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In this paper, an efficient semi-supervised support vector machine (SVM) with segmentation-based
ensemble (S2SVMSE) algorithm is proposed for hyperspectral image classification. The algorithm utilizes
spatial information extracted by a segmentation algorithm for unlabeled sample selection. The unlabeled
samples that are the most similar to the labeled ones are found and the candidate set of unlabeled
samples to be chosen is enlarged to the corresponding image segments. To ensure the finally selected
unlabeled samples be spatially widely distributed and less correlated, random selection is conducted
with the flexibility of the number of unlabeled samples actually participating in semi-supervised learn-
ing. Classification is also refined through a spectral–spatial feature ensemble technique. The proposed
method with very limited labeled training samples is evaluated via experiments with two real hyperspec-
tral images, where it outperforms the fully supervised SVM and the semi-supervised version without
spectral–spatial ensemble.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Hyperspectral sensors provide abundant spectral information
with hundreds of spectrally continuous bands, and the collected
hyperspectral imagery can be used to conduct finer classification
that could not be achieved by traditional multispectral imagery
(Bioucas-Dias et al., 2013; Du et al., 2012; Mountrakis et al.,
2011; Tan and Du, 2008, 2011; Tan et al., 2013; van der Meer
et al., 2012). Over the past several decades, novel pattern recogni-
tion methods have been widely used to remote sensing image
processing tasks, such as supervised classification (Li et al.,
2013b; Zhong and Zhang, 2012), unsupervised classification (Villa
et al., 2013; Yang et al., 2010), feature extraction (Du et al., 2008;
Du and Yang, 2008; Jia et al., 2013), target identification (Du and
Zhang, 2014; Manolakis et al., 2001), and change detection
(Bioucas-Dias and Nascimento, 2008; Camps-Valls et al., 2008).
support vector machines (SVM), as one of the research focuses of
machine learning, has attracted more attention in remote sensing
(Camps-Valls et al., 2006; Fauvel et al., 2008; Melgani and
Bruzzone, 2004; Plaza et al., 2009). SVM has advantages such as less
rigid requirements for prior knowledge and training samples, fit-
ness to high-dimensional data, and more robustness to noise (Du
et al., 2010; Jain et al., 2000). However, it is often difficult for a tra-
ditional SVM classifier to offer satisfactory performance in hyper-
spectral image classification. Specifically, for a high-dimensional
hyperspectral image with a limited number of training samples,
classification accuracy usually is significantly decreased due to
the Hughes phenomenon (i.e., for a limited number of training sam-
ples, classification accuracy is decreased with the feature dimen-
sion being increased) (Hughes, 1968). Moreover, hyperspectral
imagery is usually short of training sets, because sample collection
generally involves extensive and time-consuming fieldwork
(Dopido et al., 2013; Li et al., 2013a).

A relevant advanced solution to this classification challenge is
the introduction of semi-supervised learning (SSL) techniques
(Camps-Valls et al., 2007; Chapelle et al., 2008). SSL utilizes a large
number of unlabeled data together with the available labeled data,
to build classifiers that may be stronger than usual. SSL also
requires less human efforts in sample collection, so it is of great
importance in practical applications. The research on SLL has expe-
rienced a quick development in the past few years, and some pop-
ular methods have been proposed, such as generative mixture
models (Krithara et al., 2011), self-learning models (Dopido et al.,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2014.08.003&domain=pdf
http://dx.doi.org/10.1016/j.isprsjprs.2014.08.003
mailto:dupjrs@126.com
http://dx.doi.org/10.1016/j.isprsjprs.2014.08.003
http://www.sciencedirect.com/science/journal/09242716
http://www.elsevier.com/locate/isprsjprs


K. Tan et al. / ISPRS Journal of Photogrammetry and Remote Sensing 97 (2014) 36–45 37
2013), multiview learning models (Culp et al., 2009; Sun and
Shawe-Taylor, 2010), transductive support vector machines SVMs
(TSVMs) (Bruzzone et al., 2006; Ratle et al., 2010), and graph-based
methods (Bai et al., 2013; Camps-Valls et al., 2007).

In particular, semi-supervised SVM (S3VM) has been success-
fully applied to remote sensing image classification. Marconcini
proposed a novel composite S3VM for the spectral–spatial classifi-
cation of hyperspectral images, which can significantly improve
classification accuracy compared to both supervised SVMs and pro-
gressive S3VM (Marconcini et al., 2009). Munoz-Mari proposed an
algorithm to modify the OC-SVM kernel by modeling the data mar-
ginal distribution with a data graph Laplacian (Munoz-Mari et al.,
2010). Gu successfully used Laplacian SVM for semi-supervised
hyperspectral image classification (Gu and Feng, 2013). A novel
approach for semi-supervised learning that adapts available active
learning methods to a self-learning framework was presented by
Dopido et al. (2013). The aforementioned SSL methods improve
classification performance by different strategies. However, as
the number of training samples is increased, it may be unbalanced
and unbearable for a classifier to correctly exploit all the proper
training samples due to computational issues. Furthermore, if a
mislabeled sample is added for training, it may degrade classifica-
tion accuracy. Thus, a semi-supervised algorithm should be
designed in a computationally efficient fashion with the objective
that classification performance can be truly improved with the
use of additional samples.

In this paper, we evaluate the feasibility of adapting spatial
information into an SSL paradigm, in which the S2SVMSE itself
selects accurate unlabeled samples for training. It makes use of
spatial information in selecting new unlabeled training samples
and generating classifier ensemble. It is assumed that samples in
a homogeneous spatial segment mostly likely belong to the same
class, which helps generate a smooth classification map; mean-
while, samples in the same segment also exhibit within-class vari-
ations, which can be useful for classifier training. Up to now, few
studies that employ spatial information to select unlabeled
samples are reported in the literature. Shi et al. proposed a semi-
supervised dimension reduction algorithm, where unlabeled sam-
ples were selected based on multilevel segmentation results and t
spectrally nearest neighbors similarity measure, and it notes that
the number of the neighbors t controls the accuracy of similarity
measurement, so they recommended to set a larger t to relax the
constraint (Shi et al., 2013). However, it could not perform per-
fectly with limited or few labeled samples, so a-one-nearest neigh-
bor is proposed to take the action of similarity measurement when
labeled samples are very limited. In this work, the mean shift algo-
rithm is used for image segmentation and spatial feature extrac-
tion, and a strongly constrained algorithm called a-one-nearest
neighbor is applied for integrating spatial information when select-
ing new training samples. As a result, our proposed approach com-
bines the spectral–spatial information in the SSL strategy.

The paper is organized as follows. In Section 2, the mean shift
based segmentation is briefly reviewed, and then the proposed
approach is introduced. Section 3 demonstrates the experimental
results. Finally, Section 4 concludes with some remarks.
2. Proposed method

Let X = (x1, x2,� � �, xl, xl+1,� � �, xn) e Rd denote a hyperspectral
image with n pixels and d bands. Let j = {1,� � �, k} be a set of k class
labels, y = (y1, y2,� � �,yl) be the labels of l labeled samples XL ¼
fxigl

i¼1, and XU ¼ fxign
i¼lþ1 be (n�l) unlabeled samples. To perform

the proposed semi-supervised approach, a hyperspectral imagery
is first segmented using the mean shift method, and then unla-
beled samples are selected for training based on the proposed
strategy in Section 2.2, finally, classification result is generated
based on a spectral–spatial feature ensemble method in Section
2.3. Note that during the processes of unlabeled sample selection
and classification result ensemble, spatial information in image
segments is considered.

2.1. Mean shift

In this paper, spatial information is used during the selection of
unlabeled samples and feature ensemble for classification. Here,
the image segmentation method of mean shift (MS) is employed
to extract spatial information. MS method is a nonparametric clus-
tering technique without requiring prior knowledge of the number
and shape for each cluster. It defines an empirical probability den-
sity function, and the modes of densest regions in the space can be
estimated by finding the local maxima of the probability density
function that is estimated by kernel density estimation method
(Comaniciu and Meer, 2002). Once the location of modes is deter-
mined, the cluster associated with it is delineated based on the
local structure in the feature space. Here, we briefly review the
basics of mean shift segmentation (Comaniciu and Meer, 2002).

With the notation defined, given n pixels xi, i = 1,� � �, n in the
d-dimensional space Rd, the kernel density estimator computed
in pixel x is given by,

f ðxÞ ¼ 1

nhd

Xn

i¼1

K
x� xi

h

� �
ð1Þ

where h is the bandwidth. Here, the kernel K(x) is given by
KðxÞ ¼ ck;dkð xk k2Þ, where the function k(x) is called kernel profile,
and the normalization constant ck,d makes K(x) have an integral of
one. Defining the function g(x) = �k0(x) with the assumption that
the derivative of the kernel profile k(x) exists for all x e [0,1). Using
g(x) as the kernel profile, the kernel G(x) is defined as GðxÞ ¼
cg;dgð xk k2Þ, where cg,d is a normalization constant. The goal of the
defined density is to find the modes of densest regions in the space.
The modes are located among the zeros of gradient rf(x) = 0. Thus,
the mean shift vector is defined as:
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For a hyperspectral image, it is typically represented as a two-
dimensional lattice of d-dimensional vectors. Taking its spatial
and spectral information into the mean shift procedure, the spatial
and spectral information are represented in the spatial and range
domains, respectively, and the multivariate kernel is defined as
the product of these two radially symmetric kernels as:

Khs ;hr ðxÞ ¼
C
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where xs is the spatial part; xr is the range part of a feature vector; hs

and hr are the kernel bandwidths for spatial and range domains,
respectively, and c is the normalization constant. MS cannot be used
for high-dimensional data (Comaniciu and Meer, 2002; Georgescu
et al., 2003), so dimensionality reduction has to be applied first.
Here, principal component analysis is used for this purpose.

2.2. Selection of unlabeled samples

In contrast to supervised classification algorithms, semi-
supervised methods generally assume that enlarging the training



Table 1
The proposed semi-supervised algorithm (S2SVMSE).

Input:
� A set of labeled training samples XL

� A set of unlabeled samples Xu

� The kernel bandwidths for spatial and range hs and hr applied in MS process
� The threshold of Eq. (5) a, and the constraint parameter of Eq. (6) r
Output: the ensemble classification result for all samples XL [ XU

Steps:
1: Extract spatial information based on the mean shift method given by Eqs.

(1)–(4)
2: Extract the unlabeled samples candidate set SL0 based on the strategy

described by Eqs. (5) and (6)
3: Randomly select a smaller number of unlabeled samples from SL0 as the

actually added unlabeled samples SL for training
4: Construct the training samples set XL [ SL
5: Train the SVM classifier h with training samples set XL [ SL
6: Generate the classification result of all samples XL [ XU using h
7: Refine the classification result by Eq. (7)
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set with unlabeled samples will improve the performance. How-
ever, several requirements have to be considered. Firstly, the
selected samples should be labeled without significant error. Sec-
ondly, the number of the selected unlabeled training samples
should be proper in order not to dramatically increase computa-
tional cost. Therefore, it is important to efficiently identify the
most informative unlabeled samples for training so that improve-
ment can be achieved without using a large number of unlabeled
samples.

In this work, we employ one of the strongest constrained algo-
rithms, called a-one-nearest neighbor, to identify the most infor-
mative unlabeled samples, and combine spatial information to
enlarge the candidate set of unlabeled samples, then randomly
selection was employed to select widely distributed unlabeled
samples for training. The details are described as follows:

Let Rj, j = 1,� � �, m donate the j-th segments generated by the MS
segmentation procedure, and m is the number of total segments. A
similarity metric to measure the distance between the samples in
Rj and the labeled samples XL is defined as:

DðRj;XLÞ ¼minfdðx; xiÞjx 2 Rj; xi 2 XLg ð5Þ

where d(x, xi) is the distance of the two samples (x, xi). Here, spectral
angle is used as similarity metric. In order to find the most similar
samples in Rj, D(Rj, XL) must meet the following criterion,

DðRj;XLÞ < a ð6Þ

where a is the threshold. If the distance between Rj and XL meets
the above criterion when the labeled sample is xi, we label all the
samples in Rj with the same label as C(xi) which is the given label
of xi. Each segment experiences this procedure, yielding a candidate
set of unlabeled samples that may be used for training. However,
there are a large number of unlabeled samples in this candidate
set; if all the unlabeled samples from this candidate set are used
for classification, the complexity of the learning process is dramat-
ically increased. Also, many samples in this candidate set may be
spatially clustered together and highly correlated. Thus, random
selection is applied to select a smaller number of unlabeled sam-
ples. Of course, the number of samples in the candidate set can also
be controlled by a in Eq. (6). Then the SVM is trained by both
labeled and selected unlabeled samples.

2.3. Spectral–spatial feature ensemble

To take advantage of spatial smoothness in segments for further
classification improvement, a spectral–spatial feature ensemble
algorithm, called classification voting, is applied to generate final
classification result. The class label of the samples in each densest
region is assigned via majority voting as:

CðRjÞ ¼ arg max
j¼f1;���;kg

VRj
ðkÞ

VRj

> r ð7Þ

where C(Rj) is the final class label of the densest region Rj, VRj
ðkÞ is

the number of samples labeled as class k within Rj, VRj
is the number

of all samples within Rj, and r is a constraint parameter. For a seg-
ment that cannot satisfy the inequality in Eq. (7), the class labels
of all samples in such a region remain unchanged.

2.4. Proposed semi-supervised approach

in this paper, segmentation results are used to exploit spatial
information with the assumption that pixels in the same region
may belong to the same class with high possibility. If an unlabeled
sample is very similar to a labeled sample, then all the pixels in its
segment are assigned to the class of the labeled sample. However,
it may be computationally expensive if a large number of resulting
unlabeled samples are used to train the classifier. Also, the result-
ing unlabeled samples may be spatially clustered together and
highly correlated. To decrease computational complexity and to
use widely distributed unlabeled samples, random selection is per-
formed to generate a smaller subset for semi-supervised learning.
The procedure of the proposed algorithm is illustrated in Table 1.

3. Experiments

In this section, two real hyperspectral images are used to
evaluate the proposed approach. In order to illustrate the perfor-
mance of the proposed approach, we utilized a very small labeled
training set on purpose, such as 5, 10 or 15 per class. In order to
analyze the effect on using different number of unlabeled samples,
the unlabeled samples are randomly selected in proportions (e.g.,
5%, 10%, 20%, etc.) for training. In all cases, overall accuracy (OA)
are obtained by the proposed semi-supervised SVM without
segmentation-based ensemble (S2SVM), and the results of pro-
posed semi-supervised SVM with segmentation-based ensemble
(S2SVMSE) with different constraint parameter r (e.g., 1/2, 2/3,
3/4 and 4/5).

3.1. Data used in the experiments

The first data was collected by the ROSIS sensor in 2003, with
spectral coverage ranging from 0.43 to 0.86 lm and with
610 � 340 pixels. The data is about University of Pavia and was
atmospherically corrected. It has spatial resolution of 1.3 m with
115 spectral bands, and 103 bands were used in the experiment
after low signal-to-noise ratio (SNR) and water absorption bands
being removed. The image scene in pseudocolor is shown in
Fig. 1(a). The classification problem involves nine land cover types.
The first four principal components of ROSIS data set was used for
the MS based segmentation process with the given kernel band-
widths (hs = 8, hr = 15), and the segmentation result is shown in
Fig. 1(b). During the selection of unlabeled samples, the parameter
a is set to 0.01. The labeled training samples (5, 10 or 15 for each
class) were randomly selected from the original training set, and
the map of testing samples was shown in Fig. 1(c).

The second hyperspectral image was acquired in 1992 over the
Indian Pines region in Northwestern Indiana by the Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) sensor. It comprises
202 spectral channels in the wave-length range from 0.4 to
2.5 lm, and 195 channels were used in the experiment after low
SNR and water absorption bands being removed. The spatial reso-
lution is 20 m. The image scene in pseudocolor is shown in
Fig. 2(a). The first four principal components of AVIRIS data set
was selected for segmentation with the given kernel bandwidths



(a) ROSIS Data (b) ROSIS Segmentation (c) Ground truth

Fig. 1. Details about the ROSIS data set.

(a) AVIRIS Indian Pines Data (b) AVIRIS Segmentation (c) Ground truth

Fig. 2. Details about the AVIRIS Indian Pines data set.
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(hs = 10, hr = 17), and the segmentation result is shown in Fig. 2(b).
During the selection of unlabeled samples, the parameter a is set to
0.008. The labeled training samples (5, 10 or 15 for each class) were
randomly selected from the testing set, and the map of testing
samples was shown as Fig. 2(c).

3.2. Results for ROSIS data

Tables 2–4 report the classification scores achieved by the
S2SVM and S2SVMSE algorithms for the full ROSIS data, where
the values of overall accuracy (OA) are displayed for different num-
bers of labeled samples (5, 10, 15 per class) and unlabeled samples
selected in varied proportions.

As shown in Fig. 3, the OA values are increased when using more
unlabeled samples. It indicates that the proposed semi-supervised
approach can significantly improve classification accuracy, in com-
parison with the supervised cases. In this experiment, the semi-
supervised methods (i.e., S2SVM and S2SVMSE) perform similarly,
and the S2SVMSE method is slightly better than S2SVM. It demon-
strates the positive effect of using spatial information for classifica-
tion process. Finally, it can also be observed that the number of
labeled samples influences the best accuracy that can be achieved
by the proposed algorithms. As the experimental results shown,
the more labeled samples used initially, the better results achieved
finally. However, the proposed approach can provide the improve-
ment with very few labeled samples (i.e., 5 samples per class).

In order to show the classification results in more details,
Table 2 lists the OA values in percentage by the proposed
approach (S2SVM and S2SVMSE) with 5 labeled samples per class,
and Tables 3 and 4 shows the results with 10 and 15 labeled



Table 2
OA results for ROSIS data using proposed algorithms with 5 labeled samples per class. The best OA results of row was marked bold. The best OA results of each table was marked
bold italics.

Percentage of candidate set 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

S2SVM OA 28.72 61.61 65.97 68.29 71.76 72.92 75.26 76.22 78.49 75.71 76
Kappa 0.197 0.524 0.573 0.602 0.643 0.657 0.684 0.693 0.723 0.691 0.697

r(1/2) OA 30.35 67.93 71.71 72.39 77.88 79.51 80.55 81.81 85.34 81.44 82.96
Kappa 0.214 0.597 0.641 0.648 0.717 0.735 0.748 0.763 0.808 0.762 0.782

r(2/3) OA 30.37 67.78 71.78 72.43 77.99 79.61 80.66 81.87 85.50 81.48 83.00
Kappa 0.215 0.595 0.642 0.648 0.719 0.736 0.750 0.763 0.810 0.762 0.782

r(3/4) OA 30.40 67.58 71.99 72.44 78.22 79.68 80.81 81.99 85.64 81.59 82.79
Kappa 0.215 0.593 0.644 0.648 0.721 0.737 0.752 0.765 0.812 0.764 0.779

r(4/5) OA 30.40 67.68 71.97 72.60 78.19 79.56 80.84 82.00 85.56 81.54 82.86
Kappa 0.215 0.594 0.644 0.651 0.721 0.736 0.752 0.765 0.811 0.763 0.780

Table 3
OA results for ROSIS data using proposed algorithms with 10 labeled samples per class. The best OA results of row was marked bold. The best OA results of each table was marked
bold italics.

Percentage of candidate set 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

S2SVM OA 63.02 76.34 82.09 82.88 83.49 83.72 84.66 84.35 85.40 84.95 83.90
Kappa 0.538 0.687 0.761 0.774 0.782 0.786 0.796 0.795 0.807 0.802 0.788

r(1/2) OA 68.78 81.69 89.41 89.02 89.90 88.89 89.98 89.95 89.69 90.86 89.81
Kappa 0.603 0.752 0.857 0.854 0.865 0.852 0.865 0.866 0.862 0.877 0.864

r(2/3) OA 68.60 81.74 89.40 89.05 89.94 88.82 89.94 89.97 89.74 90.86 89.88
Kappa 0.601 0.753 0.857 0.853 0.865 0.851 0.865 0.867 0.863 0.877 0.865

r(3/4) OA 68.23 81.70 89.30 88.89 89.84 88.91 89.91 89.93 89.73 90.93 89.84
Kappa 0.597 0.752 0.856 0.851 0.864 0.853 0.864 0.866 0.863 0.878 0.865

r(4/5) OA 67.83 81.77 89.27 88.96 89.84 88.93 89.97 89.99 89.77 90.94 89.86
Kappa 0.592 0.753 0.856 0.852 0.864 0.853 0.865 0.867 0.863 0.878 0.865

(a) nl =5 (b) nl =10 (c) nl =15

Fig. 3. Overall classification accuracies obtained for the ROSIS data set using S2SVM and S2SVMSE semi-supervised methods by using 5, 10 or 15 labeled samples per class.

Table 4
OA results for ROSIS data using proposed algorithms with 15 labeled samples per class. The best OA results of row was marked bold. The best OA results of each table was marked
bold italics.

Percentage of candidate set 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

S2SVM OA 72.51 84.48 84.55 86.41 87.30 86.74 86.12 87.35 87.45 88.02 87.74
Kappa 0.651 0.796 0.798 0.821 0.833 0.826 0.819 0.834 0.836 0.843 0.839

r(1/2) OA 84.20 94.03 94.65 94.59 96.62 94.46 93.34 95.89 95.64 95.34 95.61
Kappa 0.794 0.920 0.929 0.928 0.955 0.926 0.912 0.945 0.942 0.938 0.942

r(2/3) OA 84.15 94.00 94.64 94.55 96.64 94.58 93.16 95.83 95.81 95.37 95.65
Kappa 0.793 0.920 0.929 0.927 0.955 0.928 0.910 0.945 0.944 0.938 0.942

r(3/4) OA 83.70 93.94 94.63 94.58 96.52 94.59 93.08 95.79 95.53 95.37 95.50
Kappa 0.787 0.919 0.929 0.928 0.954 0.928 0.909 0.944 0.941 0.939 0.940

r(4/5) OA 83.50 93.73 94.20 94.63 96.51 94.54 93.06 95.67 95.35 95.31 95.61
Kappa 0.785 0.916 0.923 0.929 0.954 0.927 0.909 0.942 0.938 0.938 0.942
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samples per class, respectively. In the tables, 0% means the
classification results are obtained by only using labeled samples.
It is noticeable that, by including unlabeled samples and spatial
information, the classification results are greatly improved in
all cases. For example, with ln = 10, the supervised classification
accuracy is only 63.02% as shown in Table 3, while the highest



(a) Supervised (0%) (b) S2 SVM (40%) (c) S2 SVMSE (40%, r =3/4)

Fig. 4. Classification maps for all the methods with the ROSIS data set using 5 labeled samples per class.

(a) Supervised (0%) (b) S2 SVM (40%) (c) S2 SVMSE (45%, r =4/5)

Fig. 5. Classification maps for all the methods with the ROSIS data set using 10 labeled samples per class.
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accuracy (85.40%) is achieved by the semi-supervised approach,
and the better result (90.94%) is obtained by further including
spatial information. With consideration of spectral–spatial
ensemble parameter (r), it can be found that a stricter require-
ment could overcome the over-segmentation problem in compar-
ison with majority voting based only.

Figs. 4–6 show the classification maps obtained by all methods
for ROSIS data set. It is noticeable that the classification maps
obtained by semi-supervised methods have better performance
in the confusing areas, especially in the regions dominated by
mixed classes of meadows and bare soil.

3.3. Results for AVIRIS Indian Pines data

In this experiment, we evaluated the performance of the
proposed algorithm with AVIRIS Indian Pines data. Similarly, the
varieties of OAs obtained by the proposed methods are shown in
Fig. 7. Given the initial labeled samples (5, 10 or 15 per class),
the proposed semi-supervised algorithms greatly improved the
accuracy in comparison with the supervised one. Tables 5–7 sum-
marize the accuracies produced by the proposed approach (S2SVM
and S2SVMSE). With ln = 10, the OA obtained by the supervised
method is 60.61%, it reaches 83.08% when including 40% samples
of unlabeled candidate set, and the highest accuracy is achieved
by integrating the spatial information. Again, Tables 6 and 7 show
the similar results. First of all, the proposed semi-supervised
method can achieve more competitive results compared to the
supervised one with limited labeled samples. Furthermore, the
spectral–spatial-based method clearly obtained the best results
in all cases. Figs. 8–10 show the classification maps. It can be seen
that the proposed semi-supervised method outperforms, providing
smoother classification maps than others.
3.4. Parameter analysis
The AVIRIS Indian Pines data set was used to assess the influ-

ence of the parameters in the proposed algorithm. According to
the framework described in Section 2, there are four tuning param-
eters: hs and hr are the basic parameters in the mean shift method,
a is the threshold in unlabeled sample selection process, and
parameter r adjusts the influence of over-segmentation in classifi-
cation voting.



(a) Supervised (0%) (b) S2 SVM (45%) (c) S2 SVMSE (20%, r =2/3)

Fig. 6. Classification maps for all the methods with the ROSIS data set using 15 labeled samples per class.

(a) nl =5 (b) nl =10 (c) nl =15

Fig. 7. Overall classification accuracies obtained for the AVIRIS Indian Pines data set using S2SVM and S2SVMSE semi-supervised methods by using 5, 10 or 15 labeled samples
per class.

Table 5
OA results for AVIRIS Indian Pines data using proposed algorithms with 5 labeled samples per class. The best OA results of row was marked bold. The best OA results of each table
was marked bold italics.

Percentage of candidate set 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

S2SVM OA 39.79 70.17 73.29 75.55 75.66 76.68 77.16 76.91 77.73 78.35 78.96
Kappa 0.328 0.662 0.697 0.723 0.724 0.735 0.741 0.739 0.748 0.755 0.762

r(1/2) OA 43.64 76.02 78.37 82.21 80.58 80.33 81.20 80.71 80.36 80.06 81.29
Kappa 0.369 0.727 0.755 0.798 0.779 0.777 0.787 0.781 0.778 0.775 0.788

r(2/3) OA 43.93 74.59 78.23 82.33 80.73 80.44 80.47 79.87 80.32 80.08 81.23
Kappa 0.370 0.711 0.753 0.800 0.781 0.778 0.779 0.772 0.777 0.775 0.787

r(3/4) OA 44.42 74.39 77.60 82.17 80.32 80.94 80.19 79.81 80.33 80.07 81.24
Kappa 0.376 0.709 0.746 0.798 0.776 0.783 0.776 0.771 0.777 0.775 0.787

r(4/5) OA 44.05 74.51 77.68 82.17 79.68 80.89 80.04 79.84 80.63 80.54 81.45
Kappa 0.371 0.710 0.747 0.798 0.769 0.783 0.774 0.772 0.781 0.780 0.790
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The parameter a was defined by assessing the similarity
between different classes based on labeled samples, and its value
should be less than the minimum of pair-wise distances between
classes. In the experiments, a was 0.008. Based on previous
research on mean shift, the optimal choice of hs and hr is still an
open question. So we empirically changed hs within [4, 12] and
hr within [13, 21] to find sub-optimal values. The classification
rates with respect to hs and hr with 45% of selected unlabeled sam-
ples are shown in Fig. 11.

As shown in Fig. 11, when hs is small, the segmentation result
with obvious over-segmentation may increase the number of
mislabeled samples. Therefore, the OA is lower, but a larger hr

can slightly improve the accuracy. With the increase of hs, the
over-segmentation phenomenon decreases, and the accuracy is
increased because of less mislabeled samples being selected for
training. However, when hs reaches 10, there is a peak in the
accuracy curve. As hs continues to increase, the accuracy begins
to fall off slowly. In this case, the number of selected unlabeled
samples may be reduced. For the parameter hr, the accuracy is
increasing with increase of hr when hs is small. However, the
influence due to the change of hr is weakened when hs reaches
a larger value.



Table 6
OA results for AVIRIS Indian Pines data using proposed algorithms with 10 labeled samples per class. The best OA results of row was marked bold. The best OA results of each table
was marked bold italics.

Percentage of candidate set 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

S2SVM OA 60.61 74.45 76.97 80.87 80.83 81.34 81.82 82.53 83.08 82.55 82.94
Kappa 0.563 0.711 0.740 0.784 0.784 0.790 0.795 0.803 0.809 0.803 0.808

r(1/2) OA 69.46 78.63 82.06 84.19 85.54 84.35 83.30 82.79 85.41 83.97 83.83
Kappa 0.660 0.757 0.797 0.821 0.837 0.824 0.812 0.806 0.836 0.818 0.818

r(2/3) OA 69.13 78.64 82.06 84.80 85.57 84.47 83.25 82.70 85.44 84.34 84.17
Kappa 0.657 0.757 0.797 0.828 0.837 0.825 0.811 0.805 0.836 0.823 0.822

r(3/4) OA 69.33 78.39 82.23 84.46 84.96 84.86 83.47 83.14 85.47 83.90 84.19
Kappa 0.659 0.754 0.799 0.824 0.831 0.829 0.813 0.810 0.836 0.819 0.822

r(4/5) OA 69.06 78.78 82.60 84.51 85.02 84.86 83.54 83.16 85.47 84.01 84.22
Kappa 0.656 0.759 0.803 0.825 0.831 0.829 0.814 0.810 0.836 0.820 0.822

Table 7
OA results for AVIRIS Indian Pines data using proposed algorithms with 15 labeled samples per class. The best OA results of row was marked bold. The best OA results of each table
was marked bold italics.

Percentage of candidate set 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

S2SVM OA 66.02 77.20 81.99 82.46 85.28 85.43 86.86 87.12 86.50 87.31 88.14
Kappa 0.622 0.741 0.796 0.802 0.833 0.835 0.851 0.854 0.847 0.856 0.866

r(1/2) OA 72.05 84.22 86.87 88.76 91.07 91.12 91.62 90.86 89.88 89.77 90.57
Kappa 0.689 0.822 0.850 0.873 0.899 0.899 0.905 0.896 0.885 0.884 0.893

r(2/3) OA 72.59 84.34 86.87 88.83 91.22 91.31 91.72 90.93 89.95 89.78 90.66
Kappa 0.695 0.823 0.850 0.874 0.900 0.901 0.906 0.897 0.886 0.884 0.894

r(3/4) OA 72.55 84.12 86.97 88.87 91.35 91.32 91.53 91.20 90.08 89.86 90.68
Kappa 0.694 0.816 0.851 0.874 0.902 0.901 0.904 0.900 0.888 0.885 0.894

r(4/5) OA 72.54 83.92 86.15 88.84 91.33 91.42 91.41 91.20 90.21 89.99 90.73
Kappa 0.694 0.808 0.842 0.874 0.902 0.903 0.903 0.900 0.889 0.887 0.895

(a) Supervised (0%) (b) S2 SVM (50%) (c) S2 SVMSE (15%, r =2/3)

Fig. 8. Classification maps for all the methods with the AVIRIS Indian Pines data set using 5 per class labeled samples.

(a) Supervised (0%) (b) S2 SVM (40%) (c) S2 SVMSE (40%, r =4/5)

Fig. 9. Classification maps for all the methods with the AVIRIS Indian Pines data set using 10 per class labeled samples.
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The value of a is used to control the similarity between
unlabeled and labeled samples. To assess sensitivity of a, we set
hs = 10 and hr = 17 to achieve the best segmentation result, and
then randomly select 45% of unlabeled samples in the candidate
set. When the value of a is small, there are a small quantity of unla-
beled samples to be selected for training, the classification cannot
reach the highest accuracy. However, when a is large, some misla-
beled samples may be selected, so the accuracy will decrease.



(a) Supervised (0%) (b) S2 SVM (50%) (c) S2 SVMSE (30%, r =2/3)

Fig. 10. Classification maps for all the methods with the AVIRIS Indian Pines data set using 15 labeled samples per class.

Fig. 11. Classification rates with respect to parameter hs and hr.

Fig. 12. Sensitivity analysis of a on the AVIRIS Indian Pines data set.
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Fig. 12 shows that the accuracy rises slowly at first and then keeps
stable; but when the value of a exceeds 0.008, it begins to descend
quickly.

The value of r is used to adjust the influence of over-segmenta-
tion in classification voting. From the results shown in Tables 2–7,
it has an effect on the final classification results. Compared with
the traditional majority voting method, our improved majority
voting method aims to alleviate the negative influence of serious
over-segmentation. From the results based on different initial
labeled samples, the best classification accuracies are all achieved
when r is larger than 1/2, which indicates its role against over-
segmentation.
4. Conclusion

In this paper, we have introduced an efficient semi-supervised
classification approach for remotely sensed hyperspectral image
classification. The unlabeled samples that are the most similar to
the labeled ones are found by the a-one-nearest neighbor criterion,
and then the candidate set of unlabeled samples is enlarged by uti-
lizing the MS-based segmentation result. To ensure the finally
selected unlabeled samples be spatially widely distributed and less
correlated, random selection is conducted with the flexibility
choice of the number of unlabeled samples actually participating
in semi-supervised learning. After training the SVM with both
labeled and selected unlabeled samples, the spectral–spatial
ensemble method is applied to achieve better classification. Exper-
imental results demonstrate that the proposed method offers a
better performance in terms of classification accuracy and a very
small numbers of labeled samples required. It should be noted that
segmentation algorithms that can provide excellent performance
for hyperspectral imagery may be employed to play the same role
as Mean Shift in the proposed S2SVMSE.
Acknowledgments

The authors would like to thank Professors David Landgrebe
and Paolo Gamba for providing the data used in the experiments.
This research is supported in part by Natural Science Foundation
of China (No. 41101423, 41471356), Jiangsu Provincial Natural
Science Foundation under Grant BK2012018, China Postdoctoral
Science Foundation (2011M500128, 2012T50499), Fundamental
Research Funds for the Central Universities (2014QNA33,
2014ZDPY14), Priority Academic Program Development of Jiangsu
Higher Education Institutions.
References

Bai, J., Xiang, S.M., Pan, C.H., 2013. A graph-based classification method for
hyperspectral images. IEEE Trans. Geosci. Remote Sens. 51 (2), 803–817.

Bioucas-Dias, J., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., Chanussot,
J., 2013. Hyperspectral remote sensing data analysis and future challenges.
Geosci. Remote Sens. Mag., IEEE 1 (2), 6–36.

Bioucas-Dias, J.M., Nascimento, J.M.P., 2008. Hyperspectral subspace identification.
IEEE Trans. Geosci. Remote Sens. 46 (8), 2435–2445.

Bruzzone, L., Chi, M.M., Marconcini, M., 2006. A novel transductive SVM for
semisupervised classification of remote-sensing images. IEEE Trans. Geosci.
Remote Sens. 44 (11), 3363–3373.

Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Rojo-Alvarez, J.L., Martinez-
Ramon, M., 2008. Kernel-based framework for multitemporal and multisource
remote sensing data classification and change detection. IEEE Trans. Geosci.
Remote Sens. 46 (6), 1822–1835.

Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Vila-Frances, J., Calpe-Maravilla,
J., 2006. Composite kernels for hyperspectral image classification. IEEE Geosci.
Remote Sens. Lett. 3 (1), 93–97.

Camps-Valls, G., Marsheva, T.V.B., Zhou, D.Y., 2007. Semi-supervised graph-based
hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 45 (10),
3044–3054.

http://refhub.elsevier.com/S0924-2716(14)00202-0/h0005
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0005
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0010
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0010
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0010
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0015
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0015
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0020
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0020
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0020
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0025
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0025
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0025
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0025
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0030
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0030
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0030
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0035
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0035
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0035


K. Tan et al. / ISPRS Journal of Photogrammetry and Remote Sensing 97 (2014) 36–45 45
Chapelle, O., Sindhwani, V., Keerthi, S.S., 2008. Optimization techniques for semi-
supervised support vector machines. J. Mach. Learn. Res. 9, 203–233.

Comaniciu, D., Meer, P., 2002. Mean shift: a robust approach toward feature space
analysis. Pattern Anal. Mach. Intell., IEEE Trans. 24 (5), 603–619.

Culp, M., Michailidis, G., Johnson, K., 2009. On multi-view learning with additive
models. Ann. Appl. Stat. 3 (1), 292–318.

Dopido, I., Li, J., Marpu, P.R., Plaza, A., Dias, J.M.B., Benediktsson, J.A., 2013.
Semisupervised self-learning for hyperspectral image classification. IEEE Trans.
Geosci. Remote Sens. 51 (7), 4032–4044.

Du, B., Zhang, L.P., 2014. Target detection based on a dynamic subspace. Pattern
Recognit. 47 (1), 344–358.

Du, P.J., Tan, K., Xing, X.S., 2010. Wavelet SVM in reproducing kernel hilbert space
for hyperspectral remote sensing image classification. Opt. Commun. 283 (24),
4978–4984.

Du, P.J., Xia, J.S., Zhang, W., Tan, K., Liu, Y., Liu, S.C., 2012. Multiple classifier system
for remote sensing image classification: a review. Sensors 12 (4), 4764–4792.

Du, Q., Raksuntorn, N., Younan, N.H., King, R.L., 2008. End-member extraction for
hyperspectral image analysis. Appl. Opt. 47 (28), F77–F84.

Du, Q., Yang, H., 2008. Similarity-based unsupervised band selection for
hyperspectral image analysis. IEEE Geosci. Remote Sens. Lett. 5 (4), 564–568.

Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R., 2008. Spectral and
spatial classification of hyperspectral data using SVMs and morphological
profiles. IEEE Trans. Geosci. Remote Sens. 46 (11), 3804–3814.

Georgescu, B., Shimshoni, I., Meer, P., 2003. Mean shift based clustering in high
dimensions: a texture classification example, Computer Vision, 2003. In:
Proceedings, Ninth IEEE International Conference on. IEEE, pp. 456–463.

Gu, Y.F., Feng, K., 2013. Optimized Laplacian SVM with distance metric learning for
hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observations
Remote Sens. 6 (3), 1109–1117.

Hughes, G., 1968. On the mean accuracy of statistical pattern recognizers. IEEE
Trans. Inf. Theory 14 (1), 55–63.

Jain, A.K., Duin, R.P.W., Mao, J.C., 2000. Statistical pattern recognition: a review. IEEE
Trans. Pattern Anal. Mach. Intell. 22 (1), 4–37.

Jia, X.P., Kuo, B.C., Crawford, M.M., 2013. Feature mining for hyperspectral image
classification. Proc. IEEE 101 (3), 676–697.

Krithara, A., Amini, M.R., Goutte, C., Renders, J.M., 2011. Learning aspect models
with partially labeled data. Pattern Recognit. Lett. 32 (2), 297–304.

Li, J., Bioucas-Dias, J.M., Plaza, A., 2013a. Semisupervised hyperspectral image
classification using soft sparse multinomial logistic regression. IEEE Geosci.
Remote Sens. Lett. 10 (2), 318–322.

Li, J., Marpu, P.R., Plaza, A., Bioucas-Dias, J.M., Benediktsson, J.A., 2013b. Generalized
composite kernel framework for hyperspectral image classification. IEEE Trans.
Geosci. Remote Sens. 51 (9), 4816–4829.

Manolakis, D., Siracusa, C., Shaw, G., 2001. Hyperspectral subpixel target detection
using the linear mixing model. IEEE Trans. Geosci. Remote Sens. 39 (7), 1392–
1409.
Marconcini, M., Camps-Valls, G., Bruzzone, L., 2009. A composite semisupervised
SVM for classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 6
(2), 234–238.

Melgani, F., Bruzzone, L., 2004. Classification of hyperspectral remote sensing
images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42 (8),
1778–1790.

Mountrakis, G., Im, J., Ogole, C., 2011. Support vector machines in remote sensing: a
review. ISPRS J. Photogramm. Remote Sens. 66 (3), 247–259.

Munoz-Mari, J., Bovolo, F., Gomez-Chova, L., Bruzzone, L., Camps-Valls, G., 2010.
Semisupervised one-class support vector machines for classification of remote
sensing data. IEEE Trans. Geosci. Remote Sens. 48 (8), 3188–3197.

Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G.,
Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J.C.,
Trianni, G., 2009. Recent advances in techniques for hyperspectral image
processing. Remote Sens. Environ. 113, S110–S122.

Ratle, F., Camps-Valls, G., Weston, J., 2010. Semisupervised neural networks for
efficient hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 48
(5), 2271–2282.

Shi, Q., Zhang, L., Du, B., 2013. Semi-supervised discriminative locally enhanced
alignment for hyperspectral image classification. IEEE Trans. Geosci. Remote
Sens. 51 (9), 4800–4815.

Sun, S.L., Shawe-Taylor, J., 2010. Sparse semi-supervised learning using conjugate
functions. J. Mach. Learn. Res. 11, 2423–2455.

Tan, K., Du, P.J., 2008. Hyperspectral remote sensing image classification
based on support vector machine. J. Infrared Millimeter Waves 27 (2), 123–
128.

Tan, K., Du, P.J., 2011. Combined multi-kernel support vector machine and wavelet
analysis for hyperspectral remote sensing image classification. Chin. Opt. Lett. 9
(1), 011003–011006.

Tan, K., Li, E., Du, Q., Du, P., 2013. Hyperspectral image classification using band
selection and morphological profiles. Sel. Top. Appl. Earth Observations Remote
Sens., IEEE J. 7 (1), 40–48.

van der Meer, F.D., van der Werff, H., van Ruitenbeek, F.J., Hecker, C.A., Bakker, W.H.,
Noomen, M.F., van der Meijde, M., Carranza, E.J.M., Smeth, J., Woldai, T., 2012.
Multi-and hyperspectral geologic remote sensing: a review. Int. J. Appl. Earth
Observation Geoinf. 14 (1), 112–128.

Villa, A., Chanussot, J., Benediktsson, J.A., Jutten, C., Dambreville, R., 2013.
Unsupervised methods for the classification of hyperspectral images with low
spatial resolution. Pattern Recognit. 46 (6), 1556–1568.

Yang, H., Du, Q.A., Ma, B., 2010. Decision fusion on supervised and unsupervised
classifiers for hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 7 (4), 875–
879.

Zhong, Y.F., Zhang, L.P., 2012. An adaptive artificial immune network for supervised
classification of multi-/hyperspectral remote sensing imagery. IEEE Trans.
Geosci. Remote Sens. 50 (3), 894–909.

http://refhub.elsevier.com/S0924-2716(14)00202-0/h0040
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0040
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0045
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0045
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0050
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0050
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0055
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0055
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0055
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0060
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0060
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0065
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0065
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0065
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0070
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0070
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0075
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0075
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0080
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0080
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0085
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0085
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0085
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0095
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0095
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0095
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0100
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0100
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0105
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0105
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0110
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0110
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0115
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0115
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0120
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0120
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0120
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0125
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0125
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0125
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0130
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0130
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0130
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0135
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0135
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0135
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0140
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0140
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0140
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0145
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0145
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0150
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0150
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0150
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0155
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0155
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0155
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0155
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0160
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0160
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0160
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0165
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0165
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0165
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0170
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0170
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0175
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0175
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0175
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0180
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0180
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0180
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0185
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0185
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0185
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0190
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0190
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0190
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0190
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0195
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0195
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0195
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0200
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0200
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0200
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0205
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0205
http://refhub.elsevier.com/S0924-2716(14)00202-0/h0205

	An efficient semi-supervised classification approach for hyperspectral imagery
	1 Introduction
	2 Proposed method
	2.1 Mean shift
	2.2 Selection of unlabeled samples
	2.3 Spectral–spatial feature ensemble
	2.4 Proposed semi-supervised approach

	3 Experiments
	3.1 Data used in the experiments
	3.2 Results for ROSIS data
	3.3 Results for AVIRIS Indian Pines data
	3.4 Parameter analysis


	4 Conclusion
	Acknowledgments
	References


