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Signal Quality Assessment Model for Wearable EEG
Sensor on Prediction of Mental Stress

Bin Hu , Hong Peng, Qinglin Zhao, Bo Hu, Dennis Majoe, Fang Zheng, and Philip Moore

Abstract—Electroencephalogram (EEG) plays an important
role in E-healthcare systems, especially in the mental healthcare
area, where constant and unobtrusive monitoring is desirable.
In the context of OPTIMI project, a novel, low cost, and light
weight wearable EEG sensor has been designed and produced.
In order to improve the performance and reliability of EEG
sensors in real-life settings, we propose a method to evaluate the
quality of EEG signals, based on which users can easily adjust the
connection between electrodes and their skin. Our method helps
to filter invalid EEG data from personal trials in both domestic
and office settings. We then apply an algorithm based on Discrete
Wavelet Transformation (DWT) and Adaptive Noise Cancellation
(ANC) which has been designed to remove ocular artifacts (OA)
from the EEG signal. DWT is applied to obtain a reconstructed
OA signal as a reference while ANC, based on recursive least
squares, is used to remove the OA from the original EEG data.
The newly produced sensors were tested and deployed within the
OPTIMI framework for chronic stress detection. EEG nonlinear
dynamics features and frontal asymmetry of theta, alpha, and
beta bands have been selected as biological indicators for chronic
stress, showing relative greater right anterior EEG data activity
in stressful individuals. Evaluation results demonstrate that our
EEG sensor and data processing algorithms have successfully
addressed the requirements and challenges of a portable system
for patient monitoring, as envisioned by the EU OPTIMI project.
Index Terms—ANC, DWT, EEG, features extration, mental

stress, ocular artifacts, signal quality assessment.

I. INTRODUCTION

E LECTROENCEPHALOGRAPHY (EEG) is frequently
used in the diagnosis of brain related diseases such as

epilepsy, sleep disorders, mental disorders, and so on. EEG sig-
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nals are relatively weak and prone to noise. The quality of EEG
data, therefore, presents a common challenge for accurate and
in time diagnosis of brain related diseases. Currently, the mea-
surement of EEG requires sophisticated and expensive medical
instruments operated by professionally trained domain experts.
In hospitals and clinical centers, in order to ensure data quality,
EEG is normally taken in dedicated soundproofed facilities,
involving the use of electromagnetic shielding (RF shielding).
EEG is an electronic record of the oscillations in the human

brain, recorded from multiple electrodes attached to the scalp.
Depending on the individual's state of relaxation [1], EEG can
vary in shapes. EEG data are generally labeled according to the
frequency ranges, namely delta (1–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (13–20 Hz), and gamma (roughly 20 Hz).
Typically, the scalp electric potential amplitude is between 20
and 100 .
EEG has also demonstrated potential values in sports-

training, mind-control technologies and personalized E-health
care. Increasingly, in recent years, wearable EEG sensors for
E-mental healthcare have emerged to be a key research and
development direction. Research institutes and commercial
organizations around the world are designing and rolling out
prototypes or products targeting at E-mental health monitoring
and management. Prominent examples of such work include
Trimbos Institute in Netherlands, Psychmed Group in USA,
e-Mental Health in Central Massachusetts which is a project of
the Lamar Soutter Library of the University of Massachusetts
Medical School, as well as leading IT companies such as
Google, Apple, and so on.
The OPTIMI (Online Predictive Tools for Intervention in

Mental Illness) project, funded by the Seventh Framework
Programme (FP7) of European Union (EU), aims to exploit
the latest sensor technologies in tackling mental disorders (in
particular mild depression). OPTIMI is based on the hypothesis
that the central issue and starting point of longer term mental
illness depends on the individual's capacity and ability to cope
with stress. The goal of OPTIMI is to develop tools to perform
prediction through early identification of the onset of an illness
by monitoring poor coping behavior. In order to identify the
onset of a mental illness, an individual will use wearable and
domestic appliances to collect data on EEG, ECG (electrocar-
diogram), and cortisol levels, which are combined with voice
analysis, physical activity analysis, and a self-reporting elec-
tronic diary to provide comprehensive understanding of his/her
mental status. Specific markers of depression will be checked
using EEG, voice analysis, and physical activity. Therefore, it
is clear that wearable EEG system is a key success factor of the
OPTIMI project.
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The application domain of OPTIMI implies unique require-
ments of EEG sensors. Firstly embeddable EEG bio-sensors are
desirable to offer, as much as possible, unobtrusive data collec-
tion. Such sensors should offer high portability, present ease of
deployment and use, and be suitable for complex environments.
Secondly, for EEG-based technologies to be widely adopted by
people in the “real world,” it is necessary for EEG bio-sensors
to achieve high efficiency in signal processing. In this paper
we present the concept of a “smart” wearable EEG sensor. It
is our contention that in “real-world” applications, sensors must
function effectively away from the traditional dedicated facil-
ities used to capture EEG signal data. This broaches three key
questions to be addressed in the rest of this paper: 1) the mainte-
nance of EEG signal quality, 2) the removal of Ocular Artifacts,
and 3) the extraction of features related to mental disorders (in
this paper the focus is on depression). The remainder of this
paper is structured as follows: we briefly present the background
of E-Mental Healthcare in Section II. The design of wearable
EEG sensors is discussed in Section III. Following the assess-
ment methods of EEG signal quality in Section IV, we propose
our approach to the removal of OA using a model combining
Discrete Wavelet Transformation (DWT) and Adaptive Noise
Cancellation (ANC) in Section V, where experiments and ap-
plication in the OPTIMI project are also detailed. Section VI
covers feature extraction for depression predication. Section VII
concludes the paper with observations/discussions, conclusions,
and directions for future work.

II. E-MENTAL HEALTHCARE

Mental disorder is a leading disease burden estimated by
World Health Organization (WHO). In the U.K. and major
western European countries, mental illness is considered one
of the biggest challenges of modern society. It is estimated
that one in four residences in the U.K. is directly affected by
mental illnesses while 27% of the total adult EU population
experienced a certain type of mental disorder. Among others,
depression is becoming increasingly prevalent. In China, every
year around 1900 million adults are affected by depression of
various severities. In fact, WHO has estimated that approxi-
mately 25% of the world's population will experience episodes
of depression during their life time. Without help, this subpop-
ulation is exposed to a significant risk of developing full-blown
depression. Thus, the scope and need for the identification, pre-
vention, and intervention of depression is expected to increase
significantly in the near future.
E-Mental Healthcare is a branch of E-healthcare, with the

aim of delivering mental health services via the internet through
bio-electric information, diary, movement, voices, or internet
applications. It makes use of a wide range of e-Interventions de-
fined as “mental and behavioral health promotion, prevention,
treatment and management-oriented interventions that are de-
livered via the internet or other electronic technologies, with or
without human support” [2].
Unlike other types of mental disorders, depression lends itself

as a perfect test-bed for emerging ICT technologies—it has been
proved that depression can be evaluated and successfully inter-
vened through online tools and digitized therapeutic methods.

This gives rise to web-based and mobile-based solutions. When
considering data collection, while the traditional methods with
dedicated (generally hospital) facilities have been the predomi-
nant source of data, web-based services call for alternative gath-
ering method: the contribution made by general users in a wide
variety of “non-standard” settings. In such environments users
“self-report” data about their physical and mental activities and
“self-collect” a range of relevant health monitoring data that are
considered important for depression and stress management.

III. THE DESIGN OF WEARABLE EEG SENSORS
As discussed previously, when away from purposely built fa-

cilities (generally in hospitals and clinic centers), wearable EEG
sensors can facilitate continuous monitoring.We have identified
three key requirements to direct the design and development of
our EEG:
• Signal quality should meet certain criteria.
• OAs should be identified and removed for signal pre-pro-
cessing.

• Suitable features should be selected for the depression use
case.

EEG signal quality: Without the help of technical staff, how
can users' know whether the EEG sensor is worn correctly
and whether the test can start? If the sensor is not placed
correctly on the scalp, the quality of the data may be com-
promised. It is, therefore, necessary to identify an effective
and simple method by which the connection or signal quality
can be determined. Traditional commercial EEG products in
hospital, made by MindMedia, NeuroSky, Emotiv, BP, etc.,
rely on “electrode-to-skin” contact resistance as a key to judge
the quality of the connection [3], [4]. However, for wearable
EEG sensors, methods to estimate the quality of connection
are extremely limited and impedance measurements will raise
complexity and cost of wearable EEG sensors. In this paper,
a novel quality measure of EEG signal is proposed, which
are evaluated in the OPTIMI project. This method ignores the
tradition skin-electrode contact impedance and focuses on the
raw EEG data, thus it can be adapted to quantify the connection
and data quality of all types of wearable EEG sensors.
Ocular Artifacts removal: In order to avoid user's resistance,

the electrodes are set as Fp1, Fpz, and Fp2 which are just lo-
cated on the forehead. This, however, means that the EEG sig-
nals are easily corrupted by noises, especially ocular artifacts.
Eye movements can cause changes to the electric fields around
the eyes and consequently affect those over the scalp, leading to
low-frequency band noises. In order to clean EEG signal data, a
algorithm based on discrete wavelet transformation (DWT) and
adaptive noise cancellation (ANC) is designed to identify and
remove ocular artifacts from EEG signal. Our evaluation results
have proved that this proposed algorithm is a novel, effective ap-
proach even when the EEG signal has only one channel, making
our algorithm particularly suitable for portable applications.
Depression features definition and extraction: The aim of

OPTIMI is to characterize the stress level of the groups under
great stresses by the use of EEG. In this paper, based on pre-
vious EEG research in other areas we identify and extract fea-
tures from EEG to effectively distinguish high-stress and mod-
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Fig. 1. EEG Sensor, primary hardware components.

erate-stress individuals. EEG features, including linear features,
such as absolute and relative power, frequency, and asymmetry
as well as nonlinear dynamic measures are taken into account
to examine the difference between those with chronic stress and
the normal control. Features of alpha asymmetry and C0 com-
plexity are applied as main features to calculate the degree of
mental disorder (depression).
In the OPTIMI project, a 5-electrode EEG sensor has been

developed to provide data to the envisioned on-line predictive
tools for early identification and intervention during the onset
of depression due to inadequate coping with day-to-day stress.
The 5 electrodes are configured as follows: three location

points on the forehead (FP1, FP2, and FPZ) and two ear lobes
(A1 and A2). Users are expected to record their resting EEG
signal twice (in the morning and evening) on a daily basis. In
order to ensure that users comply with the daily testing schedule
(required every day for 4 weeks), EEG should be performed as
unobtrusive as possible: the deployment of electrodes should be
simple and once electrodes are deployed, data recording should
be carried out promptly. Therefore ergonomic design must be
considered at each stage of the development process. As there
are no suitable commercial sensors available, we have designed
a novel, low cost, and light weight wearable EEG sensor. The
main board of sensor (as illustrated in Fig. 1) consists of 6
modules: electrodes, A/D module (including amplifier), CPU,
memory, RF module, and power supply [5].
On the left, five electrodes are connected to a signal condi-

tioning circuit to clamp any voltage spikes that may arise due to
electrostatic discharge. The five input leads are inter-connected
in a manner so as to obtain the following channel combinations:
FP1 relative to A1, FP0 relative to A1, FP2 relative to A1, FP1
relative to A2, FP2 relative to A2, and FP1 relative to FP2. In ad-
dition, passive filtering is performed to remove 100 Hz or higher
input noise.
We selected ADS 1299 instrumentation amplifier ADC

from Texas Instruments. This device is derived from a family
of multichannel, simultaneous sampling, 24-bit, delta-sigma
analogue-to-digital converters with built-in programmable gain
amplifiers, internal reference, and an on-board oscillator. This
component has an extremely low input bias current of 300 pA
(typical) and an input-referred noise of 1.0 (typical).
The common mode rejection ratio (CMRR) is about 110 dB,
with 1000 Megohm input impedance. Its requirement is very
low, in the order of 5.0 mW/Channel. ADS 1299's data rate

Fig. 2. EEG sensor, worn on the head of a volunteer.

is from 250SPS to 16 kSPS. The chip is 9 mm 9 mm and
requires few external components. ASD1299's specification
allows us achieving a very compact design.
Our wearable EEG is equipped with STM32 F101CB

(from ST Microelectronics) as CPU. F101CB is an ARM
32-bit Cortex-M3 CPU with a maximum 36 MHz clock, 1.25
DMIPS/MHz (Dhrystone 2.1) performance. The 32 MB of
flash memory serves as the main storage for the sensor.
The RF frontend allows the CPU to accept commands from

a computer. In order to maintain compatibility with other sen-
sors in the OPTIMI project, the RF frontend is based on the
nRF24L01+ low power 2.4 GHz ISM (Industrial, Scientific and
Medical) band RF Transceiver from Nordic Semiconductor.
In our EEG sensor, the reference voltage is set at 2.4 V, and

the sampling rate in test and project is currently 260 Hz which
can also be easily set to other rates if necessary. The sensor in-
corporates a 470 mAh Lithium Polymer single cell battery. This
allows the sensor to be used continuously for approximately 300
minutes. Since the trials are planned to include 24–56 sessions
each lasting 5 minutes, a single full charge is sufficient for just
recording during the whole trial period. But the communication
between the EEG sensor and HomePCwill occupy much power,
especially when downloading the data, so the users will charge
the battery 2–5 times during the trial. Final version of our EEG
sensor is shown in Fig. 2. Users can easily put on the EEG sensor
by securing it with a belt around head.

IV. ASSESSMENT METHOD OF EEG SIGNAL QUALITY

High EEG recording accuracy is necessary in experimental
trials. If the sensor is not correctly placed on the head with
electrodes properly attached or the environment presents strong
electromagnetic noise, the quality of data may be compromised.
In order to ensure the availability of EEG signal, research has
been carried out in the environment using a variety of electrodes.
In a hospital or laboratory setting, the use of an electromag-

netic shield can reduce noise.When such equipment is not avail-
able, there are generally two approaches to improve EEG data
quality. A number of research projects have focused on novel
wet or dry electrodes and have attempted to reduce the elec-
trode-to-skin contact resistance [4]. Many expensive and del-
icate EEG products from MindMedia and BP take the elec-
trode-to-skin contact resistance as a key to judge the quality
of the connection. Other research has, however, focused on the
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final EEG signal quality [3], [6]. Thus far, existing study rarely
considers the quality issue from the perspective of raw EEG
data, which is the basis of final EEG signal processing. Es-
sentially, quality of processed data ultimately depends on the
quality of raw data. This is the rationale of our approach to-
wards EEG quality validation.
In the context of OPTIMI, nearly all the personal users have

no access to an electromagnetic shield room and cannot get help
from others to test the electrode-to-skin contact resistance. As a
result, when any EEG sensor is used to record very low voltage
brain wave activities, extra care must be taken to ensure good
electrode-skin contact. This imposes extra burden to the partic-
ipants of OPTIMI trail. In order to address this issue, we pro-
pose a novel method to calculate the raw EEG signal quality.
The calculation takes a 4-second period of EEG record to de-
cide whether: 1) the signal is fine; if so the system can proceed
to the next step or 2) the signal is bad; if so the user has to check
the electrode connection (or even change the location) prior to
beginning the trial. The program is very intelligent and is de-
signed to run locally in a sensor embedded system.

A. Experimental Setup

For economic and ergonomic reasons the sensor developed
here makes use of very low cost disposable skin friendly solid
gel pads. Such pads provide all the electrical benefits of wet gel
without the attendant mess in use. When the recording is com-
pleted, the pads are simply removed and discarded, providing
an enhanced hygiene level.
The problem most frequently experienced is that the elec-

trodes may not be correctly attached to the skin and/or the con-
nection may be poor. The situation is aggravated when solid
gel pads are used, as users may forget to clean their forehead
with alcohol before attaching the pads. This can result in that
the gel pads become dry or improperly positioned or connected.
Our goal is, therefore, to collect sufficient data so as to recog-
nize and differentiate two connection conditions: 1) a good con-
nection where the trial can proceed: (the connection is correct
and the electrode is moist), and 2) a bad connection where trial
cannot proceed further before the focal user check and fix poor
sensor-skin connections. We considered the various scenarios
where the EEG sensors were most likely to be used. In the end,
three typical scenarios were chosen: 1) in an outdoor setting
where there is generally very weak and low frequency electro-
magnetic noise (e.g., in a public park with ambient noise), 2) in
an office setting that typically has noise in the 50/60 Hz range
(from electrical power lines and low frequency electromagnetic
noise from machines and artefacts), and 3) in a domestic setting
with noise generally similar to that one can experience in an of-
fice setting.
With the EEG sensor design as discussed in Section III, EEG

signals were initially gathered using different environments and
electrode-to-skin connections. We had collected data in all the
three identified scenarios, i.e., offices, homes, and public parks
over a time period of one month. The volunteers begin the data
collection by pushing a button. It is expected that the volunteers
should keep their eyes closed (to reduce the effect of OA) and

remain quiet for a period of several seconds. The captured data
are processed and go through several experiments to identify
the optimal method to calculate a quality score of the EEG
signal.

B. Assessment Methods of EEG Signal Quality

In total we have collected more than 4000 samples of EEG
data for both good and bad connections in office and park set-
tings. After applying a band pass filter from 0.5 Hz to 40 Hz, the
time domain of EEG signals are illustrated in Fig. 3. It is impos-
sible to get the quality score of EEG signal only from the time
domain. We therefore processed EEG signals in the frequency
domain too, the results of which are illustrated in Fig. 4.
Considering that when the eyes are closed, the power of

Alpha rhythm will become dominant and can occupy a large
percentage (%) of all EEG band [7], we take the ratio of Alpha
power to the total EEG power (Alpha/Total EEG) as one feature
in evaluating EEG signal quality. In the meantime, we calculate
the variance (VAR) of each EEG data as the second feature.
In the office and domestic settings, the most prevalent low
frequency noise is at 50/60 Hz. Hence, the power of 50/60 Hz
can be taken as another feature (50 Hz/Total EEG). Out of
the aforementioned 4000 EEG data samples, we computed
the values of each feature (listed in Table I). These provide a
solid ground for us to make the following observations: the
variance for good EEG signals is in the range 100 to 2500,
while the variance tends to be in the range of 2500 to 5000 if
the connection is poor. This leads to the conclusion that a very
bad connection is likely to occur, when the VAR is over 5000.
The selection of a frequency at 50 Hz/Total EEG is based

on the consideration that the rate will be extremely high with
respect to the office noise, and very low when connected well
or in public parks (for both good and bad connections). The rate
of Alpha/Total EEG varies from 0.4 to 0.8 (or even higher when
connection is good) and from 0.06 to 0.4 when not connected
with only noise being registered.
Each of these features, when considered alone, cannot decide

whether the signal is EEG data or noise. However, with the com-
bination of VAR, 50 Hz/Total EEG, and Alpha/Total EEG, we
can define 3 functions to calculate the overall final score.
The initial score is given by VAR which is from 0–100. The

values of 50 Hz/EEG and Alpha/EEG are between 0 and 1
(taken separately). The overall signal quality is calculated as
the multiplication of all these three scores.
We denote the VAR as x1, 50 Hz/Total EEG as x2, and Alpha/

Total EEG as x3. We designate y1 to represent the initial score,
y2 as the score after x2 is taken into account and y3 after x3 is
applied.
The score of y1 is computed as (1) and is depicted in Fig. 5.

(1)
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Fig. 3. Time domain of signal. First line is recorded in the park, (a) Good connection. (b) Bad connection. Second Line is recorded in the office. (c) Good
connection. (d) Bad connection.

Fig. 4. Frequency domain of signals. First line is recorded in the park. (a) Good connection. (b) Bad connection. Second Line is recorded in the office. (c) Good
connection. (d) Bad connection.
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TABLE I
VALUES OF VARIANCE, 50/TOTAL EEG AND ALPHA/TOTAL EEG IN PARK AND OFFICE

Fig. 5. Origin score of y1 relative to (x: x1, y: y1).

Fig. 6. Score of y2 relative to /Total EEG (x: x2, y: y2).

The score of y2 is computed using (2) and is shown in Fig. 6.

(2)
The score of y3 is calculated using (3) and is shown in Fig. 7.

(3)

The final quality score of EEG signal is defined as in (4).

(4)

C. EEG Quality Scores in OPTIMI
In OPTIMI, the experiment population was made up of a

total of 90 volunteers, each using the EEG sensor presented in
this paper. The population consists of volunteers with different

Fig. 7. Score of y3 relative to EEG (x: x3, y: y3).

TABLE II
SCORE OF EEG SIGNAL QUALITY IN DIFFERENT CONDITIONS

backgrounds from three different countries. They are 30 stu-
dents from Switzerland, 30 employed persons located in Spain,
and 30 mothers with disabled children from China. Each volun-
teer gathered their EEG data twice every day for one month.
This assessment method of EEG signal quality helped these
non-professional volunteers to develop necessary skills of using
EEG sensors to avoid errors in the capture of EEG data.
Table II lists the result of the signal quality scores. For those

records with EEG signal quality score as 0, a further investiga-
tion into the frequency domains shows that these are just 50 Hz
or low frequency noises.
The results also show that if the score is greater than 60,

the connection and environment are considered good and the
process can proceed to the next step which is the recording
of EEG data. However, this algorithm depends on the type of
EEG sensors and thus modification may be required where other
types of EEG sensor are used.

V. REMOVAL OF OCULAR ARTEFACTS COMBINED WITH
DISCRETE WAVELET TRANSFORMATION AND ADAPTIVE NOISE

CANCELLATION
EEG signals are taken from electrodes positioned on the fore-

head. The scalp electric potential amplitude is typically 20 to
100 . Signal data can be contaminated by non-cerebral poten-
tial interference such as electromyography (EMG) from muscle
activity or baseline drift and power line interference (50/60 Hz),
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Fig. 8. OA removal model combining DWT and ANC.

etc. [8]. Also, since the electrode points of Fp1, Fpz, and Fp2
are so close to eyes, the recorded data are likely to be distorted
seriously by eye movements and blinks. An eye blink produces
signal amplitudes of more than 10 times that of the ambient EEG
signal. Eye movements can also be recorded during the EEG
collection trial, even when the subjects keep their eyes closed.
It is necessary to develop an efficient method for removing the
noise caused by eye movements.
Traditional approaches to attenuating ocular artifacts are

based on time domain [9] or frequency domain [10] techniques.
A number of investigations have applied Principal Compo-
nent Analysis (PCA) [11], [12] or Independent Component
Analysis (ICA) [12]–[14]. However, given that ICA needs a
reference signal which requires tedious visual classification of
the components [16]–[18], it is not suitable for short time trial
employed in OPTIMI.
DWT is a method that neither relies upon the reference oc-

ular artifacts nor requires visual inspection. In this paper, we
have developed a new model based on DWT and ANC cancel-
lation to remove the ocular artifacts. This is conducted as fol-
lows. First step is to construct a reference signal with DWT.
With this reference signal, a new model is established based on
ANC, hence a combination of DWT and ANC [19]. It is our
contention that this is a novel and effective approach, particu-
larly suitable for portable applications, even if the EEG signal
has only one channel.
OA are mainly concentrated in the low frequency band, so

DWT is used to construct the OA in the frequency domain.
DWT is a multi-resolution representation of signals and images.
It can be used to decompose signals into multi-scale represen-
tations. It is widely used for analyzing non-stationary signals.
The wavelets used in DWT are effective in constructing both
time and frequency domain information from time-varying and
non-stabile EEG signals [20], [21]. An alternative method of es-
timating signals, corrupted by additive noise interference, is to
apply an ANC adaptive filter [22]. In an ANC filter, the interfer-
ence source is used as a reference when adjusting coefficients
automatically to achieve optimal results. The combination of
DWT and ANC in our new model is shown in Fig. 8 [19].
Derived from the contaminated EEG, the reference input

has a strong correlation with OA that meets the conditions of
employing ANC as a reference input. Choosing an adaptive
algorithm is the key to achieve the result. An ANC based on
RLS algorithm is adopted to remove OA [18]. This method
works as follows. 1) Wavelet decomposition is applied to
expand the contaminated EEG signal so as to get the wavelet
coefficients. Daubechies 4 wavelet is selected as the mother
wavelet function. 2) According to the minimum risk value, the
soft threshold is applied to the three lowest level coefficients to
obtain the new coefficients for those three levels. 3) Wavelet

reconstruction is applied to the new wavelet coefficients for
constructing the reference signal. 4) ANC is applied to the
contaminated EEG with the constructed reference signal as an
input to remove the OA.
In OPTIMI, a filter from 0.5 to 40 Hz frequencies has been

adopted to avoid the influence of power line interference.
The new model proposed in this paper removes the OA from
recorded EEG data. The results are sufficiently good to facili-
tate feature extraction.

VI. FEATURES EXTRACTION

When EEG signal is collected, features relate to stress will
be calculated in the user's notebook/PC and sent to a data server
over the Internet. It is, therefore, important to identify the EEG
features both from practical and effective perspectives. In this
paper, EEG features, including linear features (such as absolute
and relative power, frequency and asymmetry) as well as non-
linear dynamical measures, (e.g., namely C0 complexity (C0),
LZ complexity (LZC), correlation dimension (D2), Renyi en-
tropy (RE), and the first positive Lyapunov exponent (L1)) are
calculated to examine the difference between those with chronic
stress and those from normal control.
In the experiments, the recording task is 2 minutes for each

participant in a relaxed state with their eyes closed. The scalp
sites are located according to the international 10/20 system
recommendation with EEG signals recorded from 3 electrodes-
Fp1, Fp2 and Fpz-using earlobes as references at a sample rate
of 260 Hz.
Among the experiment population, there are 3 groups of

right-handed participants who volunteered to take part in the
study. Eighteen unemployed men aged from 21 to 41 were
recruited in group 1. Participants of group 2 were students aged
from 20 to 35 at risk of chronic stress due to frequent exam-
inations and graduation stress, while group 3 were mothers
of disabled children aged 30–52. All the participants are free
of prior history of psychopathology. Previous cardiovascular
conditions or medications are also taken into account due to a
potential negative impact on the heart and the fact that using
medication can affect mood. Participants initially completed
the Beck Depression Inventory (BDI) scale. Individuals with
a BDI score below 10 belong to the control group, while
individuals with a BDI score of 10 or higher are included in the
stress group [24].
For both Group1 and Group2, D2, L1, and LZC can effec-

tively distinguish stressful individuals from normal controls.
The stress group presents a significantly higher LZC and D2
than the normal control group. Higher LZC and D2 values imply
a greater chance of the occurrence of new sequence patterns
and thus a more complex dynamical behavior. Stressful subjects
show significantly lower L1 value compared to normal controls.
As for Group3, mothers caring disabled children, the Renyi en-
tropy of the stress group is significantly higher than the con-
trol group. These results are consistent with the finding given
by Tang [25], showing that the alpha activity of depression pa-
tients is more complex during rest. There is a significant dif-
ference on power asymmetry of Alpha, Beta, and Theta bands
between stressful individuals and normal controls in all the three
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groups facedwith different kinds of stressors [26]. Stressful sub-
jects have negative hemispheric asymmetry indices, while the
controls are the opposite, implying greater relative right anterior
EEG activity in the stressful subjects. It is in agreement with the
outcomes of other researches addressing similar problems.

VII. CONCLUSION AND FUTURE WORK

EEG signal processing is at the heart of the OPTIMI project.
Considering a lack of suitable low cost and light weight EEG
sensors, we have designed and produced a novel wearable EEG
sensor that can be easily used by ordinary public in an everyday
setting. In order to validate the sensor when used in normal/real-
world conditions by a non-professional (i.e., not professionally
trained and qualified) person, we have presented an algorithm
to calculate EEG signal quality with which the users can adjust
the connection of electrodes to correct any errors and to suit
the prevailing environment. The reported results show that our
proposed method functions well, meeting the design goals/re-
quirements and helping to ensure the quality of the EEG signal.
In addition, the wearable sensor can also be used as a low cost
diagnostic tool to meet the needs of large e-health trials.
EEG signals collected from subject's forehead are very easily

contaminated by noise. This is especially true for OA. The paper
addresses this issue by proposing a newmodel combining DWT
and ANC to remove OA in the low frequency band even when
OA's frequency band is overlapping with that of the EEG signal.
After DWT is applied to obtain wavelet coefficients, a threshold
is selected and applied to the three lowest level coefficients to
derive new wavelet coefficients. Thus the OA signal is recon-
structed and used as a reference signal.
ANC based on an RLS algorithm is used to remove the OA

from the original EEG data. The results from the OPTIMI
project are very promising, with reduction levels of the OA
being shown to be sufficient for use in practice. In further
studies, we will use more statistical methods to prove our model
with respect to efficiency and “real-time” constraints.
The results based on the selected features demonstrate

that EEG nonlinear dynamics features are effective measures
to detect chronic stress. EEG frontal asymmetry of theta,
alpha, and beta bands can be biological indicators for chronic
stress, showing relative greater right anterior EEG activity
in stressful individuals. In addition, different stress factors in
real life can lead to varying degrees of emotional, behavioral
and physiological changes, reflecting in complexity of frontal
EEG. Consequently, analysis of chronic stress according to the
specific stressor is necessary.
The crux of our further work lies in sensor performance im-

provement. The proposed EEG sensor will be enhanced with a
rule-based system to interpret the data and to provide a diag-
nostic foundation for both pharmacological and Cognitive Be-
havioral Therapies (CBT) based preventative and intervening
treatments.
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