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ABSTRACT 

The key for efficient dynamic spectrum access (DSA) 
is to model the spectral resources accurately. A large 
number of measurement campaigns have been 
performed to estimate the spectrum usage in outdoor 
and indoor scenarios. This spectrum usage estimation 
helps policy makers to optimize the spectrum 
management methodologies. The spectrum usage 
studies also assist researchers to constitute a way for 
efficient DSA using prior knowledge of the distribution 
of the observed data traffic in cognitive radio (CR) 
systems. In this paper we extend our previous work 
which statistically modeled the observed data traffic in 
the industrial, scientific and medical (ISM) band at 2.4    
-GHz in two neighboring frequency subbands and time 
slots, respectively, to three neighboring frequency 
subbands and time slots, respectively. As before, the 
frequency and time correlation functions of the 
observed data traffic are modeled by an exponentially 
decaying function. The multivariate Gaussian mixture 
(MGM) is validated as a good candidate to model the 
joint distribution of measured data and also to estimate 
the correlation between the measured data in 
neighboring frequency subbands and as well as in time 
domain samples.  
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1 INTRODUCTION 

It is a challenge for the industry as well as 
academia to optimize spectral resources in 
wireless communications. The numbers of 
customers are growing rapidly in the 

telecommunication industry due to innovative 
wireless technologies and high-speed data 
services. On the contrary, extensive measurement 
campaigns in different parts of the world [1] have 
claimed the under-utilization of the already 
allocated spectrum. The under-utilization has 
arisen due to the static allocation policies e.g. of 
the Federal Communications Commission (FCC). 
The advantages of static spectrum allocation 
policies are interference reduction and simple 
system hardware. On the other hand, the major 
disadvantage of these static policies is the 
inefficient utilization of radio spectral resources. 

To address the issues between spectrum under-
utilization and demand, cognitive radio (CR) 
technology stands as a promising candidate. CR 
provides the mechanism in which the available 
spatial and spectral resources are utilized by 
intelligently adapting parameters in the radio 
environment [2]. The switching between different 
operating frequencies, time duration to access 
specific frequency bands, variable operating 
frequencies and different spectrum ranges are 
representatives of intelligent adaptations and are 
collectively termed as dynamic spectrum access 
(DSA). 

CR systems operate in three different ways, 
namely in so-called overlay, underlay and 
interweave modes. In an interweave system, 
secondary users (SUs) can access the spectrum in 
an opportunistic way only in the absence of a 
primary user (PU) and will stop transmission as 
soon as the PU resumes transmission. As a result, 
an efficient DSA with non-interfering SU signals 
arises from a correspondingly accurate statistical 
model for the existing data traffic observed in the 
radio environment. At the same time, the model 
should be simple enough to limit the complexity of 
resulting DSA approaches. 
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A lot of field measurement campaigns have been 
conducted in licensed (global system for mobile 
communication (GSM), universal mobile 
telecommunication system (UMTS)) and 
unlicensed (industrial, scientific and medical 
(ISM)) bands in both outdoor and indoor 
scenarios. The time-dependent spectrum 
occupancy using a four-state Markov model is 
discussed in [3]. The time-variant power spectrum 
at a CR receiver is measured in real-time and 
presented graphically in [4] and [5]. Interference 
temperature model based on real time 
measurements is discussed in [6]. Spectrum 
occupancy measurements for ultra high frequency 
(UHF) television (TV) bands are presented in [7]. 
The duty cycle models based on real time 
measurements are described for CR systems in [8] 
and [9]. In [10], real time measurement campaigns 
are conducted in different spectrum bands and also 
the average signal channel power in TV bands is 
modeled as a Gaussian random variable. The 
quantitative study of spectrum occupancy based on 
field measurements is presented in [11]. In [12], 
the average spectrum occupancies for UHF and 
very high frequency (VHF) bands are investigated. 
In [13], the authors assume that the signal power 
distribution of the PU in each subband is 
Gaussian. In [14], the autocorrelation function 
(ACF) of a wide-sense stationary (WSS) or short-
range dependent process is modeled as a decaying 
exponential. The drawbacks in [3]-[11] are: 
1. Simple occupancy matrices are used to estimate

the data traffic in measured bands.
2. The data traffic is modeled using Markov

chains following a Gaussian distribution under
the assumption that the data traffic is
independent and identically distributed (i.i.d) as
well as unimodal, which clearly contradicts the
properties of the data traffic observed in real-
world scenarios.

In this paper, to model the data traffic measured in 
realistic scenarios more accurately, we have to 
deal with the correlation of the observed data 
traffic and the multimodality of the traffic data 
distribution. Here, we extend our previous work 
[15], which statistically modeled the observed data 
traffic in the ISM band at 2.4 GHz in two 
neighboring frequency subbands and time slots, 
respectively, to three neighboring frequency 

subbands and time slots, respectively. The 
observed data traffic in an indoor environment in 
the aforementioned ISM band is again modeled as 
a stochastic field in time and frequency. The 
process in time and frequency is assumed to be 
WSS with an autocorrelation function 
approximated by a decaying exponential. The 
multivariate Gaussian mixture (MGM) is 
considered as a suitable distribution model for the 
observed data traffic in this band. While there is 
no prioritization for the data traffic in the ISM 
band, we consider WLAN data traffic as a PU for 
simplicity.  
The organization of the paper is as follows. The 
measurement scenarios and set-up are discussed in 
section 2. In section 3, the statistical characteri-
zation of ISM data traffic is detailed. The 
parametric modeling of the data traffic is 
described in section 4. In section 5, the MGM 
model is presented and validated using correlation 
functions. Conclusions are drawn in section 6. 

2 MEASUREMET SCENARIOS AND SET-
UP 

2.1 Measurement Scenarios 

Indoor measurements are conducted at the second 
floor of the engineering campus of the university 
of Kassel, Germany. The engineering campus is 
located in a residential area. We choose two 
different locations for conducting the 
measurement campaigns. At first, the 
measurements are taken in a computer laboratory. 
In order to analyze different user traffic profiles, 
measurements are also taken in an office room. At 
each location, measurements are taken for 8 hours 
per day for the duration of two weeks. In Figures 1 
and 2, the snapshots of the measurements for an 8-
hour day can be seen in an office room and a 
laboratory, respectively. 
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Figure 1. ISM data traffic measured in an office room. 

 
Figure 2. ISM data traffic measured in a computer lab. 
 
Here, the traffic is characterized by the 
instantaneous power P in dBm (PdBm). 

2.2 The Testbed 

A Wi-Spy Dual Band Spectrum Analyzer 
(WSDSA) with an omnidirectional antenna, as 
shown in Figure 3, is used to measure the ISM 
band activity. 
 

 
 
Figure 3. Testbed including WSDSA and omnidirectional 

antenna. 

The term activity refers to the time-variant power 
spectral density (PSD) of the measured data, and it 
is this PSD as mentioned above that is considered 
to be traffic in the following. In this study, we only 
have the measurements at the 2.4 GHz band. 
Howeverm, the WSDSA can be used in both 
2.4 GHz and 5 GHz bands to analyze the ISM data 
traffic. 
The frequency span of the WSDSA is 83 MHz and 
it has a sweep time of 560 ms. A low noise 
amplifier (LNA) ZLR-3500+ is also introduced in 
the set-up, not only to have a better detection of 
weak signals, but also to improve the sensitivity of 
the measurement system. The frequency range to 
be scanned by the WSDSA is 2.4…2.483 GHz in 

our measurements. More of the measurement 
specifications are detailed in Table 1. 

Table 1. Measurement Specifications 

Parameters                            Values 
Frequency Range 2.4 GHz … 2.483 GHz 
Frequency Span 83 MHz 
Frequency Resolution  333 KHz 
Measurement Duration 8 Hours 
Sweep Time 560 ms 
Preamplifier                            21 dB 

The testbed is interfaced with the Chanalyzer  
Pro® software that helps in the detailed visuali-
zation of the ISM data traffic observed by the 
WSDSA. The spectral view of the observed data 
given by Chanalyzer Pro® shows the spectrum 
usage over time which looks like a scrolling 
waterfall plot as shown in Figure 4. 
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Figure 4. Waterfall plot showing spectrum usage over time. 

2.3 Data Matrix 

The real-time observed data traffic is saved in a 
comma-separated values (CSV) format by 
Chanalyzer Pro® to analyze and process it further. 
The observed data is then represented as a matrix 
where each row denotes the time instances having 
a resolution of 560t  ms, while each column 
denotes the frequency subbands with a bandwidth 
of f   333 kHz. The obtained data matrix 
normalized to unit average power is represented as 

  , (1) 

where x(t
1
, f

1
)  in the data matrix is recognized as 

an observation of the data traffic process random 
field ( , )l kX t f  to denote the instantaneous power 

in dBm for each frequency subband kf k f  , 

where 1,2,.....,k K  and the time instants are 

defined by lt l t   with 1,.....,l L  and the upper 

limits 285K   and 1000L  . 

3 STATISTICAL CHARACTERIZATION OF 
ISM DATA TRAFFIC 

It is assumed that the ISM data traffic ( , )l kX t f  is 

a WSS process in both time and frequency. This is 
why the ACF of ( , )l kX t f  is a function of the time 

and frequency differences, respectively, for a 
given value of the frequency and time, 
respectively. 

3.1 Frequency Correlation Function 

It is known that the frequency correlation function 
(FCF) for the ISM data traffic ( , )l kX t f  which is 

dependent on k , is defined as  
  

 *( ) ( ( , ) ( , ))f l k l k kk E X t f X t f     (2) 

 
where the estimate of ( )f k   is defined by the 

empirical FCF ˆ ( )f k   using the measured ISM 

data traffic according to 
 

 *

1 1

1ˆ ( ) ( , ) ( , )
( )

K k L

f l k l k k
k l

k x t f x t f
L K k






 

 


  , 

 (3) 
where 0,....., 284k  . The FCF is modeled as a 

decaying exponential ( ) k
f fk     due to the 

short-range dependency as described in [14]. Here, 

f  represents the correlation between the 

frequency subbands with [0,1]f  . A standard 

numerical method is employed to find the estimate 
ˆ ( )f k  .  The value of k

f
  is computed for 

r
f

= 0,0.01,0.02,...,1 and is chosen as the least 

squares estimate (LSE) between the modeled FCF 

( )f k   and the estimated FCF ˆ ( )f k  . Both, the 

estimated FCF ˆ ( )f k   and the modeled FCF 

( )f k   are shown in Figure 5. The estimated 

value of ,LSEˆ k
f
  using the aforementioned approach 

is 0.56 when 1k   and 0.31 for 2k  . 
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Figure 5. Empirical ˆ ( )f k   and modeled ( )f k   

Frequency Correlation Functions. 
 
3.2 Time Correlation Function  
 
The time correlation function (TCF) for the ISM 
data traffic ( , )l kX t f , which is dependent on l , 

is expressed as 
 
 *( ) ( ( , ) ( , ))t l k l l kl E X t f X t f     (4) 

 
where the estimation of ( )t l   is obtained by the 

empirical TCF ˆ ( )t l   using the measured ISM 

data traffic as 
 

 *

1 1

1ˆ ( ) ( , ) ( , )
( )

L l K

t l k l l k
l k

l x t f x t f
K L l






 

 


  

 (5) 
 
with 0,.....,999l  . As in the case of FCF, the 

TCF is also modeled as ( ) l
t tl     as done in 

[14], where t denotes the correlation between the 

ISM data traffic observed at different time 
instances and [0,1]t  . The modeled TCF ( )t l   

and the empirical TCF ˆ ( )t l   according to the 

above model are shown in Figure 6. 

 
Figure 6. Empirical ˆ ( )t l   and modeled ( )t l   Time 

Correlation Functions. 
 
By using the LSE approach, the estimated value of 

,LSEˆ l
t
  is 0.23 for 1l   and 0.06 for 2l  . The 

aforementioned characterization of ISM data 
traffic ( , )l kX t f  is used to validate its model in 

Section 5. 
 
4 PARAMETRIC MODELING 
 
The second-order moments of the process 

( , )l kX t f  are estimated as described in Section 3, 

but the joint PDF is also required for the complete 
description of the process ( , )l kX t f . The joint PDF 

is estimated by adapting the parametric modeling 
approach, which is recognized as a powerful 
statistical tool for estimating the parameters of the 
presumed distribution. 

In [10], the authors accept that their work to model 
the average signal channel power in television 
bands as a Gaussian is not always in agreement 
with the observed data. The reason for the 
disagreement between the observed and modeled 
data is the missing consideration of the 
multimodality of the signal power distribution. 
The Gaussian mixture (GM) is a suitable option to 
address the multimodality of the distribution of the 
measured signal as described in [16]. 

In this work, we separate the estimation of the 
joint PDF of the process ( , )l kX t f  into the 

estimation of the PDF of the neighboring process 
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samples in frequency and time. After the PDFs of 
the aforementioned vectors are estimated, the joint 
PDF of ( , )l kX t f  can be obtained by considering 

the independence of the components within the 

GM. Consider
1 1 2 2

T
( , ), ( , )l k l kX t f X t f   X . At 

first, we consider the samples being neighbored in 
frequency (NIF), where 1 2 1k k k    

and 1 2 0l l l  . The obtained vector is 

NIF, X X  with 0 1l  , where k is chosen 

arbitrarily within the set  1,......, 1k K  . The 

vector of samples neighbored in time (NIT) is 
denoted by NIT, X X  where 1 2 0k k k   and 

1 2 1l l l   . Similar to the case of NIF, the choice 

of l  is given by  1,......., 1l L   and 0 1k  . 

It is assumed that the distribution of the data 
vector X  is a multivariate Gaussian mixture 
(MGM) in both NIF and NIT scenarios. The sum 
of N Gaussian densities can be expressed as in 
[17] and [18] as 
 

 
1

( | ) ( | , )
N

n n n n
n

p f 


    ,  (6) 

 
where  1 2, ,....., n     and each n  represents 

the parameter set  , ,n n n n     and 

( | , )n n nf    denotes the Gaussian density of 

each component given as 
 

   (7) 

 
In (7), n  denotes the mean vector, n  represents 

the covariance matrix and n is the prior 

probability of the nth component. 
 
4.1 Expectation-Maximization Algorithm for 
Estimating the Parameters of ISM Data Traffic 

The Expectation-Maximization (EM) is considered 
as a suitable technique for estimating the 
parameters of the PDF of the observed data. This 
algorithm finds its applications in other fields 
including data clustering in machine learning, 
reconstruction of medical images and also in 
computer vision. The EM scheme is performed 
iteratively for different number of components of a 
MGM with 1,2,.....,n N . Initial prior 

probabilities n  are assumed to be identical 

among the components. The covariance matrices 

n  are initially identity matrices, while the choice 

of mean vectors n  is made by a k-means 

clustering, where k-means clustering chooses the 
mean vectors randomly [19]. 

The objective here is to estimate the parameter set 
  for a MGM having N components, which 
maximizes the log-likelihood function (LLF) 
 

  

 (8) 
    

where m  represents the observation of mX  for 

both NIF and NIT scenarios. The description of 
the conditional probability density of the mth 
observation m mX   given the nth component of 

the MGM distribution is given by 
   

   (9) 

 
The EM algorithm works iteratively where it 
alternates between the expectation step (E-step) to 
update the posterior probabilities and 
maximization step (M-step) to update the 
parameters of the components of the MGM. 
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E-Step: Assume that we have an estimate of ( 1)ˆ j  
as the ( 1)j  th iteration of EM completed.  In the 
E-Step, the conditional distribution of the nth 
component of the MGM given the observation 

m mX   is determined using the conditional 

probabilities ( 1)ˆ( | , )j
mp n   and ( 1)ˆ j according 

to 

   (10) 

M-Step: In this step, updated estimates of the 
parameter set   are obtained using the posterior 

probabilities ( 1)ˆ( | , )j
mp n   determined in the E-

step according to 
 

 ( ) ( 1)

1

1 ˆˆ ( | , )
M

j j
n m

m

p n
M

 



     (11) 

 

   (12) 

 

 
 (13) 

 
4.2 Model Selection Criteria 
 
It is well-known that the LLF in (8) is an 
increasing function of the number of components. 
There are several information-theoretic approaches 
for the selection of a suitable value of N to 
minimize the corresponding cost function. In this 
work, we adopt a heuristic approach in which we 
choose the minimum value of N for which the 
relative increase in the LLF is below a given 
threshold. It can also be expressed alternatively as  

 

 N = min nÎ » :
L
n
- L

n-1

L
n-1

£ t
ì
í
ï

îï

ü
ý
ï

þï
  (14) 

 
where the threshold is chosen to be t = 0.003.  

5 MGM VALIDATION 

For efficient DSA, it is valuable to have the 
distribution of the observed data traffic. In 
perspective of CR, the FCF describes the 
frequency behavior of the ISM data traffic. The 
joint distribution of the neighboring frequency 
subbands assists secondary users to determine the 
temporal occupancy of the observed frequency 
subbands. The TCF illustrates the temporal 
behavior of the ISM data traffic. It is also helpful 
for secondary users to have information about the 
bandwidth occupation for the specific time 
duration if the joint distribution of neighboring 
time slots is already known.  

In this section, the joint distributions of 
neighboring frequency subbands and neighboring 
time domain signals of ISM data traffic are 
modeled parametrically using MGMs as men-
tioned in Section 4. Moreover, MGM is also 
validated using FCF and TCF for neighboring 
frequency subbands and the neighboring time 
domain signals, respectively. 
5.1 MGM Validation using Frequency 
Correlation 

5.1.1 Two Neighboring Frequency Subbands 

In order to validate the MGM using FCF, the 
estimated parameters of MGM are required. The 
analytical expression of the correlation f  is 

obtained from the MGM and yields the MGM 
estimator 

 ,MGM 1 2
1

ˆˆ ˆˆ ˆ ˆ( ) ( )
N

k
f f n n n n

n

     



      (15) 

where ˆ
n  represents the estimated cross- 

covariance between the frequency subbands, ˆn  

denotes the estimated mean vector of the 
components and ˆn  are the estimated prior 

probabilities of the MGM model. In the NIF case, 
the frequency subbands are denoted by the vector 

NIF, X X  as mentioned in Section 4. For the 
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two neighboring frequency subbands where 0 1l  , 

1000M L   and 99k  , the number of 
components 9N   is calculated by (14). The 
scatter plot of the measured data and modeled joint 
distribution of the data is shown in Figure 7.  
 

 
Figure 7. Joint distribution of NIF,X with 0 1l  , 

1000M L  , 99k   and 9N   
modeled using MGM. 

Figure 7 clearly shows the close agreement 
between the L  measurements in neighboring 
frequency subbands and M  samples from the 
MGM model. 

The MGM estimator for the two neighboring 
frequency subbands when 1k   is expressed as  

 1
,MGM 1 2

1

ˆˆ ˆˆ ˆ ˆ( ) ( ).
N

f f n n n n
n

     


      (16) 

The values of the components’ mean vector are 
negligible. The estimated values of priors and 
cross-covariances are given in Table 2. 
 
Table 2. Estimated parameters of MGM for two neighboring 

frequency subbands with 9N    
ˆn

 

0.02
91 

0.03
03 

0.18
46 

0.11
60 

0.00
66 

0.04
13 

0.40
12 

0.16
31 

0.02
77 

ˆ
n

 

0.46
73 

-
0.78
24 

0.44
03 

0.59
28 

52.5
53 

0.00
51 

0.01
62 

0.09
03 

0.79
95 

We substitute these values in (16), which yields a 
value of 1

,MGMˆ 0.54f   and is in close agreement 

to 1
,LSEˆ 0.56f  calculated from the modeled 

FCF in Section 3. 

5.1.2 Three Neighboring Frequency Subbands 

Here we extend our validation of the MGM model 
to three neighboring frequency subbands 
where 0 1l  , 1000M L   and 106k  . In this 

case, the number of components for NIF, X X  is 

estimated to be 10N  . The scatter plot of the 
measured data and modeled joint distribution of 
the data is shown in Figure 8. 

 
Figure 8. Joint distribution of NIF,X with 0 1l  , 

1000M L  , 106k   and N =10  
modeled using MGM. 

As was the case in Figure 7, the scatter plot in 
Figure 8 also shows a good fit between the 
measured and modeled data.  

The MGM estimator for the three neighboring 
frequency subbands with 1k  and 2k   is 
given by (17) and (18) respectively, 

 1
,MGM 1 2 3

1

ˆˆ ˆˆ ˆ ˆ ˆ( ) ( )
N

f f n n n n n
n

      


      (17) 

 

 r̂
f ,MGM
2 = r

f
(Q̂) = p̂

n

n=1

N

å (ê
n
+ m̂

1n
m̂

2n
m̂

3n
).  (18) 

After substituting the estimated parameters from 
MGM in (17) we have the value of 1

,MGMˆ 0.55f   

between the frequency subbands 106f  and 107f  

whereas 1
,MGMˆ 0.51f   is obtained between 

frequency subbands 107f  and 108f , both the 

estimated values of 1
,MGMˆ

f  are very close to 
1

,LSEˆ 0.56f   estimated in Section 3.  Moreover, 
2

,MGMˆ 0.24f   is obtained after substituting the 
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estimated parameters in (18) also approximately in 
agreement with 2

,LSEˆ 0.31f  . 

5.2 MGM validation using Time Correlation 

5.2.1 In Two Neighboring Time Slots 

To validate the MGM model of the ISM data 
traffic using TCF, the required MGM estimator is 

 r̂
t ,MGM
Dl = r

t
(Q̂) = p̂

n

n=1

N

å (ê
n
+ m̂

1n
m̂

2n
).  (19) 

In the NIT case, the vectors of neighboring time 
domain signals are denoted as NIT, X X .  

For the case of two neighboring time domain 
signals where 0 1k  , 285M K   and 477l  , 

the number of components estimated by (14) is to 
8N  . A close agreement between the measured 

data and the modeled data based on the estimated 
parameter set  1 2, ,....., n     as shown in 

Figure 9 validates our assumption for the NIT 
case. 
The modeled MGM is also validated for two 
neighboring time domain signals using the given 
estimator. The estimated values of priors and 
cross-covariances are given in Table 3. 

Table 3. Estimated parameters of MGM for two neighboring 

time domain signals with 8N   
 

ˆn  0.253
7 

0.017
5 

0.018
3 

0.450
2 

0.024
3 

0.020
6 

0.124
5 

0.090
8 

ˆ
n
 

0.373
8 

17.29
0 

17.69
3 

0.004
3 

2.782
2 

0.615
5 

0.023
0 

0.612
2 

 
After inserting the values of estimated parameters 
from Table 3 in the MGM estimator 
 

 r̂
t ,MGM
1 = r

t
(Q̂) = p̂

n

n=1

N

å (ê
n
+ m̂

1n
m̂

2n
).  (20) 

We obtain 1
,MGMˆ 0.2037t   with 1l   which is 

clearly close to the estimated value of 
1

,LSEˆ 0.23f   using TCF in Section 3. 

 

 
 
Figure 9. Joint distribution of NIT,X with 0 1k  , 

285M K  , 477l   and 8N   
modeled using MGM. 

 
5.2.2 Three Neighboring Time Slots 

In case of the extension of MGM for three 
neighboring time domain signals where 0 1k  , 

285M K   and 777l  , the estimated number 
of components  for three neighboring time slots  
using (14) is 10N  . In Figure 10, the scatter plots 
of the measured data and MGM samples show a 
good fit. 
 

 
Figure 10. Joint distribution of NIT,X with 0 1k  , 

285M K  , 777l   and N =10  
modeled using MGM. 

 
The MGM estimator for three neighboring time 
domain signals with 1l   and 2l   is 
formulated as  

 1
,MGM 1 2 3

1

ˆˆ ˆˆ ˆ ˆ ˆ( ) ( )
N

t t n n n n n
n

      


      (21)
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 2
,MGM 1 2 3

1

ˆˆ ˆˆ ˆ ˆ ˆ( ) ( )
N

t t n n n n n
n

      


    .  (22) 

After substituting the estimated parameters from 
MGM in (21) we find that the value of 

1
,MGMˆ 0.19t   estimated between the signals at 

time slots 777t  and 778t  with  1
,MGMˆ 0.25t   

estimated between the signals at time  slots 778t    

and 779t  are in close agreement with 1
,LSEˆ 0.23t  . 

The value of 2
,MGMˆ 0.08t   obtained after 

substituting the estimated parameters in (22) is 
also nearly equal to the 2

,LSEˆ 0.06t   estimated 

using TCF in Section 3. 
 
6 CONCLUSIONS 
We conduct indoor measurement campaigns to 
analyze the RF activity. The frequency and time 
correlation functions of measured data traffic are 
modeled by decaying exponentials. MGM is 
considered to model the observed data traffic in 
neighboring frequency subbands and also at 
neighboring time instances by adopting a 
parametric approach. In order to estimate the 
parameters of MGM, the EM algorithm is used.  
The selection of a suitable initial mean vector is 
done using k-means clustering in a heuristic way. 
It is found that using real time measurements in 
CR, a suitable model for the observed data in the 
two neighboring frequency subbands is MGM 
with 9N   and for the extended case of three 
neighboring frequency subbands with 10N  . For 
the observed data traffic in two neighboring time 
slots, MGM is selected with 8N  and for the case 
of three neighboring time domain signals, the 
suitable choice is MGM with 10N  . It is also 
validated that the MGM estimator provides an 
accurate correlation between the frequency 
subbands and time domain signals. 
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