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A B S T R A C T

Global carbon emissions have reached unsustainable levels, and transforming the energy sector by increasing
efficiency and use of renewables is one of the primary strategies to reduce emissions. Policy makers need to
understand both the environmental and economic impacts of fiscal and regulatory policies regarding the energy
sector. Transitioning to lower-carbon energy will entail a contraction of the fossil fuel sector, along with a loss of
jobs. An important question is whether clean energy will create more jobs than will be lost in fossil fuels. This
article presents a method of using Input-Output (I-O) tables to create “synthetic” industries – namely clean
energy industries that do not currently exist in I-O tables. This approach allows researchers to evaluate public
and private spending in clean energy and compare it to the effects of spending on fossil fuels. Here we focus on
employment impacts in the short-to-medium term, and leave aside the long-term comparison of operations and
maintenance employment. We find that on average, 2.65 full-time-equivalent (FTE) jobs are created from $1
million spending in fossil fuels, while that same amount of spending would create 7.49 or 7.72 FTE jobs in
renewables or energy efficiency. Thus each $1 million shifted from brown to green energy will create a net
increase of 5 jobs.

1. Introduction

Employment in the clean energy sector, or so-called “Green Jobs,”
has become an important issue politically as an avenue to reduce
unemployment while growing the economy on a sustainable path.
Carbon emissions have reached an unsustainable level, and the global
energy system must be transformed in order to limit global climate
change to a 2 degree Celcius rise above pre-industrial levels by 2100
(Bruckner et al., 2014). Many studies have evaluated the relationship
between economic growth, energy use, and emissions (Bloch et al.,
2015; Chen et al., 2016; Narayan et al., 2016). There is debate both
among economists and environmentalists as to whether economic
growth is necessary and what level is sustainable. “Green Growth” is
sometimes seen as a way for standards of living to rise while carbon
emissions fall (e.g. Pollin et al., 2014).

National governments have long used both fiscal policy and
regulation in the energy sector. Fiscal policy has included tax prefer-
ences, direct public spending, loan guarantees and other financing
mechanisms, investments in research and development, and many
other forms of financial support and incentives. In simultaneously
addressing questions of job creation, emissions reduction, and energy
use, it is important to understand the economic effects of energy policy
and public spending within the energy sector. Particularly when the

policy goal is to reduce unemployment, it is useful to compare the
employment effects of clean energy as opposed to fossil fuels. For a
given level of public spending, how many jobs would be supported by
renewable energy (RE) and energy efficiency (EE) industries compared
to fossil fuel (FF) industries? What would be the net effect on
employment if spending shifts from fossil fuels to clean energy?

There is a small but growing body of literature examining the
economic benefits of a clean energy transition, including those of job
creation (Pollin et al., 2014; Lehr et al., 2012). While the peer-reviewed
literature is still limited and the impacts on employment are sometimes
noted as being disputed (Lambert and Silva, 2012), a number of
researchers using input-output modeling have found positive employ-
ment impacts resulting from the growth of renewable energy
industries (Malik et al., 2014; Markaki et al., 2013; Tourkolias and
Mirasgedis, 2011) Input-output models are often used for these studies
because they have the advantage of being transparent, having few
assumptions built in, are easily replicable, and are built from current or
recent data from national accounts.

One current drawback of using I-O models to study clean energy
impacts is that renewable energy industries and energy efficiency
industries are not explicitly identified as industrial categories in
national accounts. While industries such as oil extraction, natural gas
distribution, and petroleum refining exist in most national accounting
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systems, industries such as wind, solar, or home weatherization do not.
Thus we cannot readily compare the employment impacts of demand
for fossil fuel to demand for clean energy, making policy assessment
difficult. Some researchers have overcome this obstacle by disaggregat-
ing and re-aggregating the industries in the I-O tables in order to
separate green from traditional activities, or by adding a new set of
industries to the existing tables (Malik et al., 2014; Garrett-Peltier,
2011).

A re-aggregation approach is useful for analyzing mature industries
and has been used to study “satellite accounts” such as the Health Care
Satellite Account and the Travel and Tourism Satellite Accounts of the
U.S. Bureau of Economic Analysis (U.S. BEA). The main drawback to
such an approach is the collection or availability of data sufficient for
detailed disaggregation, a problem that is particularly concerning with
nascent industries such as clean energy. This re-aggregation approach
is generally time-consuming, requiring detailed survey data as well as
compilation and re-balancing of the input-output tables.

This article presents an alternative approach for analyzing the
employment impacts of renewable energy and energy efficiency in-
dustries. I use an input-output model, but rather than re-aggregating
the tables to separate green from non-green activities, I treat clean
energy spending as a demand shock. That is, I treat additional
spending as investments in the industry, and simulate the effects of
expanding the clean energy sector by creating vectors of demand that
include the manufacturing, construction, and service industries that
comprise the clean energy sector. As shorthand, I refer to this as the
“synthetic industry” approach.

In essence, what the “synthetic industry” approach does is use
existing data in the national accounts, in existing I-O tables. While
“wind” or “solar” are not identified as industries as such, the activities
and materials making up the wind and solar industries are already
implicitly captured in existing I-O tables. In the synthetic industry
approach, we use existing data from national accounts and create a
proxy, a vector of demand for the package of goods and services making
up each synthetic industry.

The advantages of the “synthetic industry” approach are twofold:
First, the data requirements are fewer than those necessary for re-
aggregation; and second, this method could be used as a complemen-
tary modeling technique to re-aggregation, where this “synthetic
industry” approach is used to assess the initial impacts of investments
in creating or expanding an industry, and then the re-aggregation
technique is used to model ongoing operations and maintenance of an
established industry.

In this article I perform synthetic industry analysis for renewable
energy industries such as wind, solar, and bioenergy, as well as for
energy efficiency industries including building weatherization, mass
transit and freight rail, and electrical grid upgrades. I build from the
methods first presented in Garrett-Peltier (2011) but update with the
most recent data available, which are the 71-industry “Summary”
tables for 2013 from the U.S. BEA. In addition, I generate new cost
vectors for various renewable and efficiency industries and compare the
results with those using previously-established cost structures. I then
present a method of analyzing the sensitivity of the results to the choice
of specification.

I present the methodology for simulating demand for RE and EE
industries, then use existing literature and survey data to form vectors
of demand. I estimate employment multipliers for 9 clean energy
industries and 2 fossil fuel industries. I then present a simple policy
example estimating the overall impact of shifting $1 billion in fossil
fuel subsidies into investments in renewable energy or energy effi-
ciency. I provide the weights used in composing all of these 11 energy
industries to allow replication by other researchers.

I find that on average, renewable energy creates 7.49 full-time-
equivalent (FTE) jobs per $1 million spending, energy efficiency creates
7.72 FTE jobs per $1 million spending, and fossil fuels create 2.65 FTE
jobs per $1 million spending. These job numbers include both direct

and indirect (supply-chain) jobs, and the multipliers are the same
regardless of whether the source of demand is public or private
spending. It is important to note that these employment effects are
relevant for the short-to-medium term, in which an expansion of clean
energy involves significant increases in manufacturing and installation
of renewable and efficiency technologies. Here we leave aside the long-
run comparison of operations and maintenance employment in the
energy sector. Overall, I find that the expansion of clean energy creates
three jobs for each job lost in the fossil fuel sector, and for each $1
million shift from fossil fuels to clean energy, an average of five
additional jobs are created.

2. Data and methods

2.1. Brief background on input-output analysis

Input-output (I-O) analysis is useful in estimating the impact of
changes in demand for the output of an industry or group of industries.
I-O tables provide a “snapshot” of the economy. In any given year, they
show the inputs used by each industry, the outputs produced by each
industry, and the relationship between industry output and final
demand among various users.

I-O tables are constructed from surveys of businesses as well as
from administrative records and are generally available at various
levels of detail ranging from sector (~12 industries) to detailed or
benchmark tables (~400–500 industries). In the U.S., benchmark
tables are produced by the U.S. BEA every 5 years, include approxi-
mately 500 industries, and are updated annually to produce sector and
summary level tables. I-O tables provide a useful framework for policy
and business analysis (Horowitz and Planting, 2009). A detailed
description of the basic I-O framework is readily available in publica-
tions such as Miller and Blair (2009).

The U.S. BEA's I-O tables include a “make” table (the commodities
produced by each industry), a “use” table (the use of commodities by
intermediate and final users), a “direct requirements” table which is an
algebraic manipulation of the make and use tables showing the amount
of a commodity required by an industry to produce a dollar of the
industry's output, and a “total requirements” table which is also known
as the “Leontief Inverse Matrix,” described below.

The I-O model allows us to estimate economy-wide impacts of
investments in a range of RE and EE technologies, and thus has useful
macroeconomic implications. Further, it also allows us to evaluate the
effects on specific sectors and industries, which is useful for industrial
policy as well as employment, training, and readjustment policies.

The input-output model I will use here to study the EERE (Energy
Efficiency and Renewable Energy) industry is based on the U.S. BEA
2013 annual tables at the 71 industry (“summary”) level. The BEA
“Total Requirements” table shows how an increase in demand for a
particular industry's product will lead to increased output in that
industry and all related industries. For example, an increase in demand
for farm products would increase farm output and would also increase
output in other industries that provide inputs to the farm industry,
such as fertilizer and farm machinery manufacturing. The total
requirements table will be an n×n matrix where n is the number of
industries. Once we obtain this table, we can post-multiply it by a
vector of final demand (Y) to estimate the effects on output (X). Thus
our basic equation to estimate a change in output resulting from a
change in final demand is:

Δ ΔX = (I − A) Y−1

Where (I-A)-1 is the Leontief inverse matrix or “Total Requirements”
table.

Using the above impact equation, we can see how changes in
alternative types of final demand (personal consumption, private
investment, federal government expenditures, or exports) affect output.
We can also isolate a change in final demand for one industry or a
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group of industries (for instance, increased procurement of solar panels
by the federal government) to estimate the economy-wide impacts of
such a demand shock.

2.2. Creating vectors of demand to model renewable energy and
energy efficiency

In comparing the effects of spending on clean energy versus
spending on fossil fuels, we are interested in the total change in output,
ΔX, that results from an increase in demand, ΔY. In established
industries, such as coal mining, we can simply use the Leontief inverse
matrix to obtain the output effects from an increase in demand. But to
estimate the impacts from a change in demand for a group of
industries, we need to form our vector of demand, ΔY, where we
allocate shares across the various industries. Below we present a
method for doing this for clean energy.

I-O tables in the U.S. are based on the North American Industrial
Classification System (NAICS), which currently does not identify any
renewable energy or energy efficiency industries. The only energy-
related industries identified in the BEA I-O tables are oil/gas extrac-
tion, coal mining, support services for these extraction activities, power
generation and distribution, and various petroleum- or coal-based
manufacturing activities. Renewable energy industries such as wind,
solar, bioenergy, geothermal, and so on, are not explicitly identified.
Energy efficiency industries such as building weatherization, “Smart
Grid”,1 energy-efficient appliances, and so on are also not explicitly
identified. Nonetheless, the activities of these industries are captured
implicitly in the input-output accounts. For example, the manufacture
of hardware and electrical equipment used for solar panels are
categorized respectively in the hardware and electrical equipment
industries. If we can thus identify the various components and their
weights that make up the energy efficiency and renewable energy
(EERE) industries, we can study the impact of increased demand for
EERE products and services. The methodology for what I am calling
the synthetic industry approach is presented in Miller and Blair (2009)
as one of two I-O methods to assess the impacts of a new industry.

The synthetic industry approach may serve as a complementary or
alternative strategy to gathering survey data and explicitly identifying
EERE industries in order to augment or re-aggregate existing I-O
tables, or what I will call the “integrated approach”. The integrated
approach presented in Garrett-Peltier (2011) models both forward and
backward linkages between various industries, with the EERE industry
as both a consumer and producer of goods and services. This approach
is what Miller and Blair (2009) refer to as “complete inclusion in the
technical coefficients matrix.” In the synthetic approach presented
here, however, I simulate an exogenous increase in final demand for
the goods and services used in the EERE industry. This method
requires data for the inputs into EERE production without requiring
knowledge of the structure or magnitude of demand for output from
EERE industries. As noted by Tourkolias and Mirasgedis (2011), in
most countries the size of the renewable energy industry is still small
and the data on inputs still limited and variable.

The exogenous demand for clean energy products could be the
result of direct public spending, such as a government agency
purchasing solar photovoltaic panels for its buildings, or it could be
private spending by businesses or households, perhaps incentivized by
government tax or regulatory policy. In order to simulate this increased

demand, we calculate a bill of goods, or demand vector, that is
essentially a weighted average of various industries that exist within
the I-O tables. To estimate the weights and industries involved, we
could use survey data, expert interviews, financial data from energy
industries or firms, or various other sources. Ideally we would
implement a survey on a large enough scale that it is representative
of the geography and industries in our I-O tables. But since this type of
survey can be time-consuming and costly, we can instead rely on survey
data that has already been collected.

For example, in generating the demand vector for the wind energy
industry, I rely on data from a survey conducted by the European Wind
Energy Association (EWEA, 2004), as previously presented in Garrett-
Peltier (2011). The EWEA administered a survey of various European
firms in the wind energy industry, eliciting data on the components and
costs of wind turbine production. The EWEA publication shows that for
wind turbine manufacturing, the various components and their shares
of total costs are as follows:

37% machinery
26% construction
12% fabricated metal products
12% plastic products
7% scientific/technical services
3% mechanical power transmission equipment
3% electronic connector equipment

In order to generate a vector of demand for wind energy, we map
this survey data into the industrial categories of our I-O table, which
may be more or less aggregated than the survey data itself. The
industries and weights for the wind industry, as well as other energy
industries, are shown in Table 1.

Similarly, to construct vectors of demand for building weatheriza-
tion, I rely on survey data from the U.S. Department of Energy. For
home weatherization, I use data on home energy consumption from the
U.S. Department of Energy's Residential Energy Consumption Survey
(U.S. DOE, 2013). I attribute 30 percent of the total spending on home
weatherization to the construction industry, then allocate the remain-
ing 70 percent to materials and technologies based on their shares in
home energy consumption, which is 41.5% space heating, 34.6%
appliances, electronics and lighting, 17.7% water heating, and 6.2%
air conditioners, as shown in Table 4.

To create a synthetic industry representing commercial retrofits, I
refer to a 2012 U.S. Department of Energy report on the Energy Service
Company (ESCO) industry (Larsen et al., 2012). In particular, Figure 6
of this report shows a variety of energy efficiency measures installed by
ESCO companies, according to a database of ESCO projects maintained
by the Lawrence Berkeley National Laboratory. I select the five most
implemented projects: lighting; controls; distribution/ventilation; boi-
lers; and water conservation. I develop a new vector of demand for
commercial retrofits that is composed of 30 percent construction
(installation), with 70 percent of costs evenly distributed across the
five technologies and measures just listed. The resulting industry
shares are included in Table 4.

In Tables 1 and 2 I present vectors of demand that were previously
constructed (Garrett-Peltier 2011; Pollin et al., 2015), and in Tables 3
and 4 I present vectors of demand that I have newly constructed from
secondary data. In some cases, those data were drawn from extensive
surveys or databases of projects (such as the database of thousands of
ESCO projects maintained by the Lawrence Berkeley National
Laboratory), and in other cases the data result from a combination of
sources, such as business journals, industry associations, and tenders
(e.g. IRENA (2012a) and IRENA (2012b)). In all cases, I used the costs
and components identified by these various agencies and organizations,
assigned I-O industry categories to the components, and assigned
weights as presented in Tables 3 and 4.

1 “Smart Grid” is a term used to describe a modernized electricity transmission
infrastructure which relies on information-technology to increase reliability and reduce
demand of the electrical grid system. The Smart-Grid is more interactive and distributed
than the current electrical grid in that it allows end-users to interface with power use
through ‘Smart Meters’ and allows for more de-centralized power production (such as
wind and solar) to be distributed to users. For more information, see for example
publications by the U.S. Dept. of Energy's Office of Electricity & Energy Reliability,
accessible here: http://www.oe.energy.gov/smartgrid.htm.
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Table 1
Weights in Garrett-Peltier 2011.

I-O Industry (from 71-industry table) Synthetic EERE Industry Fossil Fuels

Weatherization Mass Transit & Freight Rail Smart Grid Wind Solar Biomass Oil & Gas Coal

Farm products (unprocessed) – – – – – 0.250
Forestry, fishing and related – – – – – 0.250
Oil and Gas extraction 0.300
Coal Mining 0.440
Support activities for extraction and mining 0.040 0.080
Natural gas distribution 0.100
Construction 1.000 0.450 0.250 0.260 0.300 0.250
Petroleum and Coal Products 0.530 0.480
Chemical products – – – – – 0.125
Plastics and rubber products – – – 0.120 – –

Fabricated metal products – – – 0.120 0.175 –

Machinery – – 0.250 0.370 – –

Computer and electronic products – – 0.250 0.030 0.175 –

Electrical equipment, appliances, and components – – 0.250 0.030 0.175 –

Rail transportation – 0.100 – – – –

Transit and ground passenger transportation – 0.450 – – – –

Pipeline transportation 0.030
Miscellaneous professional, scientific and technical services – – – 0.070 0.175 0.125
sum of weights 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2
Weights in Pollin et al. 2015.

Wind Solar Bioenergy Geothermal Hydro
(small)

Weatherization Industrial EE Smart Grid Oil and
Gas

Coal

Farms 0.250
Forestry, fishing, and related activities 0.250
Oil and gas extraction 0.500
Mining, except oil and gas 0.500
Support activities for mining 0.150
Construction 0.260 0.300 0.250 0.450 0.180 1.000 0.200 0.250
Fabricated metal products 0.120 0.175 0.180
Machinery 0.370 0.175 0.100 0.070 0.500 0.250
Computer and electronic products 0.030 0.175 0.250
Electrical equipment, appliances, and components 0.030 0.140 0.250
Petroleum and coal products 0.250 0.500
Chemical products 0.125
Plastics and rubber products 0.120
Pipeline transportation 0.250
Miscellaneous professional, scientific, and

technical services
0.070 0.175 0.125 0.300 0.430 0.300

Sum of weights 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 3
Composition of RE industries using alternative cost structures.

Wind – Tegen
et at. (2013)

Wind - IRENA
(2012b)

Wind (onshore) B
& V (2012)

Solar PV (central) –
B&V (2012)

Solar - IRENA
(2012a)

Solar -BNEF -
SEA 2013

Geothermal – B&V
2012

Support activities for mining 0.390
Construction 0.200 0.276 0.255 0.095 0.125 0.290 0.250
Nonmetallic mineral products 0.030 0.160 0.120 0.050
Fabricated metal products 0.160 0.160 0.340 0.410 0.210 0.200 0.140
Machinery 0.370
Computer and electronic products 0.385
Electrical equipment, appliances,

and components
0.150 0.314 0.340 0.330 0.122 0.250 0.080

Truck transportation 0.030
Insurance carriers and related

activities
0.030

Miscellaneous professional,
scientific, and technical services

0.020 0.090 0.040 0.020 0.109 0.210 0.070

Management of companies and
enterprises

0.010 0.025 0.025 0.050 0.070

Sum of weights 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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2.3. Generating the Employment Requirements Table

To study the effects on employment, rather than simply output, we
must convert our Leontief Inverse Matrix into an Employment
Requirements (ER) Table. This table is used to estimate the number
of jobs throughout the economy that are needed, both directly and
indirectly, to deliver $1 million of final demand for a specific product or
service. In order to create the employment requirements table, we first
need to obtain employment/output ratios for each industry in the
model. Here we use gross output by industry as well as full-time-
equivalent (FTE) employment by industry from the BEA tables (US.
Bureau of Economic Analysis 2015a, 2015b). We use 2013 data for
both FTE employment and Gross Output.

To create the employment requirements table, ER, we take the
diagonal matrix of employment/output ratios, e, and post-multiply it
by the Leontief inverse matrix as follows:

ER = e(I − A)−1

Where (I-A) – 1 is the Leontief inverse table and e is the diagonal
matrix, both of which have the dimension 71×71.

The employment requirements table shows us both the number of
jobs directly created and indirectly created, as a result of demand for a
particular industry's product. For example, if demand for coal mining is
$1 million, we can immediately see both the number of coal mining
industry jobs (direct jobs) supported by this demand, as well as the
number of jobs supported in other industries such as trucking and
mining equipment manufacturing which supply inputs to the coal
mining industry (indirect jobs). While the Leontief inverse matrix
yields output requirements and an output multiplier, the employment
requirements table yields employment requirements and an employ-
ment multiplier. Each industry will have a unique multiplier.

We can use this framework to see how an increase in spending in
any industry will generate jobs. The basic impact equations are:

ΔX = (I-A)-1ΔY (to measure change in output); and
ΔX = ERΔY (to measure change in employment).
The employment multipliers from this static model include both

direct and indirect employment resulting from a given type of demand.
The direct employment effects are found along the diagonal of the ER
matrix. The indirect effects for a given industry are the sum of all of the
values in a column of the ER matrix, minus the direct value along the
diagonal.

2.4. Employment Multipliers: Understanding their use and the
assumptions contained in the I-O model

We can trace the causes of differences in employment multipliers to
three main reasons: labor intensity; domestic content; and compensa-
tion of workers. Labor intensity is captured by the employment/output
ratio. In comparison to industries that are capital-intensive, labor-
intensive industries will employ a greater number of FTE workers for
the same level of output. Secondly, an industry with a higher share of
domestically-produced inputs will have a higher employment multi-
plier. Higher domestic content implies that more output, and therefore
more employment, is created within the domestic economy, rather than
being imported or outsourced and creating output and employment in
foreign economies. Thirdly, all else equal an industry will have a higher
employment multiplier if average compensation is lower. For example,
if $1 million in final demand generates $600,000 in total compensation
(and the remainder in other inputs), and average compensation is
$30,000, then 20 FTE workers will be employed. However, if the
$600,000 is paid out to workers earning on average $60,000, then only
10 FTE workers will be employed. Thus in general, industries with
higher labor intensity, higher domestic content, and/or lower compen-
sation, will have higher employment multipliers.

2.4.1. Assumptions embodied in the input-output model
Miller and Blair (2009) note that the two main assumptions in

input-output tables are those of fixed technical coefficients and fixed
input proportions. Fixed technical coefficients means that the inter-
industry flows from industry i to industry j depend entirely on the
output of industry j. In other words, if the output of industry j doubles,
its input from industry i will also double. Fixed proportions implies
that industry j will use the same mix of inputs from all industries even
as demand increases for industry j's output. That is, the production
function, which is a Leontief minimization function, is homogenous.
Rather than a classical production function which assumes diminishing
marginal returns, the Leontief production function assumes constant
returns to scale. The returns are fixed by technology, and technology is
assumed to remain constant as output grows. The BEA refers to these
two assumptions as the principles of homogeneity and proportionality.

We must keep these assumptions in mind when conducting any
impact analysis with the I-O tables. First, this suggests that I-O tables
are best suited to studying the current state of the economy and making
short-term projections and we should therefore exercise caution when
using I-O models to conduct long-range forecasts. In the long-term, we
would expect technological change to occur, which would change the
production function and therefore the factor proportions. Furthermore,
the assumption of constant returns to scale is relevant only for
relatively small changes in levels of output. If an industry increases
output by, say, 5 or 10 percent, we might be able to assume constant
returns to scale. But a doubling of the size of the industry, such as we
might expect to occur with renewable energy, will no doubt lead to
changes in the returns to scale alongside changes in technology. Thus,
we should exercise caution in using input-output models for long-range
forecasting purposes.

Furthermore, because the data underlying the I-O tables are an
“economic snapshot,” the resulting I-O tables themselves are static.
Thus, we must be aware of not only homogeneity and proportionality,
but also of fixed prices. If, over time, input prices change, then we
would expect industries to substitute cheaper inputs for the more
expensive inputs.

The limitations of the input-output model lie in these three
assumptions (homogeneity, proportionality, and fixed prices) which
are of course made for simplification as we know that no industry
operates in this type of environment. Its strength, however, lies in the
simplicity of the model and the relatively limited number of assump-
tions in comparison to more complex general equilibrium models
which typically rely on a far greater number of assumptions.

Table 4
Composition of Residential and Commercial Energy Efficiency from DOE cost sources.

Home weatherization Commercial
Retrofits

Support activities for mining
Construction 0.300 0.300

Nonmetallic mineral products
Fabricated metal products 0.140
Machinery 0.414 0.140
Computer and electronic products 0.140
Electrical equipment, appliances,

and components
0.286 0.140

Truck transportation

Insurance carriers and related
activities

Miscellaneous professional,
scientific, and technical
services

0.140

Management of companies and
enterprises

Sum of weights 1.000 1.000
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2.5. Estimating employment multipliers for energy efficiency and
renewable energy

In this article, I estimate the employment multipliers of EERE
industries using the vectors of demand described above and presented
here in Tables 1–4. For this analysis I use the most recent available I-O
data in the U.S., the 2013 Summary level I-O tables from the U.S. BEA,
which include 71 industries. I use the Industry-by-Industry Total
Requirements Table, and then to calculate employment-output ratios
and create the employment requirements table, I use 2013 data from
the U.S. BEA for full-time-equivalent (FTE) employment and gross
output by industry (U.S. BEA 2015a, 2015b).

I start by replicating the demand vectors presented in Garrett-
Peltier (2011), presented here in Table 1. Next, I replicate various
energy demand vectors using the industries and weights presented in
Pollin et al. (2015) as presented in Table 2. I also generate new vectors
of demand for RE industries using cost data from the International
Renewable Energy Agency (International Renewable Energy Agency
2012a, 2012b), the National Renewable Energy Laboratory (Black and
Veatch, 2012; Tegen, et al., 2013) and from Bloomberg New Energy
Finance (2013). I create two new energy efficiency demand vectors –
one for home weatherization based on the U.S. Department of Energy's
Residential Energy Consumption Survey (U.S. DOE 2013), and one for
commercial building retrofits based on an extensive database main-
tained by the Lawrence Berkeley National Laboratory (Larsen et al.
2012). I perform the same synthetic industry analysis with these
various cost data in order to compare my results with those generated
from previous cost assumptions. The alternative weighting assump-
tions are presented in Tables 3 and 4.

3. Results and discussion

3.1. Employment multipliers

The employment multipliers for RE (wind, solar, bioenergy, hydro,
and geothermal), EE (building weatherization, freight rail & transit,
industrial EE, and Smart Grid), as well as for FF (oil & gas and coal)
are presented in Table 5. It is important to note that the multipliers for
RE and EE relate specifically to the expansion of these industries, and
thus are composed primarily of manufacturing and construction
industries as well as related goods and services. The multipliers do
not represent operations and maintenance employment in RE or EE
and thus should not be used for comparisons of clean energy and fossil
fuel employment in the long run.

We find that on average, $1 million of demand for RE generates
7.49 FTE jobs (4.50 direct plus 2.99 indirect). That same level of
demand generates 7.72 FTE jobs in EE (4.59 direct, 3.13 indirect).
These averages are nearly three times the level of job creation in FF,
which averages a total of 2.65 FTE jobs per $1 million demand (0.94
direct, 1.71 indirect). Below, as well as in Table 5, we present the
estimates for individual industries that make up these averages.

3.2. Wind

Wind industry multipliers were calculated using five alternative cost
structures, as presented in Tables 1–3. Despite differences in the
weights and industries used, the estimates are all fairly similar. On
average a $1 million increase in demand for the wind industry
generates a total of 7.52 FTE jobs (4.06 direct plus 3.46 indirect).
Since the I-O model is linear, this is equivalent to a $1 billion increase
in demand resulting in 7520 FTE jobs.

3.3. Solar

The solar industry estimates result from five different sets of cost
assumptions. Here again the range of the employment multipliers is

rather narrow, ranging from a total of 6.56 to 7.60 FTE jobs per $1
million demand, for an average of 7.24 FTE jobs for each $1 million
spent in the solar industry. Of these, 4.26 are direct jobs and 2.98 are
indirect.

3.4. Bioenergy, geothermal, and hydropower

Bioenergy estimates result from two sources with the same cost
structure. The bioenergy employment multiplier averages 7.65 FTE
jobs per $1 million demand, with 5.22 direct and 2.44 indirect.
Geothermal had only one source for its cost structure, and from it we
estimate that 7.40 total FTE jobs are created per $1 million demand
(4.67 direct, 2.73 indirect). Hydropower employment totals 7.53 FTE
jobs per $1 million demand, with 4.55 of those being direct and 2.98
indirect.

Table 5
Employment multipliers for renewable energy.

Direct FTE
Jobs per $1
million

Indirect FTE
Jobs per $1
million

Total FTE
Jobs per $1
million

Wind (a) 3.91 3.53 7.45
Wind (b) 3.91 3.53 7.45
Wind (c) 3.88 3.61 7.48
Wind (d) 4.29 3.28 7.57
Wind (onshore) (e) 4.30 3.37 7.67
Average wind 4.06 3.46 7.52
Solar (a) 4.37 2.83 7.20
Solar (b) 4.31 2.94 7.25
Solar PV (central) (e) 4.16 3.44 7.60
Solar (f) 4.01 2.55 6.56
Solar (g) 4.46 3.12 7.58
Average solar 4.26 2.98 7.24
Bioenergy (a) 5.22 2.44 7.65
Bioenergy (b) 5.22 2.44 7.65
Average bioenergy 5.22 2.44 7.65
Geothermal (b) 4.67 2.73 7.40
Hydro (b) 4.55 2.98 7.53
Average across renewable

technologies
4.50 2.99 7.49

Weatherization (a) 5.14 3.06 8.21
Weatherization (b) 5.14 3.06 8.21
Home weatherization (h) 3.71 3.71 7.41
Commercial retrofits (i) 4.22 3.04 7.26
Average home

weatherization &
commercial retrofits

4.55 3.22 7.77

Industrial EE (b) 3.98 3.43 7.41
Smart Grid (a) 3.66 3.10 6.76
Smart Grid (b) 3.66 3.10 6.76
Average smart grid 3.66 3.10 6.76
Mass Transit & Freight

Rail (a)
6.16 2.77 8.93

Average across energy
efficiency industries

4.59 3.13 7.72

Oil and Gas (a) 0.70 1.51 2.20
Oil and Gas (b) 0.71 1.48 2.19
Average oil and gas 0.70 1.49 2.20
Coal (a) 1.28 1.90 3.17
Coal (b) 1.08 1.94 3.02
Average coal 1.18 1.92 3.10
Average fossil fuels 0.94 1.71 2.65
Average difference

renewable energy - fossil
fuels

+3.56 +1.28 +4.84

Average difference
energy efficiency -
fossil fuels

+3.65 +1.42 +5.07

(a) Garrett-Peltier, 2011; (b) Pollin et al., 2015; (c) Tegen et al., 2013; (d) IRENA, 2012b;
(e) Black & Veatch, 2012; (f) IRENA, 2012a; (g) BNEF-SEA, 2013; (h) DOE, 2013; (i)
Larsen et al. 2012
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3.5. Building weatherization

Table 5 presents estimates for home weatherization based on three
different sources, as well as commercial building retrofits drawn from
one source. Averaging home weatherization and commercial retrofits,
we find the total employment generated by $1 million in demand to be
7.77 FTE jobs (4.55 direct plus 3.22 indirect)

3.6. Industrial EE, smart grid, mass transit & rail

For each $1 million spent in energy efficiency, Industrial EE
supports 7.41 FTE jobs (3.98 direct, 3.43 indirect); Smart Grid, or
electrical grid upgrades along with energy conserving end-use technol-
ogy, supports 6.76 FTE jobs (3.66 direct, 3.10 indirect); and Mass
Transit & Freight Rail creates 8.93 total FTE jobs (6.16 direct, 2.77
indirect).

3.7. Oil and gas

The extraction and production of oil and gas products is one of the
most capital-intensive sectors of the economy. As expected, the
employment multipliers are much lower than for RE or EE. $1 million
demand for oil and gas production results in 2.20 FTE jobs on average
(0.70 direct plus 1.49 indirect).

3.8. Coal

Likewise, coal extraction and processing is a heavily capital-
intensive industry. For each $1 million demand for coal industry
production, 3.10 FTE jobs are supported (1.18 direct plus 1.92
indirect).

3.9. Discussion

3.9.1. Interpreting employment multipliers
As discussed above, the I-O model is a static, linear model with

fixed prices and fixed input and output proportions. I-O tables are
useful for comparative static analysis, which is best suited for shorter
time periods when we would not expect prices or production functions
to change much in response to an increase in demand. Since the I-O
model is a snapshot of the current state of the economy, comparative
static analysis here means estimating the effects of a change in demand
given that current state, and comparing those effects to a different
change in demand given that same state. In this article we compare a
$1 million change in demand for EE, RE, or FF industries, given the
state of the U.S. economy in 2013. The employment multipliers we
estimate are a function of the prices and production functions at that
time. We would expect the multipliers to change over time, as the
prices of inputs change and as labor productivity increases, particularly
in the younger clean energy industries.

The I-O analysis presented here focuses only on employment, and
does not address the broader welfare implications of a transition to a
low-carbon economy, including the effects on personal or national
income, on consumption, or other advantages or disadvantages of a
transition to clean energy. Larger macro models such as CGE or
econometric models could incorporate some of these effects.

Here we also note that the multipliers estimated above do not
include ongoing operations and maintenance of clean energy. These
multipliers would likely be quite different, and we would need to
estimate separate demand vectors from data not presented here. In this
article, we focus instead on the shorter-term employment effects of
scaling back fossil fuel production while increasing clean energy
production. Since clean energy is a relatively young industry with a
lot of potential for expansion, employment in the short-to-medium
term will entail a lot of manufacturing and installation of EERE
technologies. As the clean energy infrastructure becomes more mature,

employment multipliers in EERE will likely fall closer to, or even
possibly below, those of ongoing fossil fuel operations.

The limitations of I-O analysis aside, it is nonetheless a useful
method for quantifying and comparing clean energy to fossil fuels, or in
comparing any two industries, since we are making the comparison at
the same point in time for both. In this case, using 2013 data we have
found that EE and RE industries support nearly three times as many
jobs per given amount of spending as do FF industries. While the level
of the individual multipliers may change slightly over time, the relative
size of the EERE and FF multipliers is telling.

3.9.2. Sensitivity of EERE multipliers to input structure
The multipliers for both the wind and the solar industries vary

minimally using four different cost structures from five different
studies. This might imply that the results are relatively robust to the
choice of demand vector specification. One other method to address the
sensitivity of the results to the choice of specification would be to look
at the underlying multipliers. The EERE employment multipliers
generated using the synthetic industry approach are essentially
weighted averages of the industries comprising each synthetic EERE
industry. Therefore, we could look at the multipliers of the included
industries – those in fabricated metal, construction, electrical equip-
ment, and so on – and see what the range of these underlying
multipliers is. This range would show what the minimum multiplier
would be if our synthetic industry were comprised of 100% of its least
labor-intensive comprising industry, versus the maximum if it were
composed of 100% of the most labor-intensive underlying industry.

So, for example, in some formulations of the wind industry vector,
“computer and electronic equipment,” is included, and this has a total
employment multiplier of 4.74 jobs per $1 million demand, which is
the lowest of all the industries that comprise the synthetic wind
industry. Construction, with a total multiplier of 8.21, has the highest
multiplier of the underlying industries comprising the wind industry.
Thus the total employment multiplier in the wind industry could be no
lower than 4.74 jobs per $1 million demand and no higher than 8.21
using any set of weights for the included industries we could specify.
The median multiplier for industries comprising the wind industry is
7.24. The minimum, median, and maximum values for the underlying
industries comprising the EERE industries are presented in Table 6.

Looking at the results for all the EERE multipliers presented in
Table 5, we see that most are fairly close to the median value of the
underlying multipliers presented in Table 6. In fact, most of the
included industries are manufactured goods with fairly similar multi-
pliers in the I-O tables. Therefore, changing the specification of the
demand vector by changing the weights of the underlying industries
will ultimately have very little effect on the size of the EERE multiplier.
Thus the results we obtained here, using multiple studies and various
cost structures, all come out to be consistent and comparable.

3.2.3 A simple policy simulation: Shifting $1 billion in public
spending from fossil fuels to clean energy

Table 6
Range of incorporated multipliers across all studies - Lowest and highest values
incorporated within each energy industry multiplier.

MIN MEDIAN MAX

Wind 4.74 7.24 8.21
Solar 4.74 7.24 8.21
Bioenergy 3.82 7.24 12.08
Geothermal 5.43 7.14 8.21
Hydro 6.90 7.24 8.21
Home Weatherization 5.14 8.21 8.21
Commercial Retrofits 4.74 7.22 8.21
MT & FR 4.89 8.21 10.56
Industrial EE 7.20 7.24 8.21
Smart Grid 4.74 7.05 8.21
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3.9.2.1. Shifting $1 billion from FF to EE. In fiscal year 2015, the U.S.
federal government gave $3.7 billion in tax preferences to fossil fuel
industries (CBO, 2015). Imagine shifting $1 billion of these tax
preferences for fossil fuels into energy efficiency programs, such as
home weatherization. While it is possible that reducing fossil fuel
subsidies would only reduce industry profits without affecting output
and employment, we can make the assumption here that output and
employment decline in response to a $1 billion decrease, and similarly
that EE expands in response to a $1 billion increase in demand. In this
scenario, employment in the fossil fuel industries would fall by a total
of total of 2650 jobs (940 direct plus 1710 indirect), while employment
in EE industries would increase by a total of 7720 jobs (4590, direct
plus 3130 indirect), for a net increase in employment of 5070 total jobs
economy-wide.

3.9.2.2. Shifting $1 billion from FF to RE. Similarly, if we were to shift
$1 billion out of fossil fuel subsidies and into public spending for RE,
for example through procurement of renewable energy for government
buildings, we can estimate the net employment effect. In this case,
employment in the fossil fuel industries would fall by a total of 2650
jobs (940 direct plus 1710 indirect) while employment in RE and
related industries would increase by 7490 jobs (4500 direct plus 2990
indirect), for a net increase in employment of 4840 total jobs economy-
wide. Table 7 shows the results of both of these policy exercises.

4. Conclusion

In this article I have presented a method to estimate employment
multipliers for industries that are not explicitly identified in input-
output tables, termed “synthetic industries.” Specifically, I have
estimated employment multipliers for clean energy industries includ-
ing wind, solar, bioenergy, geothermal, hydropower, building weath-
erization, mass transit & freight rail, industrial EE, and Smart Grid.
These clean energy industries are not identified as such in national
accounts or in input-output tables, yet the various materials and
services of which these EERE industries are composed do already exist
in the tables. By creating “synthetic industries” we enable policy
evaluation of green versus brown industries, or more precisely, we
are able to estimate the number of jobs created by public or private
spending for clean energy in comparison to spending the same amount
on oil, gas, or coal production.

In order to estimate these employment multipliers, I used data on
the cost structure of each clean energy industry to generate a vector of
demand for the output of that industry. Using survey data, databases,
and other sources of data collected by various agencies and organiza-
tions, I assigned weights to the various industries in the I-O tables that
represent the component costs of the clean energy industries. I also re-
created the vectors from Garrett-Peltier (2011) and Pollin et al. (2015)
in order to provide a comparison with the new estimates provided in
this article and to update these earlier findings with newer data.

We found that EE and RE industries generate nearly three times as
many jobs as FF industries, for the same level of spending. Each $1
million spent on oil, gas, and coal supports an average of 2.65 FTE jobs

economy wide (0.94 jobs directly in those industries, and 1.71 jobs
indirectly created through their supply chains). In comparison, $1
million in RE supports 7.49 FTE jobs (4.50 direct plus 2.99 indirect)
while that same amount in EE supports 7.72 FTE jobs (4.59 direct plus
3.13 indirect). Thus a $1 million shift from fossil fuels to clean energy
generates a net increase of about five jobs. We present a simple policy
scenario in which government subsidies for fossil fuels are reduced by
$1 billion and that funding is invested in procurement of RE or
increasing EE. This $1 billion shift from fossil fuels to clean energy
results in a net increase of about 5000 FTE jobs.

A de-carbonization of the energy sector through reduced reliance on
fossil fuels, increased energy efficiency, and increased use of renew-
ables can be spurred by both fiscal and regulatory policy. Emissions
reductions have become an ever-more pressing goal, and it is of
paramount importance that we understand the economic impacts of
public spending and other public policies concerning the energy sector.
In particular, policy makers need and want to know whether invest-
ments in EE and RE will generate more employment opportunities
than continuing to use energy from fossil fuels. There will certainly be
job losses in fossil fuel industries as that sector contracts, but can more
jobs be created than lost if we shift to more efficient use of energy and
to using lower carbon energy? This is an important question that this
paper has attempted to answer.

There are of course other methods to estimate employment in green
versus brown industries. Extensive surveys of energy firms, or use of
dynamic models such as computable general equilibrium models (e.g.
AlShehabi 2013), are two other approaches. But these are generally
time-consuming and often cumbersome methods. By using the syn-
thetic industry approach presented here, we can avoid lengthy data-
collection or model building exercises. By relying on survey and other
data previously collected, we can create proxies for new industries such
as wind, solar, home weatherization, and so on. This method allows
users to more quickly assess the employment impacts of a change in
energy policy, using national or regional I-O tables from any country,
along with the demand vectors presented in this article.
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