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Abstract—With the recent surge of location-based social net-
works (LBSNs), such as Foursquare and Facebook Places, huge
digital footprints of people’s locations, profiles, and online social
connections become accessible to service providers. Unlike social
networks (e.g., Flickr, Facebook) that have explicit groups for
users to subscribe to or join, LBSNs usually have no explicit
community structure. In order to capitalize on the large number
of potential users, quality community detection and profiling
approaches are needed. In the meantime, the diversity of people’s
interests and behaviors when using LBSNs suggests that their
community structures overlap. In this paper, based on the user
check-in traces at venues and user/venue attributes, we come
out with a novel multimode multi-attribute edge-centric coclus-
tering framework to discover the overlapping and hierarchical
communities of LBSNs users. By employing both intermode and
intramode features, the proposed framework is not only able to
group like-minded users from different social perspectives but
also discover communities with explicit profiles indicating the
interests of community members. The efficacy of our approach
is validated by intensive empirical evaluations using the collected
Foursquare dataset.

Index Terms—Community profiling, hierarchical clustering,
location-based social networks (LBSNs), overlapping community
detection.

I. Introduction

With the wide adoption of GPS-enabled smartphones,
location-based social networks (LBSNs) have been expe-
riencing increasing popularity, attracting millions of users.
In LBSNs, users can explore places, write reviews, upload
photos, and share locations and experiences with others. The
soaring popularity of LBSNs has created opportunities for

Manuscript received June 18, 2012; revised December 15, 2012; accepted
March 6, 2013. Date of publication May 31, 2013; date of current version
March 13, 2014. The work of Z. Wang was supported by the China Scholar-
ship Council through joint Ph.D. funding. This paper was supported in part by
the National Basic Research Program of China under Grant 2012CB316400,
the EU FP7 Project Societies under Grant 257493, the National Natural
Science Foundation of China under Grant 61222209 and Grant 61103063,
the Specialized Research Fund for the Doctoral Program of Higher Education
under Grant 20126102110043, the Natural Science Basic Research Plan in the
Shaanxi Province of China under Grant 2012JQ8028, the Scholarship Award
for Excellent Doctoral Student Granted by the Ministry of Education of China,
and the Doctorate Foundation of Northwestern Polytechnical University under
Grant CX201018. This paper was recommended by Associate Editor W.
Pedrycz.

Z. Wang, X. Zhou, and Z. Yu are with the School of Com-
puter Science, Northwestern Polytechnical University, Xi’an, Shaanxi
710129, China (e-mail: zhu.wang@mail.nwpu.edu.cn; zhouxs@nwpu.edu.cn;
zhiwenyu@nwpu.edu.cn).

D. Zhang, D. Yang, and Z. Yu are with the Department of Telecommunica-
tion Network and Services, Institut Mines-TELECOM/TELECOM SudParis,
Evry 91011, France (e-mail: daqing.zhang@it-sudparis.eu; dingqi.yang@it-
sudparis.eu; zhiyong.yu@it-sudparis.eu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2013.2256890

understanding collective user behaviors on a large scale, which
are capable of enabling many applications, such as direct
marketing, trend analysis, group search, and tracking.

One fundamental issue in social network analysis is the
detection of user communities. A community is typically
thought of as a group of users with more and/or better inter-
actions amongst its members than between its members and
the remainder of the network [1], [2]. However, unlike social
networks (e.g., Flickr, Facebook) that provide explicit groups
for users to subscribe to or join, the notion of community in
LBSNs is not well defined. In order to capitalize on the huge
number of potential users, quality community detection and
profiling approaches are needed.

It has been well understood that people in a real social
network are naturally characterized by multiple community
memberships. For example, a person usually belongs to several
social groups such as family, friends, and colleges; a researcher
may be active in several areas. Thus, it is more reasonable to
cluster users into overlapping communities rather than disjoint
ones.

Most of the existing community detection approaches are
based on structural features (e.g., links) [3], but the structural
information of online social networks is often sparse and weak;
thus, it is difficult to detect interpretable overlapping commu-
nities by considering only network structural information [4].
Fortunately, LBSNs provide rich information about the user
and venue through check-ins, which makes it possible to clus-
ter users with different preferences and interests into different
communities. Specifically, the observation that a check-in on
LBSNs reflects a certain aspect of the user’s preferences or
interests enlightens us to cluster edges instead of nodes, as the
detected clusters of check-ins will naturally assign users into
overlapping communities with connections to venues. Once
edge clusters are obtained, overlapping communities of users
can be recovered by replacing each edge with its vertices,
i.e., a user is involved in a community as long as any of her
check-ins falls into the community. In such a way, the obtained
communities are usually highly overlapped.

We present an example of the user-venue check-in network
in Fig. 1, which consists of five users and four venues. In
such a network, users and venues are represented as two
types of nodes, and each check-in is represented as an edge
between a user node and a venue node. For this attributed
bipartite network, since both users and venues have their own
attributes, if we perform edge clustering to group users based
solely on network structure [5], we can get two overlapping
communities: Group 1 (Mary, Tom) and Group 2 (Tom, David,
Bob, Eva). By implicitly using the venue mode to characterize
the user mode (i.e., intermode), we can interpret Group 1
as a family community and Group 2 as a colleague commu-
nity. However, if we consider not only the check-in network
(i.e., intermode features) but also the attributes of users and
venues (i.e., intramode features), we can get three overlapping
communities: Group 1 (Mary, Tom), Group 2 (Tom, David),
and Group 3 (Bob, Eva). In this case, even though Tom,
David, Bob, and Eva have similar check-in patterns, they are
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Fig. 1. User-venue check-in network example.

further grouped into two separate communities. Since Tom
and David travel frequently whose radius of gyration (i.e., rg)
are 1000 km and 800 km, while Bob and Eva mainly stay
locally whose rg are 80 km and 60 km, respectively. Here, we
probably can label Group 1 as a family community, Group 2
as a research staff community, and Group 3 as a teaching staff
community.

Apparently, it is more reasonable to exploit both the struc-
tural information (intermode) and the node attributes (in-
tramode) to cluster users, as we can naturally obtain communi-
ties with richer and interpretable information, even though it is
a highly challenging task. While classical coclustering is one
way to conduct this kind of community partitioning [6], the
identified communities are disjointed, which contradicts with
the actual social setting. Edge clustering has been proposed to
detect communities in an overlapping manner [5], but it did
not take intramode features into consideration.

From the perspective of service providers, it is equally
important to identify communities with similar interests and
understand what each community is interested in. In con-
trast to existing community detection approaches that seldom
address the profiling of detected communities, we intend to
take community profiling into account when designing the
community detection framework. We believe that it’s crucial to
characterize communities in a semantic manner to effectively
support real-world applications. However, due to the limitation
of available node information, not much work has been done
on community profiling. The rich user and venue metadata
available in LBSNs, especially the hierarchical structure of
venue categories, provides us the possibility to semantically
characterize the identified communities.

In this paper, we aim to make the following two
contributions.

1) We formulate the overlapping community detection
problem in LBSNs as a coclustering issue that considers
both the user-venue check-in network and the attributes
of users and venues. Specifically, we detect overlapping
communities from an edge-centric perspective, where
each edge is viewed as a link between two modes,
i.e., a user mode vertex and a venue mode vertex.
While existing multimode clustering methods mainly
concern the intermode features, we adopt both intermode
and intramode features for clustering. By introducing
different attributes of users and venues as intramode

features, we show that various perspectives of social
communities can be revealed.

2) We consider both community detection and profiling in
one unified framework and obtain communities contain-
ing user and venue information simultaneously. In such a
way, each community explicitly shows who is interested
in where with what attributes, which is very useful in
enabling real applications. In the meantime, we analyze
and compare the detected user community profiles in
London, Los Angeles and New York, with interesting
findings.

The rest of this paper is structured as follows. Section II
presents the related work. Section III formally defines the
multimode multi-attribute overlapping community detection
problem. The proposed community clustering framework is
presented in Section IV, followed by experimental evaluation
in Section V. Afterward, Section VI analyzes the detected
communities based on community profiling. We conclude our
work and discuss possible future directions in Section VII.

II. Related Work

In this section, we briefly review the related work that can
be classified into three categories.

The first category contains the research on understanding the
collective user behaviors based on LBSNs. Scellato et al. [7],
[8] analyzed the social, geographic and geo-social properties
of four social networks (BrightKite, Foursquare, LiveJournal,
and Twitter). Noulas et al. [9] investigated the user check-
in dynamics and the presence of spatio-temporal patterns in
Foursquare. Cheng et al. [10] studied the mobility patterns of
Foursquare users and revealed the factors affecting people’s
mobility. Vasconcelos et al. [11] analyzed how Foursquare
users exploited three features (i.e., tips, dones, and to-dos)
to uncover different behavior profiles. Only two studies aimed
at uncovering group profiles in LBSNs. Li et al. [12] proposed
two different clustering approaches to identify user behavior
patterns on BrightKite. Noulas et al. [13] used a spectral
clustering algorithm to group Foursquare users based on the
categories of venues they had checked in, aiming at identifying
communities and characterizing the type of activity in each
region of a city. Although the aforementioned studies offer im-
portant insights into properties of user interactions in LBSNs,
none of them worked on overlapping community detection
using network links and node attributes. Our work aims to fill
in this gap by discovering and profiling communities in an
overlapping manner.

The second category involves the work on community
detection that is a classical task in complex network analysis
[1], [2], [14], [15]. In order to detect communities from a
network of nodes, one typically chooses an objective function
based on the intuition that a cluster is a set of nodes with
better internal connectivity than external connectivity, and
then applies approximate or heuristic algorithms to extract
node clusters by optimizing the objective function. In general,
community detection can be classified into two categories:
overlapping and non-overlapping approaches. Some popular
methods are modularity maximization [14], [15], Girvan-
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Newman algorithm [1], Louvain algorithm [16], clique per-
colation [17], link communities [18], etc. As users in LBSNs
have rather weak and sparse relations [19], one cannot naively
apply community detection based solely on the network links
and expect to generate interpretable communities.

The third category focuses on community detection by
considering both links and node attributes, which are the
closest to our work. Several existing works on attributed
graph clustering fall into this category. The main idea is to
design a distance/similarity measure for vertex pairs that com-
bines both structural and attribute information of the nodes.
Based on this measure, standard clustering algorithms such as
k-medoids and spectral clustering are then applied to cluster
the nodes. For instance, a weighted adjacency matrix is used
as the similarity measure in [20], where the weight of each
edge is defined as the number of attribute values shared
by the two end nodes. The authors applied graph clustering
algorithms on the constructed adjacency matrix to perform
clustering. The state-of-the-art distance-based approach is the
SA-cluster [21] that defined a unified distance measure to
combine structural and attribute similarities. Attribute nodes
and edges are added to the original graph to connect nodes that
share attribute values, and a neighborhood random walk model
is used to measure the node closeness on the augmented graph.
Afterward, a clustering algorithm SA-cluster is proposed based
on the k-medoids method.

However, all these works in the last category attempted to
optimize two contradictory objective functions and intended to
identify disjoint communities; thus, the communities detected
were not optimal and had no clear semantic meanings. In this
paper, we propose to leverage both the structure links between
users and venues, and their attributes to discover the over-
lapping community structure. Specifically, we formulate the
overlapping community detection problem into a multimode
multi-attribute edge clustering issue, viewing both intermode
links and intramode attributes as unified features for clustering.
With this novel representation, users and venues together with
their attributes are grouped in a natural way, where the detected
communities have explicit semantic meanings that can be
interpreted as community profiles.

III. Problem Statement

In this paper, a community is defined as a cluster of
edges (i.e., check-ins) with user and venue as two modes.
We use U = (u1, u2, . . . , um) to represent the user set,
and V = (v1, v2, . . . , vn) to denote the venue category set.
A community Ci(1 ≤ i ≤ k) is a subset of users and
venue categories, where k is the number of communities.
On one hand, the check-in network between users and venue
categories form a matrix M, where each entry Mij ∈ [0, ∞)
corresponds to the number of check-ins that ui has performed
over vj . Therefore, each user can be represented as a vector
of venue categories, and each venue category can be denoted
as a vector of users. On the other hand, users and venue
categories might have several independent attributes, denoted
as (ai1, ai2, . . . , aix), and (bj1, bj2, . . . , bjy), respectively. Nor-
mally, every attribute reveals a certain social aspect of users or

Fig. 2. Community discovering and profiling framework.

venue categories. For instance, a user has a certain number of
followers and followings in Foursquare, and a venue category
has a common operating time. Therefore, both the user mode
and the venue mode have two types of representations: an
intermode representation and an intramode representation.

Based on the above notations, the overlapping community
detection in LBSNs can be formulated as a multimode multi-
attribute edge-centric coclustering problem as follows.

Input:

1) A check-in matrix M(|U|×|V |), where |U| and |V | are the
numbers of users and venue categories, respectively.

2) A user attributes matrix M(|U|×|A|), where |A| is the
number of user attributes.

3) A venue category attributes matrix M(|V |×|B|), where |B|
is the number of venue category attributes.

4) The number of communities k, which is optional based
on the clustering algorithm.

Output:

1) k overlapping communities that consist of both users and
venue categories.

IV. Multimode Multi-attribute Edge Clustering

Framework

The key idea of the proposed community discovering and
profiling framework is shown in Fig. 2. First, features are
selected based on the characteristics of the collected LB-
SNs dataset and then feature normalization and fusion are
performed. Second, the overlapping community structure is
detected by using the proposed edge clustering algorithm.
Finally, by combining the detected communities together with
user/venue metadata, we obtain the community profiles to
interpret the social and semantic meanings of communities.

A. Multimode Multi-attribute Edge Clustering

As stated in the introduction section, we define a community
in LBSNs as a group of users who are more similar with
users within the group than users outside the group. Therefore,
communities that aggregate similar users and venues together
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should be detected by maximizing intracluster similarity. This
objective function is formulated as [5]

Obj = arg max
C

k∑
j=1

∑
ec∈Cj

sim(ec, Cj) (1)

where k is the number of communities, C = {C1, C2, . . . , Ck}
is the detected community set, ec denotes an edge of com-
munity Cj , and sim(ec, Cj) is the similarity between ec and
Cj .

With the above objective function, the key issue is to
characterize the similarity between an edge and a community.
To this end, we first introduce the definition of edge similarity.
In a user-venue check-in network, each edge is associated with
a user vertex and a venue vertex. By taking an edge-centric
view, each edge can be treated as an instance with its two
vertices as features. In other words, the similarity between a
pair of edges can be defined as the similarity between the
corresponding pair of user vertices and venue vertices as

simedge(ei, ej) = F(simu(ui, uj), simv(vi, vj)) (2)

where simu(ui, uj) is the similarity between two users,
simv(vi, vj) is the similarity between two venues, and F repre-
sents the function used to combine these two similarities. The
formalism of F depends on the characteristics of the expected
communities and the targeted applications. Considering the
similarity trade-off between user mode and venue mode, two
widely used formalisms of F are average (i.e., (simu +simv)/2)
and multiplication (i.e.,

√
simu × simv). In this paper, we

adopt the second notion to ensure that a pair of edges are
of high similarity if and only if they are of high similarity in
both user-mode and venue-mode.

Each community contains a set of edges, based on (2), the
similarity between an edge ei and a community Cj is defined
as

simei,Cj
=

1

|Cj|
∑
ec∈Cj

simedge(ei, ec) (3)

where |Cj| refers to the number of edges within community
Cj .

As shown in (2), the edge similarity is defined based on
two mode similarities (i.e., user-mode similarity and venue-
mode similarity). In the following section, we compute the
mode similarity by taking into account both intermode and
intramode features.

B. Feature Description

The intermode feature describes the structure similarity
between a pair of edges based on the check-in relationships
between users and venues. According to [5], we adopt two
intermode features (i.e., user-venue similarity and venue-user
similarity) in this paper, where each user is represented as a
vector of venue categories and each venue category is denoted
as a vector of users. The intramode feature depicts attributes
similarity where each attribute corresponds to a certain social
aspect of users or venues. We select three intramode features
based on the characteristics of the Foursquare data, which is
partially inspired by [10].

Fig. 3. Tag clouds of two Foursquare users from London. (a) Tag cloud of
user A. (b) Tag cloud of user B.

1) Intermode Feature User-Venue Similarity: Foursquare
classifies venues into 400 categories under nine parent cat-
egories. We identify 274 venue categories by merging those
similar ones, and consequently based on the venue categories
that a user has checked in, each user can be represented as a
vector of 274 dimensions. We build a |U|×274 matrix to repre-
sent all the active users within the collected dataset. Afterward,
this matrix is refined based on principal component analysis,
which is able to convert a set of observation of correlated
variables into a set of values of linearly uncorrelated variables
under a latent space. By applying principal component analysis
on the raw matrix, we obtain a |U|×100 matrix that covers
95.62% of the total variance. After the conversion, each user is
represented as a vector of 100 dimensions in the latent space.

According to [5], cosine similarity is effective in charac-
terizing intermode feature similarities. Therefore, we adopt
cosine similarity to calculate the user-venue similarity for a
pair of users um and un as follows:

simuv(um, un) =
�um · �un

|| �um|| · || �un|| (4)

where �um and �un refer to the feature vectors of um and un

in the latent space, respectively. Here, we give an example to
illustrate the concept of the user-venue similarity. First, we
present the tag clouds of two Foursquare users from London
(marked as user A and user B) in Fig. 3 by using Wordle
(www.wordle.net). We can see that the check-in patterns of
these two users are very similar, since both of them have
frequent check-ins at Airport and Pub.

Second, we show in Fig. 4 the 100-dimension vectors of
user A and user B in the latent space. Based on (4), the
cosine similarity simuv(A, B) between these two vectors can
be obtained. Specifically, the corresponding value is 0.696,
which indicates a high similarity between user A and user
B. Apparently, the result is in line with our initial estimation
based on the tag clouds of these two users.

2) Intermode Feature Venue-User Similarity: As we have
mentioned, each venue category of Foursquare can be denoted
as a vector by treating users as features as well. Following the
same approach as the above section, we obtain a 274×100
matrix by performing principal component analysis on the
original 274×|U| matrix, which covers 95.34% of the total
variance. As a result, each venue category corresponds to a
vector of 100 dimensions in the latent space. For example,
Fig. 5 shows the 100-dimension vectors of two venue cate-
gories (i.e., Museum and Bar) in the latent space. Similarly, the
venue-user similarity is also defined using cosine similarity.
Based on these two vectors, we can calculate the venue-
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Fig. 4. 100-dimension vectors of user A and user B in the latent space.

Fig. 5. 100-dimension vectors of two venue categories (i.e., Museum and
Bar) in the latent space.

user similarity between Museum and Bar and the result is
0.977, which indicates that users who have ever checked in at
museums are also very likely to visit bars.

3) Intramode Feature: User Social-Influence Similarity:
There are two lists in each user’s LBSN profile, a follower list
and a following list. In this paper, we define a user’s social
influence as the ratio of her number of followers to her number
of followings. Specifically, the social influence of a user um

is formalized as

sinf (um) =
nfollowers(um)

nfollowings(um)
. (5)

For example, based on (5) we can calculate the social
influences of user A and user B in Fig. 3, which are 0.989 and
0.700, respectively. According to the above definition, users
with high social influence are those who have many followers
and fewer followings. To some extent, these users act as hubs
of the social network.

We introduce the first intrauser similarity feature namely
user social-influence similarity based on the user social
influence metric. Given a pair of users um and un, this feature
is defined as

simus(um, un) =
min(sinf (um), sinf (un))

max(sinf (um), sinf (un))
(6)

where sinf (um) and sinf (un) represent the social influence of um

and un respectively. Apparently, its value falls into the interval
[0, 1]. For instance, based on (6) the user social-influence
similarity between user A and user B is 0.708, indicating that
these two users are similar to each other from the perspective
of social influences.

4) Intramode Feature: User Geo-Span Similarity: The user
geo-span (also called radius of gyration) is another metric that
can be used to distinguish the life style of different users,
which is defined as the standard deviation of distances between
a user’s check-ins and her home location. In LBSNs, a user’s
home location is defined as the centroid position of her most
popular check-in region [8]. The user geo-span metric is able
to indicate not only how frequently but also how far a user
moves. Generally, a user with low radius of gyration mainly
travels locally (with few long-distance check-ins), while a user
with high radius of gyration has many long-distance check-ins.
The formal definition for radius of gyration is as follows:

rg =

√√√√1

n

n∑
i=1

(ri − rh)2 (7)

where n is the number of check-ins made by a user, and ri−rh

is the distance between a particular check-in location ri and the
user’s home location rh. Based on (7) the geo-spans of user A
and user B are computed as 2745 and 3563 km, respectively,
indicating that both of them travel frequently.

By using the radius of gyration metric, we introduce the sec-
ond intrauser similarity feature named user geo-span similarity.
Specifically, for a pair of users um and un, the calculation of
this feature is the same as (6). Again, we use the two users
shown in Fig. 3 as an example, and their geo-span similarity
is 0.770.

5) Intramode Feature: Venue Temporal Similarity: Gen-
erally, people visit and check in different kinds of venues
at different time such that different venue categories can be
distinguished according to their temporal check-in patterns
[22]. This paper partitions a week into 168 (7×24) time slots
and each time slot corresponds to 1 h in a certain day of
the week, reflecting the temporal characteristic of check-ins.
In such a way, we build a weekly temporal check-in band for
each venue category at the hour granularity, which means each
temporal band corresponds to a vector of 168 dimensions. For
example, Fig. 6 plots the check-in patterns of two different
venue categories: Bar and Museum. We can see that, according
to the temporal check-in patterns, museums are most popular
during the daytime of weekends, while bars are extremely busy
on Friday and Saturday evening.

Since we have identified 274 venue categories, a 274×168
matrix is constructed and then principal component analysis is
performed on this matrix, producing a new matrix of 274×20
that covers 99.92% of the total variance. Consequently, the
venue temporal similarity between a pair of venues can be
defined based on cosine similarity, e.g., the temporal similarity
between Bar and Museum is −0.511, indicating that Bar and
Museum are two quite dissimilar venue categories from the
perspective of temporal check-in patterns.
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Fig. 6. Weekly check-in patterns of two venue categories: Museum and Bar.

C. Feature Normalization and Fusion

Due to the characteristic of various similarity features,
different calculation methods might be used which lead to dif-
ferent value ranges. Therefore, the absolute values of different
features must be normalized. To this end, we simply normalize
each similarity measure simx into the interval [0, 1] as follows:

sim′
x =

simx − min(simx)

max(simx) − min(simx)
(8)

where sim′
x is the normalized format of simx. For example,

before normalization the temporal similarity between Bar and
Museum is −0.511, and the minimum and maximum venue
temporal similarities are −0.878 and 1.000, respectively. Then,
based on (8) the normalized temporal similarity between Bar
and Museum will be 0.196. Similarly, the normalized user-
venue similarity between user A and user B becomes 0.813,
and the normalized venue-user similarity between Bar and
Museum changes to 0.985. It should be pointed out that both
the social-influence similarity and the geo-span similarity will
not change after normalization, since the original values of
these two features already fall into the interval [0, 1] according
to their definitions.

Afterward, another issue is to fuse different features. Con-
sidering that each edge consists of two nodes, we first define
user similarity and venue similarity as

simu =
1

|fu|
∑

sim′
u∗ (9)

simv =
1

|fv|
∑

sim′
v∗ (10)

where |fu| and |fv| represent the number of selected features
for user-mode and venue-mode, respectively; sim′

u∗ and sim′
v∗

refer to the normalized similarity. For example, the similarity
between user A and user B in Fig. 3 is 0.764, and the similarity
between Museum and Bar is 0.591. Then, based on (2), the
edge similarity is calculated as follows:

simedge =
√

simu × simv. (11)

Suppose that there is an edge eA,Museum between user A and
Museum and another edge eB,Bar between user B and Bar, the

similarity between these two edges can be obtained by using
(11), and its value is 0.672.

Based on the above normalization and fusion mechanisms,
different forms of edge similarities can be obtained by using
different feature combinations, which are able to reveal the
community structures in LBSNs from different perspectives.

D. Clustering Algorithm

Based on the above formulation, the multimode multi-
attribute edge clustering problem is converted into an ordinary
clustering issue, which can be handled by using multiple
clustering algorithms. In this paper, we propose a two-step
hierarchical clustering algorithm to detect overlapping com-
munities of LBSNs users, where a variant of k-means is used
as the baseline method.

To discover overlapping communities of LBSNs users, we
adjust the classical k-means algorithm as follows.

1) While k-means selects the geometric center of all the
instances (i.e., edges) in a cluster as its centroid, we
represent each centroid by using the whole set of in-
stances within the cluster. According to the definition of
the similarity between an edge and a cluster in (2), if a
set of multimode multi-attribute edges are denoted by a
single vector, the obtained similarity will be significantly
different.

2) While representing each centroid as a set of instances
ensures the precision of the obtained similarity, the com-
putation complexity increases from O(k ×N) to O(N2).
To improve the time efficiency, each centroid Cj is
denoted as a structure that consists of four components:
a list of current instances within the centroid (ECj

), a
list of instances that are assigned to the centroid during
last iteration (EA,Cj

), a list of instances that are removed
from the centroid during last iteration (ER,Cj

), and the
similarity array between the previous centroid and the
whole set of instances (sim(EP,Cj

, E)). Based on such
a structure for the centroid, the computation complexity
can be decreased to O((|EA,Cj

| + |ER,Cj
|) × N).

Based on the above adjustments, the proposed k-
means based multimode multi-attribute edge clustering
(M2Clustering) method is presented in Algorithm 1.

At the beginning, k edges are randomly selected (line 1)
based on which a set of initial centroids are constructed (lines
2–7). Afterward, during the iteration, given a centroid Cj

we compute the similarity that each edge ei has obtained
(line 14) and the similarity it has lost (line 15) during
the last reassignment, based on which the current similar-
ity between ej and Cj is calculated (line 16). An edge
ei will be assigned to the centroid that is most similar to
itself, and the corresponding similarity is marked as maxsimi

(lines 17–20). Centroid updating is performed based on the
reassignment of edges (line 23). At the end of each iteration,
the current value of the objective function Objcur is calculated
(line 24) to compare with the previous value Objpre (line 25).
The iteration terminates if and only if the absolute difference
between these two values is smaller than the predefined thresh-
old ε (line 26). Experiments based on our dataset show that,
in most cases, the algorithm converges within 100 iterations.
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Algorithm 1 M2Clustering—Edge clustering based on k-means

Input:
• E, an edge list {ei|1 ≤ i ≤ n}
• k, the number of communities
• Mu, the user-user similarity matrix
• Mv, the venue-venue similarity matrix

Output:
• C, a set of detected communities

1: k edges are randomly selected {ej|1 ≤ j ≤ k}
2: for each ej do
3: ECj

← {ej}
4: EA,Cj

← ECj

5: ER,Cj
← ∅

6: sim(EP,Cj
, E) ← zeros(|E|)

7: end for
8: {maxsimi|1 ≤ i ≤ n} ← 0
9: repeat

10: Objpre ← ∑
maxsimi

11: reset {maxsimi}
12: for each Cj do
13: for each ei in E do
14: calculate sim(EA,Cj

, ei)
15: calculate sim(ER,Cj

, ei)
16: sim(ECj

, ei) ← sim(EP,Cj
, ei) + sim(EA,Cj

, ei) -
sim(ER,Cj

, ei)
17: if sim(ECj

, ei) > maxsimi then
18: maxsimi ← sim(ECj

, ei)
19: assign ei to Cj

20: end if
21: end for
22: end for
23: update the centroids
24: Objcur ← ∑

maxsimi

25: � ← abs(Objcur - Objpre)
26: until � < ε

However, similar to most of the k-means based algorithms,
M2Clustering has several drawbacks. For example, it is
sensitive to the initial centroids, since the clustering results
vary according to different runs; the number of clusters (i.e.,
k) must be prespecified, which is not easy to deal with
in case of large datasets. To overcome these drawbacks,
we adopt a two-step hierarchical multimode multi-attribute
edge clustering (HM2Clustering) approach as shown in
Algorithm 2.

At the first step, edges are clustered into a large number (K)
of groups based on Algorithm 1. Without loss of generality, for
a given dataset the value of K is defined as

√|E| × |U| in this
paper. These groups are then agglomerated into larger clusters
using average-linkage hierarchical clustering at the second
step. The reason why we use average-linkage rather than
single-linkage or complete-linkage is mainly due to accuracy
consideration, according to experimental results. At the end of
Algorithm 2, all the edges belong to a single cluster, and the
history of the clustering process is stored in a dendrogram.
Community structures of multiple granularities are contained

Algorithm 2 HM2Clustering—Two-step hierarchical edge clustering

Input:
• E, an edge list {ei|1 ≤ i ≤ n}
• K, a large number which is � k
• Mu, the user–user similarity matrix
• Mv, the venue-venue similarity matrix

Output:
• D, an edge dendrogram

1: invoke Algorithm 1 to generate K edge groups {Gj}
2: calculate pairwise similarity wab for connected edge

groups Ga and Gb

3: repeat
4: find the largest wab

5: merge Ga and Gb, update related weights
6: until |G| <= 1

in this dendrogram, which can be recovered by introducing
different cut thresholds. With such an method, the clustering
results are less sensitive to initialization, and k is not necessary
to prespecify since the hierarchical method provides results at
multiple resolutions.

We adopt the above two-step hierarchical clustering ap-
proach rather than the classical hierarchical clustering al-
gorithm because hierarchical clustering can be quite time
consuming when processing large dataset.

V. Performance Evaluation

This section presents the evaluation results of the proposed
overlapping community detection framework by performing
experiments based on multiple feature sets. We begin with the
description of data collection, followed by experiment setup
and benchmark, and then present the obtained results.

A. Data Collection

Foursquare API provides limited access for retrieving
check-in information; therefore, we resort to Twitter streaming
API1 to crawl the publicly shared check-ins in this paper, since
approximately 20% to 25% Foursquare users choose to publish
their check-ins through Twitter plug-in [9]. Our data collection
started from October 24th, 2011 and lasted for eight weeks,
which results in a raw dataset of more than 12 million check-
ins performed by more than 700 000 users over 3 million
venues. In the meantime, we also crawled metadata related
to users and venues, including every user’s profile and the
detailed information of each venue.

B. Experiment Setup

To evaluate the performance of the proposed framework, we
chose three large cities (i.e., London, Los Angeles, and New
York) as the target societies. To this end, we preprocess the
collected raw dataset as follows. First, we excluded check-ins
that are performed over invalid venues, where invalid venues
refer to those that cannot be resolved by Foursquare API.
Second, we only keep users who have performed at least one

1Available at https://dev.twitter.com/docs.
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TABLE I

Different Feature Sets Evaluated in the Experiments

Feature Set Used Features
I UV (User-Venue Similarity) and VU (Venue-User Simi-

larity), which is the same as Edge Clustering.
II UV, VU and VT (Venue Temporal Similarity).
III UV, VU, VT and US (User Social-Influence Similarity).
IV UV, VU, VT and UG (User Geo-Span Similarity).
V UV, VU, VT, US, and UG.

check-in per week on the average (referred to as active users),
which means inactive users together with their check-ins are
excluded. Finally, users who used agent software conducting
remote and large scale automatic check-ins (with a check-
in speed faster than than 1200 km/h, which is the common
airplane speed) are defined as sudden move users [10], and
check-ins from these users are eliminated as well.

After the above data cleansing, we retrieve the dataset for
the three targeted cities as follows. We first calculate the home
location of all the active users, and then a set of users for each
city are selected based on the distance between their home
locations and the geometric center of the corresponding city.
Specifically, we set the distance threshold as 10 km, yielding
2408, 2596, and 3503 users for London, Los Angeles, and
New York, respectively. Afterward, all the check-ins produced
by these users during the data collection period are extracted,
resulting 70 777, 93 010, and 108 451 check-ins, respectively.
In the meantime, all the intermode and intramode features used
in the experiments are calculated.

Based on the dataset of these three cities, we mainly
conducted experiments to evaluate the quality of the detected
communities when using different algorithms and different
feature sets.
C. Benchmark

In this paper, we conducted a series of experiments to
evaluate the performance of two different algorithms (i.e.,
M2Clustering and HM2Clustering) under five different fea-
ture sets, as shown in Table I, where each feature set
corresponds to a specific social perspective. Specifically,
M2Clustering under Feature Set I is the same as Edge Clus-
tering [5], which is a state-of-the-art overlapping community
detection method and is used as the baseline.

D. Quality of the Detected Communities

Since we do not have the ground truth [23] about the
real community structure of Foursquare data, we resort to
indirectly evaluating the proposed framework as follows. First,
the purpose of our framework is to cluster users who have
similar habits and preferences into the same community, and
we mainly leverage the check-in information. Second, the
heterogeneous behaviors of users have strong intercorrelations.
Intuitively, users visiting similar venues tend to share similar
interests, which are reflected through the topics they discuss
(i.e., tips). Therefore, we attempt to estimate the proposed
community detection framework by testing whether the tips
that are posted by users from the same community are also of
high similarity, just as the community member’s check-in pat-
terns. In this paper, we define the average similarity among tips

Fig. 7. Tag cloud of one topic in the constructed topic model.

within a community as community tip similarity. Intuitively,
a quality community detection method should achieve high
community tip similarity, even though the tip information has
not been leveraged when clustering communities. Particularly,
a tip tk, which is left by user um at venue category vn, falls
into community Cj if and only if there is an edge eum,vn

that
belongs to Cj .

To compute the similarity between a pair of tips, we
first project each tip to a latent topic space by using latent
Dirichlet allocation (LDA), which is able to mine higher level
representations (i.e., topics) from a collection of documents
[24]. Specifically, LDA helps explain the similarity of tips
by grouping tips into topics. A mixture of these topics then
constitutes the observed tips.

We use the MALLET topic modeling toolkit to obtain
the topic representation of each tip [25]. Suppose that tips
are grouped into NT topics; then a tip tk can be formally
represented as a topic vector < tv1, tv2, . . . , tvi, . . . , tvNT

>,
where tvi is equal to the number of words in tk that are
projected to the ith topic. Consequently, the community tip
similarity can be defined by using cosine similarity.

In order to conduct the experiments, we first retrieve the
tips that are left at the 2 477 122 venues in our dataset, and
get a collection of more than six million tips. Afterward,
non-English tips are filtered out which leads to 369 083 tips
in English contributed by 66 843 users over 228 514 venues.
Specifically, there are 5628, 7303, and 9911 English tips that
were posted by Foursquare users from London, Los Angeles
and New York, respectively.

Without loss of generality, we set the number of topics as
100 in the experiment. Fig. 7 illustrates the tag cloud of one
topic.

Consequently, each tip can be denoted as a topic vector
of 100 dimensions. We perform community detection using
the proposed framework on the London dataset. Specifically,
both the M2Clustering and the HM2Clustering algorithms
were repeated 10 times for all the five feature sets listed
in Table I. Then for each of the detected communities, we
calculate its community tip similarity. The average community
tip similarity of different feature sets is shown in Fig. 8.

According to Fig. 8, for both the M2Clustering method
and the HM2Clustering method Feature Set IV is the most
competitive feature set, while Feature Set V is the next most
competitive one, where the user geo-span feature has been
leveraged. This indicates that users who have similar geo-spans
are most likely to discuss similar topics. In the meantime,
while most of the introduced intramode features are able to
increase the community tip similarity, the user social-influence
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Fig. 8. Community tip similarity of London dataset. (a) Community tip
similarity of M2Clustering. (b) Community tip similarity of HM2Clustering.
The inset presents the corresponding number of detected communities under
different cut thresholds.

feature tends to lower the performance, i.e., the performance
of Feature Set III is worse than the baseline feature set Feature
Set I. The reason might be that there is no correlation between
users’ social influences and their tip topics.

In the meantime, by comparing Fig. 8(a) and (b), we can
find that the HM2Clustering method consistently achieves
better performance than the M2Clustering method under all
the feature sets, e.g., the highest community tip similarity
of HM2Clustering under Feature Set IV is 0.323, while the
corresponding value of M2Clustering is 0.288. The reason
should be that HM2Clustering is able to reveal almost all
the possible community structures by introducing different cut
thresholds, and as a consequence it is more likely achieve a
higher community tip similarity.

Similar results were obtained for both Los Angeles and New
York datasets.

VI. Community Profiling and Analysis

The objective of community profiling is to show how the
detected communities look like. In this section, we first give
a community profiling mechanism based on the metadata of
community members (both users and venues). Afterward, we
show the usefulness of community profiling through its ability
to quantitatively characterize different cities.

A. Community Profiling Based on Metadata

Community profiles are characterized by the metadata of
users and venues that fall into the community, e.g., user
geo-spans, user social influences and venue categories. To
characterize a community, we first calculate the importance
of each user and venue category based on their involvement

Fig. 9. Tag cloud of one community of London Foursquare users.

degree, and then depict the community by constructing a
feature vector that summarizes the characters of a community.

Specifically, the importance of a user um in community Cj

is quantified by the percentage of um’s check-ins that fall into
Cj , and the importance of a venue category vn in community
Cj is defined as the percentage of Cj’s check-ins that is of
category vn. A user or venue category is a significant entity of
a community if and only if its importance exceeds a predefined
threshold θ. Without loss of generality, in this paper we use 0.1
as the importance threshold for both user and venue category.
In such a way, we can obtain a list of important users and a
list of important venue categories for each community, based
on which a community can be represented as follows:

PCj
= { < fu1 , eu1 >, . . . , < fum

, eum
>, . . . ,

< fv1 , ev1 >, . . . , < fvn
, evn

>, . . . }. (12)

In (12), each tuple < fum
, eum

> or < fvn
, evn

> denotes
either a user mode feature or a venue mode feature and
the corresponding value. Given a community Cj , on one
hand, the value of a user mode feature is calculated based
on the metadata of its important users. For example, the
geo-span of Cj is defined as the average of its important
members’ radius of gyration. On the other hand, the venue
mode feature of Cj mainly refers to the significant venue
categories, where each feature corresponds to a venue cat-
egory vn and its value is the importance of vn. We use
one community of London Foursquare users as an example
(obtained using M2Clustering under Feature Set II where
k is set as 30), which includes 195 users and 66 venue
categories (its tag cloud is shown in Fig. 9). Based on the
above definition, we can find that among its 195 user members
there are 146 important ones, and among its 66 venue category
members four of them are important venue categories (i.e.,
Museum, Art Gallery, Stadium, and Religious Center) and
their importance values are 0.21, 0.17, 0.12, and 0.11, respec-
tively. Thereby, this community can be profiled as {<Social-
Influence, 1.26>,<Geo-Span, 523.1>,<Museum, 0.21>,<Art
Gallery, 0.17>,<Stadium, 0.12>,<Religious Center, 0.11>}.

B. Revealing City Characteristics

This section presents how the proposed community pro-
filing mechanism can be leveraged to reveal the common
and different phenomenon among multiple cities. Without
loss of generality, we analyzed London, Los Angeles, and
New York, where communities were detected based on the
M2Clustering method under Feature Set II and k is set as
30. To make the comparison manageable, we first cluster the
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TABLE II

Distribution of Groups in Three Cities

detected communities of each city into ten groups and then
compare the characteristics of their profiles (mainly venue
mode features). The results are shown in Table II, where
ten groups are generated for the mentioned three cities, and
each group is labeled according to the major user check-in
categories. In each entry of Table II, the three numbers denote
the size of a group, the ratio of group size and the total number
of Foursquare users of the corresponding city, and the number
of communities within a group, respectively.

By comparing the results in Table II, the characteristics
of these three cities can be revealed. Generally, all the ten
groups are observed even through the ratios are different. For
example, while work and transport related communities cover
a large portion of users, less users fall into communities of
home, outdoor, and sport. This is easy to understand because
people usually have more time and are more likely to check in
and socialize when they eat or travel than they conduct other
activities.

Interestingly, the three cities vary widely in several aspects
even though all of them are English-speaking cities. For
instance, 66% of the Foursquare users in London fall into the
nightlife group, which is almost four times and three times as
that of Los Angeles (17%) and New York (23%), respectively.
Compared to London, more Foursquare users in Los Angeles
(65%) and New York (55%) belong to the food group, while
the percentage in London is only 19%. This might be due to
the fact that London residents are more fond of staying in bars
or clubs to drink and relax, while residents in the other two
cities tend to spend more time in restaurants. In the meantime,
more Foursquare users in London fall into the transport group,
which might be explained as more people take public transport
in London, while more Los Angeles and New York residents
use private cars to go to work. Another finding is that more
London residents use Foursquare during work, which might
indicate that people are more relaxed at work in London. For
the two American cities, a larger proportion of Los Angeles
Foursquare users falls into the outdoor group, which should
be due to the fact that the weather in New York is so cold in
winter (as our data collection started from October 24, 2011
and lasted for eight weeks) that more people are willing to take
part in indoor exercise rather than going outside for practise
(i.e., a larger proportion of New York Foursquare users falls
into the sport group).

Based on the characteristics of different communities, the
company is able to provide better services and/or achieve

better benefits. For example, if a new wine company plans
to promote its products with limited budget, it would be more
reasonable to target the relevant communities in London rather
than Los Angeles or New York. In case a cafe chain plans to
open a new shop in the U.S., Los Angeles should be a better
choice compared to New York.

VII. Conclusion

In this paper, by leveraging the user-venue check-in net-
work and user/venue attributes, we proposed a multimode
multi-attribute edge-centric coclustering framework to detect
overlapping communities for LBSNs users. Experimental re-
sults showed that the proposed framework was able to dis-
cover high quality overlapping communities from different
perspectives and at multiple granularity, which can be used
to facilitate different applications, such as group advertis-
ing and marketing. In the meantime, we reported several
interesting findings obtained through community profiling
and analysis.

The preliminary study suggested several interesting prob-
lems that were worth further exploring. Providing a framework
to guide the selection and fusion of different features is one
direction to work on. The proposed community detection
framework can also help the study of friend and place rec-
ommendation mechanisms.
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