¼2 j yr � yr�1 j
; ð6Þ

where yj and ŷj are the actual and forecasted value for j ¼ 1; . . . ;m
out-of-sample observations. The denominator is the mean absolute
error of the random walk in the fitting sample of n observations and
Table 2
Mean (median) MASE for FRED dataset. The best result in each row is highlighted in bold

Ensemble size NN-Mean NN-Median

Bagging
10 1.06 (0.66) 0.92 (0.64)
20 1.06 (0.65) 0.90 (0.63)
30 1.02 (0.65) 0.89 (0.62)
40 1.04 (0.65) 0.88 (0.62)
50 1.03 (0.64) 0.88 (0.62)
60 1.03 (0.64) 0.89 (0.62)
70 1.04 (0.65) 0.88 (0.62)
80 1.03 (0.65) 0.88 (0.62)
90 1.01 (0.65) 0.88 (0.61)
100 1.01 (0.65) 0.88 (0.61)

Training ensemble
10 1.05 (0.64) 0.95 (0.62)
20 1.03 (0.65) 0.93 (0.62)
30 1.01 (0.64) 0.91 (0.62)
40 1.02 (0.64) 0.91 (0.62)
50 1.02 (0.64) 0.92 (0.62)
60 1.01 (0.64) 0.91 (0.62)
70 1.01 (0.64) 0.91 (0.61)
80 1.01 (0.64) 0.91 (0.62)
90 1.01 (0.64) 0.91 (0.61)
100 1.01 (0.64) 0.91 (0.62)
is used to scale the error. MASE, being a scaled error, permits sum-
marising model performance across time series of different scale
and units, which mean squared or absolute errors cannot do, and
is less biased from errors like the mean absolute percentage error
and its symmetric equivalent. Another advantage of this error is
that it is very improbable that the denominator is zero, therefore
making it easy to calculate in several scenarios and robust to time
series with several values equal or close to zero (Hyndman & Koeh-
ler, 2006). Note that the Retail dataset contains several time series
that do not permit the calculation of conventional percentage er-
rors, due to zero values in the denominator. To summarise the re-
sults across the time series of each dataset the mean and median
MASE across all series are calculated.
6. Results

Table 2 presents the results for the FRED time series. Numbers
in brackets refer to median MASE, while the rest to mean MASE.
The table provides results for ensembles from 10 to 100 members.
The results for bagging and training ensembles are presented sep-
arately to assess the impact of the ensemble type on the different
ensemble operators. In each row the best performing method
according to mean and median MASE is highlighted in boldface.

Overall, the difference between the mean and median MASE re-
sults indicates that there are several difficult time series, particu-
larly affecting the less robust mean MASE. Focusing on the
bagging results, all NN-Mean, NN-Median and NN-Mode are more
accurate than the benchmarks when considering mean MASE. Fur-
thermore, as the ensembles increase in size their accuracy im-
proves. In particular, for NN-Mode after there are 30 or more
members the forecasts are very accurate. This was to be expected
since the kernel density estimation becomes reliable once there
is an adequate number of observations, as discussed in Section 4.
For ensembles of 70 or more members NN-Mode provides consis-
tently the best accuracy, closely followed by NN-Median. Note that
achieving large numbers of ensemble members is trivial with NNs,
as this merely implies that more training initialisations or boot-
strapped samples are used. Therefore, the requirement of the mode
operator for 30 or more ensemble members is not a limiting factor.
In contrast, NN-Mean underperforms to the extent that ETS is more
accurate for median MASE. This is an interesting finding, given how
common is the mean operator for ensembles in the literature. The
.

NN-Mode Naive ETS

1.30 (0.77) 1.11 (0.87) 3.43 (0.62)
0.94 (0.65) 1.11 (0.87) 3.43 (0.62)
0.89 (0.62) 1.11 (0.87) 3.43 (0.62)
0.88 (0.61) 1.11 (0.87) 3.43 (0.62)
0.88 (0.61) 1.11 (0.87) 3.43 (0.62)
0.88 (0.61) 1.11 (0.87) 3.43 (0.62)
0.87 (0.61) 1.11 (0.87) 3.43 (0.62)
0.87 (0.61) 1.11 (0.87) 3.43 (0.62)
0.87 (0.61) 1.11 (0.87) 3.43 (0.62)
0.87 (0.61) 1.11 (0.87) 3.43 (0.62)

1.17 (0.70) 1.11 (0.87) 3.43 (0.62)
0.95 (0.64) 1.11 (0.87) 3.43 (0.62)
0.90 (0.62) 1.11 (0.87) 3.43 (0.62)
0.90 (0.61) 1.11 (0.87) 3.43 (0.62)
0.89 (0.61) 1.11 (0.87) 3.43 (0.62)
0.89 (0.62) 1.11 (0.87) 3.43 (0.62)
0.89 (0.61) 1.11 (0.87) 3.43 (0.62)
0.88 (0.61) 1.11 (0.87) 3.43 (0.62)
0.88 (0.61) 1.11 (0.87) 3.43 (0.62)
0.88 (0.61) 1.11 (0.87) 3.43 (0.62)



Table 3
Mean (median) MASE for retail dataset. The best result in each row is highlighted in bold.

Ensemble size NN-Mean NN-Median NN-Mode Naive ETS

Bagging
10 1.33 (0.96) 1.11 (0.93) 1.44 (1.10) 1.45 (1.29) 1.12 (0.97)
20 1.37 (0.97) 1.10 (0.94) 1.14 (0.94) 1.45 (1.29) 1.12 (0.97)
30 1.29 (0.96) 1.10 (0.91) 1.09 (0.92) 1.45 (1.29) 1.12 (0.97)
40 1.31 (0.97) 1.10 (0.91) 1.09 (0.90) 1.45 (1.29) 1.12 (0.97)
50 1.30 (0.97) 1.10 (0.92) 1.09 (0.89) 1.45 (1.29) 1.12 (0.97)
60 1.26 (0.96) 1.09 (0.91) 1.09 (0.89) 1.45 (1.29) 1.12 (0.97)
70 1.26 (0.96) 1.09 (0.91) 1.09 (0.90) 1.45 (1.29) 1.12 (0.97)
80 1.26 (0.98) 1.09 (0.90) 1.08 (0.88) 1.45 (1.29) 1.12 (0.97)
90 1.27 (0.97) 1.09 (0.90) 1.09 (0.87) 1.45 (1.29) 1.12 (0.97)
100 1.27 (0.95) 1.09 (0.91) 1.09 (0.88) 1.45 (1.29) 1.12 (0.97)

Training ensemble
10 1.34 (0.97) 1.14 (0.91) 1.27 (0.97) 1.45 (1.29) 1.12 (0.97)
20 1.33 (0.95) 1.14 (0.91) 1.14 (0.91) 1.45 (1.29) 1.12 (0.97)
30 1.31 (0.96) 1.13 (0.89) 1.11 (0.90) 1.45 (1.29) 1.12 (0.97)
40 1.28 (0.95) 1.12 (0.91) 1.11 (0.90) 1.45 (1.29) 1.12 (0.97)
50 1.28 (0.96) 1.12 (0.90) 1.11 (0.91) 1.45 (1.29) 1.12 (0.97)
60 1.29 (0.96) 1.12 (0.89) 1.11 (0.91) 1.45 (1.29) 1.12 (0.97)
70 1.29 (0.95) 1.13 (0.90) 1.11 (0.90) 1.45 (1.29) 1.12 (0.97)
80 1.29 (0.95) 1.13 (0.90) 1.11 (0.90) 1.45 (1.29) 1.12 (0.97)
90 1.28 (0.95) 1.13 (0.89) 1.12 (0.90) 1.45 (1.29) 1.12 (0.97)
100 1.28 (0.96) 1.13 (0.89) 1.12 (0.90) 1.45 (1.29) 1.12 (0.97)
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Fig. 4. Mean MASE for different number of ensemble members for the FRED
dataset.
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Fig. 5. Mean MASE for different number of ensemble members for the Retail
dataset.
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more robust behaviour of median and the in-sensitive to outliers
nature of the mode result in more accurate ensemble forecasts.
Looking at mean MASE, all NNs behave more robust than ETS, the
latter being severely affected by outliers.

The results of the training ensembles are very similar. Again, as
the number of members in the ensemble increases NN-Mode per-
forms better and is the most accurate model for 40 or more ensem-
ble members. NN-Median ranks second with small differences,
while NN-Mean is substantially worse. Comparing the results be-
tween bagging and training ensembles we can see that the former
is marginally more accurate for NN-Median and NN-Mode when
mean MASE is considered. However, the same is not true for NN-
Mean, indicating that the robustness and performance of this
ensemble operator is affected by the type of ensemble.

Table 3 presents the results for the Retail dataset. Its structure is
the same as in Table 2. The differences between mean and median
MASE are smaller than the FRED results, showing that the time ser-
ies in this dataset are better behaved. Considering the bagging re-
sults, NN-Median consistently outperforms the statistical
benchmarks, while the same is true for NN-Mode, once there is
an adequate number of members in the ensemble (again 30 or
more). NN-Mode is the most accurate model with the lowest mean
and median MASE. This is followed closely by NN-Median. On the
other hand, NN-Mean often fails to outperform the benchmark
ETS, although it is always better than the Naive.

Looking at the accuracy of the training ensembles NN-Mode is
overall more accurate for mean MASE, NN-Median is the most
accurate for median MASE. Although all NN models outperform
the Naive benchmark, the differences between either NN-Mode or
NN-Median and ETS are very small. NN-Mean is worse than ETS in
terms of mean MASE, while occasionally it is marginally better in
terms of median MASE. Comparing accuracies between bagging
and training ensembles there are differences in favour of the for-
mer when looking at NN-Median and NN-Mode, while the accuracy
for NN-Mean is almost identical for both types of ensembles.

Across both datasets NN-Mode and NN-Median are the most
accurate models. NN-Mode seems to perform better when the size
of ensemble is large enough. NN-Median has slightly lower accu-
racy. While large ensembles benefit NN-Median, it can perform
well for small ensembles too. Both these models are on average
more accurate than the statistical benchmarks ETS and Naive. On



Table 4
Average computational time comparison.

Ensemble operator FRED Retail

Ensemble size Mean time (s) Difference (%) Ensemble size Mean time (s) Difference (%)

Mean 100 9.74 +25.0 70 5.33 +133.3
Median 100 9.74 +25.0 90 6.85 +200.0
Mode 80 7.79 – 30 2.28 –
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the other hand, NN-Mean provides mixed results. In both datasets
it outperforms Naive, but not always ETS. It is substantially outper-
formed by both NN-Mode and NN-Median.
7. Discussion

The value of ensembles for NNs has been argued theoretically
and demonstrated empirically. The combination of the models
has often involved some type of mean operator. The empirical eval-
uation in this paper found that the less commonly used median
operator and the proposed mode operator are more accurate and
thus preferable. The size of the ensemble was found to be impor-
tant for the accuracy of all operators. Both mode and median, for
the two datasets investigated here, seemed on average to converge
for ensembles of 60 or more members, with any additional mem-
bers offering minimal changes in the forecasting performance. In
particular, the mode, due to its reliance on kernel density estima-
tion, required at least 30 members. However, after that point it
was found to be on average the most accurate ensemble operator.
This is illustrated in Figs. 4 and 5 that present the mean MASE for
different number of ensemble members for the FRED and the Retail
datasets, respectively. The results for the different type of ensem-
bles have been pooled together, since they had only small differ-
ences. Note that there is little evidence that the mean ensembles
had converged even with 100 members. Even larger ensembles
were not calculated due to the substantial computational resources
required, especially when the objective is to forecast a large num-
ber of time series, which is common in supply chain and retailing
forecasting applications.

In order to assess whether these differences are significant or
not, we employ the testing methodology suggested by Koning,
Franses, Hibon, and Stekler (2005) that is appropriate for compar-
ing forecasts from multiple models. The comparison is done across
all different ensemble sizes to highlight if an operator is consis-
tently statistically different. First, a Freidman test is used to assess
whether the accuracy of any model is significantly different from
the rest. Subsequently, the MCB test is used to reveal the exact
ordering of the different operators, and any significant differences
between them. For both datasets the mode operator was signifi-
cantly better than the median, which in turn was significantly dif-
ferent than the mean, at 5% significance level.

At this point, it is useful to comment on the associated compu-
tational cost of the NN ensembles. The main cost comes from train-
ing the networks. Therefore, the more ensemble members that
need to be trained, the less scalable forecasting with NNs becomes,
and the operator that achieves good forecasting performance with
the least amount of members is preferable. Table 4 provides an
overview of the average time required for forecasting across all ser-
ies, for each dataset. As a different number of hidden nodes are
used for each time series, the complexity of NN training changes,
requiring different amount of time. To keep the presentation of
the values simple, we summarise the training time over different
series into the reported average time. The ensemble size that gave
the minimum error for each operator in Figs. 4 and 5 is used as ref-
erence for the comparison. The average time in seconds, as well as
the percentage difference over the time needed for the mode
ensembles, are provided in the table. The networks were trained
in parallel on an i7-3930 K CPU clocked at 4.5 GHz with 12 logical
cores.

The mode operator needed the least number of ensemble mem-
bers, requiring from 25% up to 200% less time than the mean or
median operators across both datasets. Therefore, apart from the
significant gains in forecasting accuracy, the proposed ensemble
operator required the least computational resources. In particular
for the retailing dataset, the run-time was more than halved.

In Figs. 4 and 5 it is clear that similar performance is achieved
for a large range of ensemble sizes for the median operator. This al-
lows exchanging marginal differences in accuracy for smaller run-
times, thus improving its scalability as well. On the other hand, this
is not the case with the mean operator, the accuracy of which im-
proves with bigger ensembles.

In the experiments, two types of ensembles were considered,
bagging and training ensembles. Each one tackles a different type
of parameter uncertainty. We examined whether the performance
of the operators was affected by the type of ensemble. Again med-
ian and mode had very similar performance, favouring bagging. For
the mean this behaviour was not evident. We attribute this differ-
ent behaviour to the sensitivity of the mean to extreme values,
which both median and mode are designed to avoid, albeit with
different success.
8. Conclusions

This paper evaluates different fundamental ensemble operators.
The well known mean and the less commonly used median were
compared, together with a proposed mode operator that is based
on kernel density estimation. All three operators attempt to de-
scribe the location of the distribution of the forecasts of the mem-
bers of an ensemble. However, they deal with outlying extreme
values differently, with the mean being the most sensitive and
the mode the least. Furthermore, distributional asymmetries can
affect both the mean and the median, while the mode is immune.

The findings in this paper suggest that both median and mode
are very useful operators as they provided better accuracy than
mean ensembles consistently across both datasets. The mode
was found to be the most accurate, followed by the median. Based
on this finding, we recommend investigating the use of the mode
and median operators further in ensembles research and applica-
tions, which have been largely overlooked in the literature that
has mainly focused on the mean.

Furthermore, this work demonstrated that mode ensembles can
robustly and accurately forecast automatically a large number of
time series with neural networks, while the commonly used mean
ensembles were often outperformed by exponential smoothing
forecasts. Moreover, mean ensembles required a very large number
of members, which neither mode or median needed, with apparent
implications for computational costs. In particular, the mode oper-
ator was found to require the least computation resources, due to
the relatively small number of ensemble members that needed to
be trained.

We have already mentioned a number of applications that can
benefit from improved NN ensemble forecasts, ranging from
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economic and business forecasting to climate modelling. Most of
these applications are characterised by forecasting a few, yet
important, time series. The improved scalability of mode ensem-
bles over the commonly used mean ensembles allows applying
NNs to areas that routinely require large scale automatic forecast-
ing, which can benefit from the nonlinear modelling capabilities of
NNs. One such example is retailing, where one has to forecast a
large number of products, the sales of which are affected by multi-
ple factor that interact in a nonlinear fashion, such as pricing, pro-
motional and temperature effects. The improved scalability of
mode ensembles, compounded with the ever increasing computing
capabilities provides opportunities for novel important forecasting
applications of NN ensembles. This paper found significant savings
in computing time from the proposed operator, which over the
complete number of time series accounts for several hours of com-
putations. Such reduction will also help using NN ensembles in high
frequency forecasting cycles, where the computational speed has
been a limiting factor. Future work should explore these potentials.

The empirical evaluation, in this paper, focused on the un-
weighted version of all these operators, trying to assess their fun-
damental properties. Although their differences are attributed to
their robustness to extreme values, future research should extend
this work to weighted versions of the operators. This will allow
considering their use on further ensemble types, such as boosting.
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