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� Tensor factorization method of classifying cracks easy to understand.
� Higher level of classification accuracy achieved with larger training image sets.
� To ensure accuracy there must be appreciable variation within and across training sets.
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This paper presents tensor factorization as a means of classifying cracks in pavements. Several crack clas-
sification algorithms exist and they are mostly based on other machine learning methods. These may
come with their own problems which may be classification errors and long processing times. Tensors
are multidimensional arrays. The nature of tensors enables the analysis of the images to be carried out
in a 3D space which ensures a more robust and accurate analysis tool. The levels of accuracy obtained
after using the algorithm implies that crack classification based on tensor factorization is one that can
be successfully employed by state agencies nationwide and around the world which use digital image
processing systems as part of their pavement management programs.

Published by Elsevier Ltd.
1. Introduction

Infrastructure systems are necessary for supporting society’s
functioning as well as economic growth. They are capital intensive
assets whose proper functioning is critical to the development of
modern societies worldwide. The assets deteriorate over time
and as such there is the need for maintenance to ensure they func-
tion efficiently during their design life. The most common sign of
deterioration in road pavements is cracking. There are various
types of cracks namely longitudinal, transverse, alligator and block
cracks. Usually, manual surveys are carried out by experienced
inspectors who walk along the roadway and note the various types
of cracks at different sections of the road. This is a very subjective
way of monitoring the condition of the pavement. It is also time
consuming and may also pose serious safety risks for the inspec-
tors. In recent times, automated methods which process pavement
images for condition monitoring have been developed. Images are
taken by cameras attached to specialized vehicles after which
processing algorithms are used to determine the types of cracks
on the pavement. These algorithms are usually based on neural
networks. They are usually associated with problems such as
classification errors and long processing times.
This paper presents the basic concepts of tensor factorization
and also outlines the use of tensor decomposition in pavement
crack classification. The two main types of cracks; longitudinal
and transverse cracks are considered in this work.

The paper has six main parts. The first part is the introduction.
This is followed by the second part which describes previous work
done in the area of pavement crack classification. The third part fo-
cuses on tensors and the basic underlying concepts of tensor fac-
torization. The fourth, fifth and sixth parts are on crack
classification based on tensors, results and conclusion respectively.
2. Previous works in pavement crack classification

The phenomenon of crack formation is very important in trans-
portation since it is the commonest form of pavement deteriora-
tion. These damages cost about $10 billion annually in the US
[9]. This explains why the Federal Government and State Depart-
ments of Transportation (DOTs) nationwide place much emphasis
on monitoring and maintenance of pavements. Since the 1970s,
automated methods for studying cracks have been developed
[9–11] and upgraded because the manual means are subjective,
labor-intensive and time-consuming [14].

In Rababaah’s work [9], the accuracy of three different
classification algorithms were compared. They consisted of two
supervised learning algorithms; Genetic Algorithm (GA) and
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Nomenclature

A 2 RI�J�K 3-dimensional tensor
T normalized test image
Ac

k slice of the outer product of core tensor and loading
matrices in modes 1 and 2

C training set class (transverse or longitudinal)
K number of images in training set

G core array
U, V, and W orthogonal components of decomposition
a scalar
g(k) scalar
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Multi-layer Perceptron (MLP) and one unsupervised learning algo-
rithm called the Self-Organizing Map (SOM). The work was moti-
vated by the fact that existing classification algorithms were
computationally expensive and that they were inefficient in terms
of processing speeds. Alligator, block, transverse and longitudinal
cracks were considered in the work. After preprocessing of images,
two feature representation methods were used before they were
subjected to the classifiers. The methods used were Hough Trans-
form and the Projection-based approach. The best classification
algorithm after the analysis was the MLP using the projection-
based representation with a total accuracy of 98.6%. However, this
approach is still computationally expensive and involves thres-
holding which may not provide accurate results occasionally.

Saar [10] also devised a means of classifying cracks. The method
had an overall classification accuracy of 95%. It was based on a
Neural Network (NN) Approach. Alligator cracks in addition to lon-
gitudinal and transverse cracks were considered in this work. The
training set consisted of 61 images, with 41 images used each for
validation and testing.

Oliveira and Correira [8] also proposed a very impressive sys-
tem for identifying and classifying pavement crack images. 100%
recall and precision values were obtained for the classification
algorithm which made use of Bayesian classification techniques.
The cracks considered were based on the description of cracks in
the Portuguese Distress Catalog. The cracks were divided into three
classes namely; longitudinal, transversal and miscellaneous. Nor-
malization is done after the image is subdivided into pixels of size
65 � 65 in order to reduce the effect that different background illu-
minations may have on the results. The training set images are se-
lected by choosing first, the images obtained after sorting database
images in decreasing order of the longest component length. This is
to ensure that the training images all contain cracks. 2D feature
spaces are created for each image. For classification, the standard
deviations of the row and column coordinates of the detected crack
regions are used. There is a bisectrix which divides the feature
space into two zones. Points which fall very close to the bisectrix
indicate miscellaneous cracks. Points which are closer to the hori-
zontal axis indicate transverse cracks and points closer to the ver-
tical axis indicate longitudinal cracks.
Mode 1

Mode 2

Mode 3

Fig. 1. Typical three-dimensional tensor.
3. Basic concepts in tensor analysis

A tensor is a multiway or multidimensional array [3,6]. This def-
inition suggests that tensors are generalizations of scalars, vectors
and matrices [6]. A vector is a one-dimensional tensor and a matrix
is known as a two-dimensional tensor. A scalar is a zero-dimen-
sional tensor. Higher-order tensors are those that generally have
dimensions or modes greater than 2. The diagram in Fig. 1 shows
a typical three-dimensional tensor.

The indices of a tensor with elements, xijk run from 1 to the capital
letter form which means i ¼ 1;2; . . . I; j ¼ 1;2; . . . ; J and
k ¼ 1;2; . . . ;K. Tensors have subarrays which are similar to columns
and rows in matrices. Three-dimensional tensors have fibers and
slices as examples of subarrays [3]. A slice is a two-dimensional
fragment of a tensor obtained after allowing the tensor to vary in
two modes whilst keeping one mode fixed. There are frontal, hori-
zontal and lateral slices all shown in Fig. 2.

The horizontal slice is obtained by fixing mode i and allowing
the other modes to vary. The lateral slice is obtained by fixing
the tensor in mode j and allowing the others to vary. Frontal slices
are obtained after fixing mode k and allowing modes i and j to vary.
Fibers are also one dimensional fragments obtained when the ten-
sor is allowed to vary in only mode. See Fig. 3. Row fibers are ob-
tained when the tensor is fixed in modes i and k and is allowed
to vary in mode j. Column fibers are obtained from allowing the
tensor to vary in mode i whilst the two other modes are fixed.
The tube fibers are obtained when the tensor is fixed in mode i
and j and made to vary in mode k.
3.1. Matricization and vectorization of tensors

Matricization is the process of converting a tensor into a matrix
for visualizations and computations. It is also known as flattening
or unfolding in some fields. It is the rearrangement of entries in a
tensor [1]. Matricization is carried out in a specific mode and so
a n-mode mode matricization of a tensor will involve aligning all
mode-n fibers as columns of a matrix A(n) in a forward cyclic man-
ner. See Fig. 4 for an illustration.

The 3D tensor above has elements A, B, C, D in the first frontal
slice and elements e, f, g, h are in the second frontal slice.

Mode� 1 matricization ¼ Að1Þ ¼
A B e f

C D g h

� �
ð1Þ
Mode� 2 matricization ¼ Að2Þ ¼
A C e g

B D f h

� �
ð2Þ
Mode� 3 matricization ¼ Að3Þ ¼
A B C D

e f g h

� �
ð3Þ

Vectorization is also done by arranging successive columns of a
matricized tensor below each other to form a vector. For the 3D

tensor in Fig. 4, the vectorized version, a ¼

A
B
:
h

2
664

3
775



Horizontal slice: x i:: Lateral Slice: x: j: Frontal Slice: x::k

Fig. 2. 3D tensor slices.

Column fibers: x :jk Row fibers: x i:k Tube fibers: xij

Fig. 3. 3D tensor fibers.
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3.2. Basic operations in tensors

3.2.1. Addition of tensors
Similar to matrices, tensors of identical dimensions can be

added. Addition of two tensors A 2 RI�J�K and B 2 RI�J�K can be
expressed in element wise form as:

aijk þ bijk ¼ cijk ð4Þ

It involves addition of corresponding elements in the tensors.

3.2.2. Multiplication of tensors
Scalar multiplication of a tensor is such that every individual

element of the tensor is multiplied by the scalar shown below as:

aA ¼ aaijk for A 2 RI�J�K ð5Þ
3.2.3. N-mode multiplication
The process of multiplying a tensor by a matrix is carried out in

a specific mode. Mode-n multiplication of a tensor A 2 RI1�I2 ...IN by
a matrix U 2 RJ�In denoted by A�nU is of size
I1 � I2 . . . Iðn�1Þ � J � Iðnþ1Þ . . . IN: In order to make understanding of
the n-mode multiplication easier, it is usually seen as a multiplica-
tion of the matricized form of the tensor in the specified mode
being premultiplied by the matrix. The mathematical representa-
tion is A�nU ¼ U �An:

3.2.4. Inner product
The inner product of two tensors A 2 RI�J�K and B 2 RI�J�K is

denoted by
BA

DC

e

g

f

h

Fig. 4. Illustration of matricization.
A;B ¼
X
i;j;k

ai;j;kbi;j;k: ð6Þ

It involves the multiplication of corresponding elements and
the subsequent summing of the products to produce a scalar. There
are other tensor products namely Khatri-Rao product, Hadamard
product and so on.

3.3. Tensor decomposition

Tensors are decomposed for analysis similar to matrix decom-
position [13]. The Singular Value Decomposition (SVD) used in sec-
ond-order tensors (matrices) is extended to n-th order arrays. N-th
order variations of the matrix SVD results in the Higher-order Sin-
gular Value Decomposition (HOSVD) as well as the two main ten-
sor decomposition methods; Canonical Decomposition Parallel
Factorization (CANDECOMP/PARAFAC/CP) and Tucker Decomposi-
tion. The HOSVD which was used in the analysis is discussed fur-
ther in this paper.

3.3.1. Higher order singular value decomposition (HOSVD)
Extension of the SVD principles in tensors leads to a method

known as the HOSVD [1,4]. It is interesting to note that the SVD ex-
plained above can be written in a tensor-like mode-1 and mode-2
multiplication. For a matrix A, with U and V orthogonal compo-
nents, it can be written as

A ¼ R�1U�2V ð7Þ

where �1 and �2 represent mode-1 multiplication and mode-2
multiplication respectively.

For a 3rd-order tensor A 2 RI�J�K its higher-order decomposi-
tion can be written as:

A ¼ G�1U�2V�3W ð8Þ

where U, V and W are the orthogonal singular vectors and G is the
array with the singular values. Variation of the above representa-
tion results in the CP and Tucker decompositions. The elements of
Fig. 5. Longitudinal and transverse training tensors.
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Fig. 6. A flow-chart of the classification process.

Fig. 7. Longitudinal and transverse images from dataset [12].

Table 1
Classification using training tensors of 10 images in each class.

Image Longitudinal set Transverse set

1l 9.043 9.0601
2l 9.0516 9.0608
3l 9.0572 9.0701
4l 9.0625 9.0746
5l 9.0515 9.0594
6l 9.0648 9.0721
7l 9.0641 9.0725
8l 9.0623 9.0678
9l 9.043 9.0601

10l 9.0525 9.0627
13l 9.0572 9.0701
1t 9.0601 9.0503
2t 9.0663 9.0596
3t 9.0718 9.0517
4t 9.0582 9.0522
5t 9.0677 9.0572
6t 9.0734 9.0623
7t 9.0742 9.0692
8t 9.0718 9.0517
9t 9.0601 9.0503

10t 9.0663 9.0596
11t 9.0658 9.0611
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G; are ordered such that the most of the energy is concentrated in
the vicinity of (1,1,1) [12].
4. Crack classification using tensors

The analysis was carried out in MATLAB using the MATLAB Ten-
sor Toolbox 2.5. There are four major steps involved in the analysis.
They are:

� Preprocessing and formation of Training Tensors;
� Preprocessing of test data;
� Higher Order Singular Value Decomposition of Training Tensor;

and
� Classification.

Preprocessing involves conversion of the images from RGB into
grayscale format. The images are then converted from 3501� 2550
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into 100� 100 size images. The training set of images are then di-
vided into two main groups; transverse and longitudinal cracks.
Images in each class or group are stacked one after the other to
form the training tensor sets. For the Tensor Toolbox algorithms
to function, the 3D arrays obtained after this step must be con-
verted into tensor format in the MATLAB environment. The test im-
age is also preprocessed. The training tensor is then decomposed
and the test image is classified using the minimization function
below.

XK

k¼1

kT � gðkÞAc
kk ð9Þ

where T is the normalized test image; Ac
k is the slice of the outer

product of core tensor and loading matrices in modes 1 and 2; c
is the training set class (transverse and longitudinal); k is the num-
ber of images in training set; and

gðkÞ ¼ a scalar ð10Þ

As a result, V will belong to the class c, for which the above func-
tion gives a smaller value since that will suggest a higher degree of
similarity between V and the images in the training class c. Fig. 5
illustrates the concept of the formation of training tensors. See also
Fig. 6 for an illustration of the classification process.

5. Data and results

The pavement images used for the analysis were part of the
dataset from Fereidoon Moghadas Nejad and Hamzeh Zakeri [7].
The images were acquired using a pavement image acquisition sys-
tem (PIAS). 26 images from the larger dataset were used in the
analysis. The larger dataset had 1830 images divided into two main
groups; with defects and without defects. Fig. 7 shows images from
the dataset. They were originally of size 3501� 2550 .

Using longitudinal and transverse training sets of 10 images
each, all the images were classified correctly. Table 1 shows the re-
sults obtained with a training set of 10 images.

The images were identified with numbers. The letters l and t
after the numbers indicate whether the image contained longitudi-
nal or transverse cracks respectively.

However, the level of accuracy of the algorithm changed with
changes in the number of images in the training sets. It is evident
that the accuracy does not depend on only the number of images in
the training set but also the variability within and across classes.
See Fig. 8.
From the graph, the level of accuracy for 3 and 5 images in the
training set is similar which implies that the classification accuracy
does not only depend on the number of training set images but also
the variation within the class. The size of the images also affected
the processing time for the algorithm as shown in Fig. 9.

6. Conclusion

In summary, pavement crack classification based on tensor
analysis is a useful tool that can be employed in the digital image
processing systems of DOTs. Due to its relatively easy and intuitive
manner of training, DOTs can train the algorithm to classify the
road defects based on their standards and definitions. Several runs
of the algorithm proved that a higher level of accuracy was
achieved when the training tensors were built with larger datasets,
which means more images within the same class. However, it is re-
quired that the larger datasets exhibit variation within and across
the various classes in order to ensure accurate results. A few of the
existing crack classification methods were reviewed and compared
with the tensor based method. The tensor decomposition methods
of classifying cracks were much easier to understand and imple-
ment as compared to other methods which required much more
complex input and were difficult to understand the underlying
concepts of the approach.

It will be very useful to employ tensor classification to other
forms of pavement defects. Parallel processing can also be incorpo-
rated to speed up the processing time of algorithm.
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