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a b s t r a c t

Forward Reservoir Simulation (FRS) is a challenging process that models fluid flow and mass transfer in
porousmedia to draw conclusions about the behavior of certain flowvariables andwell responses. Besides
the operational cost associated with matrix assembly, FRS repeatedly solves huge and computationally
expensive sparse, ill-conditioned and unsymmetrical linear system. Moreover, as the computation for
practical reservoir dimensions lasts for long times, speeding up the process by taking advantage of parallel
platforms is indispensable. By considering the state of art advances in massively parallel computing and
the accompanying parallel architecture, this work aims primarily at developing a CUDA-based parallel
simulator for oil reservoir. In addition to the initial reported 33 times speed gain compared to the
serial version, running experiments showed that BiCGSTAB is a stable and fast solver which could be
incorporated in such simulations instead of the more expensive, storage demanding and usually utilized
GMRES.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

From food production, power generation to transportation sys-
tems and almost every other aspect of daily life, ourmodern society
continues to ask formore andmore energywith oil being the num-
ber one resource that addresses such heavily increasing demands.
Despite the huge technological advances in oil industry, recover-
ing remaining oil is limited by our knowledge and understanding
of the oil reservoir [1]. Reservoir simulation is a challengingmathe-
matical process that models fluid flow andmass transfer in porous
media and aims at providing vital information about reservoir
structure, production rate, cost management, optimal well place-
ment and many others. The simulation process requires large
amount of memory storage and computations. Moreover, as the
computation for practical reservoir dimensions may last for long
times, speeding up the process by taking advantage of parallel
computing is indispensable.

Just like many other complex systems in nature, the reser-
voir behavior could be modeled and described using set of partial
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differential equations (PDEs) that mimics how the entire system
evolves in time, space or both. For many practical scenarios, ob-
taining a closed form analytical solution for the governing (PDEs)
is infeasible. For that reason various discretization schemes are
employed to approximate the solution while maintaining an ac-
cepted level of stability and accuracy. Such approximations lead
to a large sparse system of algebraic equations that needs further
to be solved. Regardless of the discretization scheme, mesh type
or the solution approach, the Forward Reservoir Model (FRS) will
eventually infer reservoir structure and configurations through the
estimation of various essential spatial properties. Such estimation
is later utilized to either quantify the production rate in the devel-
opment of new fields or to instantiate another process, namely, the
inverse model or history matching.

This paper is organized as follows: Section 2 starts by describing
the forward reservoir simulation process and its associated
computationalmodel. Before presenting various considerations for
the parallel implementation in Section 2.3, and because it accounts
for more than 67% of the computational complexity, algebraic
linear solvers are reviewed in Section 2.2 and criteria for selecting
a solver that suites FRS was established and later tested. After that,
Section 2.4 summarizes various aspects of many-core machines
and CUDA programming model. Section 3 describes in detail the
methodology while Section 4 discusses the findings and provides
conclusions on the obtained results.

http://dx.doi.org/10.1016/j.cpc.2016.04.010
0010-4655/© 2016 Elsevier B.V. All rights reserved.
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2. Background

2.1. Forward Reservoir Model

The implemented (FRS) models a 3D flow process of two
immiscible phases (water, oil) and accounts for various physical
properties in the flowing medium like permeability, porosity, oil
pressure, water saturation as well as the interacting forces such
as gravity and capillary. Permeability is the capacity of the rock
to transmit fluid through its connected pores when the same
fluid fills all the interconnected pores [2]. A porous medium is a
solid containing void spaces (pores), connected or unconnected,
dispersed within it in either a regular or random manner. And
porosity is the ratio of the volume of the pores to the total bulk
volume of the media [3]. As will be detailed later, our developed
simulator will have isotropic permeability distribution, supports
heterogeneous geometry,1 handles different boundary conditions
and takes into account various well constrains.

In the analysis stage, themass balance equation for every phase
is constructed and the associated velocities are expressed using
Darcy’s law. Mathematically, the mass balance equation could be
derived as:
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and Darcy Law is given by:
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where, the subscript f ϵ[oil (o) , water (w)], u⃗f is velocity vector,
ρf the density, qwell

f the flow rate, Vb is the bulk volume, φ the
porosity of the medium, and Sf is phase saturation. k represents
the absolute permeability tensor of the medium, krf is the relative
permeability of phase f , µf is the viscosity of phase f , u⃗f is the
velocity of phase f , p the applied pressure drop, Z is the depth of
the reservoir and γ is the specific gravity of the fluid.

Expanding Eq. (2.1) using suitable flow units, and after
substituting the velocity from Eq. (2.2) we obtain the following
equations for each phase,
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Twomore equations are then needed to close the system. In the
two-phase system considered in this work, we require that:

pc = po − pw, (2.5)
So + Sw = 1, (2.6)

where, B is the formation volume factor,αc andβc are constants, kro
and krw are the relative permeability for oil andwater respectively.
Finally pc is the capillary pressure.

1 Those are properties of the porous media; Isotropic means the permeability is
constant in all directions, i.e. it does not exhibit directional bias. Heterogeneous:
porosity is changing with location.

Fig. 1. General description for the forward reservoir simulation model.

Fig. 2. Sample snapshot of the assembled linear system for FSR, (J, I and H): is the
maximum number of steps in the z, x and y directions, respectively.

Natural grid indexing was utilized and the above equations
were discretized using the finite volume method [4] on a
structured grid. After the discretization step, the resulting system
of nonlinear algebraic equations for each phase is then written in
terms of its corresponding residual equation Ro and Rw . System
linearization is achieved by applying Newton Raphson Method.
The method repeatedly refines a nearby approximation after
solving a system of linear equations with their coefficient matrix
represented by the Jacobian of the Residuals. The Jacobian is
obtained for each phase by deriving the residual equation with
respect to both Po and Sw at each grid point and all its neighbors.
Fig. 1 shows a general description for the FRS process.Without loss
of generality, Fig. 2 shows how the final assembled system for a
sample 3D grid looks like. For more details on the mathematical
formulation please see [5].

Fig. 3 presents the computational aspect of the simulator. The
forwardmodel consists of threemain iterations, namely L1, L2 and
L3 as well as a fourth optional one L4. They are detailed as follows:

• The outer most (Loop L1): is the temporal loop which repeats
the whole simulation for different time steps and usually
measured in days.

• The middle iteration (Loop L2): is Newton iteration that
achieves the linearization. During this iteration the resulted
sparse linear system of the form Ax = b is solved. Solving a
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Fig. 3. General computational scheme for the Forward Oil-Black model: When
assembling the linear system. All grid points are visited. Newton iteration
repeatedly solves the system of linear equations formed in the grid iteration.

linear system accounts for about 67% of the total simulation
time.

• The most inner one (Loop L3): is the spatial loop that visits
all system grid cubes and form the corresponding nonlinear
system to be later linearized, solved and refined during the
middle iteration (L2).

• Optional (Loop L4): this loop is available if iterativemethods are
used to solve the linear system.

For a three-dimensional problem and two simulated phases
discretized using finite volume method, it is clear that the
maximum number of nonzero elements at each row is 14. Let N
be the total number of grid cubes, then for a two-phase system,
the size of the Jacobian matrix is (2N × 2N), and the total number
of nonzero elements is at most (14 × 2N). As a result, the fraction
of nonzero elements in the system is at most

14 × 2N
2N × 2N

=
7
N

.

It is obvious that special care should be taken when selecting a
suitable solver to accompany FRS implementation, especially for
practical dimensions (N = 106), as most of the operations on the
zero elements are not necessary and should be avoided to reduce
the computational complexity. Not only is the resulting Jacobian
matrix is sparse, but also it is unsymmetrical, ill-conditioned and
has a special Hepta-diagonal structure. This also influences the se-
lection or implementation of any linear solver. To reduce storage
requirements, sparse matrix representations have evolved to ef-
ficiently identify, operate on, and manipulate all nonzero matrix
elements. As opposed to dense matrices, a sparse matrix is a ma-
trix in which most of the elements are zero. The reader is referred
to [6–11] for more in depth review of sparse matrices on CPU,
Multicore and Many-Core devices, their representations and com-
parisons, [12,13] for studies dedicated to diagonal matrices, and
[11,14–16] for blocking restructuring techniques.

2.2. Linear solvers review

Although a clear boundary between the two famous classifica-
tions of Linear Solvers is very blur as indicated by [17] and since
they are context specific, one can still utilize the classic (direct,

iterative) taxonomy and its subcategories to provide better ratio-
nalization when picking up the right solver for any application of
interest.

If the coefficient matrix (A) is non-degenerate, non-singular,
direct solvers in the absence of rounding errors, offer the exact
solution in finite steps with robust and predictable behavior
without putting any constrains on the type of A. On the other
hand, as the problem size gets bigger, direct solvers start exhibiting
memory problems given their demand for long recurrence.
Moreover, and because of the fill in problem, data structure used
to store the original sparse coefficients is continuously altered and
never preserved as lot of previously zero entries become non zero
as the factorization proceeds [18,19].

Over the past 30 years, sparse direct solvers continued to
develop and various strategies were introduced to guaranteemore
stable LU decomposition with minimal fill-in as in that preserves
sparsity [20]. Despite all of the attempts, and because of large
storage demand and processing requirements not tomention their
inherent sequential nature, some authors believe that the use
of direct methods in practice is still limited to 2D mathematical
modeling [21]. On the other hand, and because of direct methods’
superior robustness and because computers are getting faster,
others [17] believemany problemswill be solved bymethods from
both approaches.

The most famous direct approach is Gaussian elimination.
In its general form, the method decomposes matrix (A) into
both lower and upper (LU) triangular forms. To solve a given
linear system, forward elimination is performed first before back
substitution takes place. With special focus on the sparse case,
Scott in [21] considered many numerical examples and reviewed
frontal and multifrontal methods that are derived by combining
Gauss elimination and finite element approaches. Such methods
are characterized by reducing storage and processing demands by
interleaving matrix assembly with the elimination steps.

Motivated by Strassen’s algorithm [22] that uses recursion
to speed up matrix multiplication, not to mention recursion
highlighted success in computational problems when applied to
dense matrices, Dongarra and others [23] attempted a recursive
approach for LU factorization of sparse matrices. Although, they
reported efficient storage and speedup compared to multifrontal
methods, recursion suffers from substantial drawbacks [24]
that limits its scalability and promised performance when
implemented on massively parallel machines. First although
recursion leads a very concise and readable code, it is sequential
in nature as it is executed in memory stack that forces Last In First
Out (LIFO) sequence of function calls. Second, recursion demands
long recurrences to be computed which in turn require excessive
memory storage.

On the other hand, and although they, might be susceptible to
divergence issues and compromised accuracy, iterative methods
are highly favored in the solution of large sparse systems. First, they
preserve the sparsity pattern as they do not attempt modifying
the coefficient matrix. Second and most important, beside vector
updates, the essential operation in almost all iterative solvers
is matrix vector multiplication [18] that is characterized by its
inherent parallelism. Moreover, and although iterative approaches
are problem specific, it has been shown that the convergence could
be enhanced by the use of suitable preconditioners.

Starting with a guess of the unknown vector, and if the solution
exists, iterative methods continue to refine the initial solution
according to a certain criteria until converging to the desired
accuracy. The overall idea lies behind replacing the system of
linear equations by some nearby system which is easily solved
[19,25]. Iterative solvers could be further classified into two main
groups: stationary methods like Jacobi, Gauss Seidel, Successive
over Relaxation, and non-stationary like Krylov subspace methods
[18,26,27].
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By definition, the Krylov subspace generated by the coefficient
matrix A and the accompanying residual: r0 = b − Ax0 is denoted
by: K k (A; r0), with k indicating the iteration and defined as:

K k (A; r0) ∈ span r0, A r0, A2r0, . . . , Ak−1r0, Akr0.

According to theway the vector of unknowns (x) is chosen from
the constructed subspace that contains the successive approximate
solutions, Krylov methods are further classified into different
categories as per the following approaches: [19]

1. The Ritz–Galerkin approach: constructs xk for such that
the residual is orthogonal to the current subspace: b −

Axk⊥K k(A; r0). This leads to Conjugate Gradients, The Lanczos
method, FOM, GENCG methods.

2. The minimum norm residual approach: identifies xk for
which the Euclidean norm ∥b − Axk∥2 isminimal overK k(A; r0),
then we have: GMRES [28], MINRES, ORTHODIR.

3. The Petrov–Galerkin approach: xk is found so that the residual
b − Axk is orthogonal to some other suitable k-dimensional
subspace. This leads to BiCG [29] and QMR [30].

4. The minimum norm error approach: Determine xk in
ATK k(AT

; r0) for which the Euclidean norm ∥xk − x∥2 is
minimal. This leads to SYMMLQ and GMERR.

5. Hybrid Approaches.
a. CGS, Bi-CGSTAB [31].
b. Bi-CGSTAB(L), TFQMR, FGMRES, and GMRESR.

For extensive review of direct solvers and various implementation
variations, one might consider [26,32–34]. A comprehensive
survey for preconditioning techniques is presented in [35]. For a
complete survey on iterative solution methods, please check [17].
For a very quick algorithmic treatment and comparison [26]. The
books by [7,19] presents a comprehensive treatment of the subject
with a focus on the theory and finally, [36] describes various
aspects of the parallel implementation of iterative solvers.

The finite volume discretization of flow equations that gov-
erns the behavior of the forward modeling of the two-phase
oil–water reservoir will eventually yield a sparse system hav-
ing ill-conditioned, unsymmetrical coefficient matrix with Hepta-
diagonal profile and 2 × 2 block representing each entry. As
mentioned before and despite their tremendous flavors and the
dozens of available implementations nicely summarized in [37],
picking up a universal and efficient parallel sparse linear solver is
very challenging as many mutually interacting factors stand in the
way. For instance, the coefficientmatrix (A) of ourmodeled FRS has
certain properties that put further restrictions on any solver selec-
tion. First, because of its very large dimensions and the resulting
sparsity pattern, direct methods will be excluded due to their re-
ported memory demands. Moreover, as (A) is ill-conditioned, sta-
tionary iterative methods will not be considered because of issues
related to convergence. Finally, since (A) is unsymmetrical, some
Krylov based methods dedicated for symmetrical systems will not
be taken into account. In addition to the previous constrains and
as the intended parallel implementation will eventually serve in
either reducing the overall execution time or enabling larger prob-
lems to be handled with the same sequential time, the selected
solver should have high degree of data independency regardless
of the amount of work involved. Furthermore, the selected algo-
rithms should be in harmony with the target parallel architecture,
the NVidia’s GPU, as the later imposes additional constrains. As a
result and before implementing the parallel version of FRS, com-
prehensive experiments on sample matrices extracted from our
sequential FRS implementation were conducted using the parallel
CUSP library [38]. The goal was to examine how the parallel execu-
tion time of different solvers is affected by different sparse storage
mechanisms and to empirically select the one that suites FRS ap-
plication the most.

2.3. Parallel model for FRS

Just as various complex algorithms and software modeling
techniques have emerged as a necessity for developing huge
sequential applications, large scalemassively parallel programs are
in more demand for either making use of such well-established
techniques or even developing new aiding tools. This could be
attributed to the observed fact that the life cycle of a parallel
program is very long, error prone, complex and requires special
attention to the underlying hardware resources [39].

As mentioned before, the goal of parallel programming is to
provide tools and techniques for either solving big problems faster
or to run larger instances of the given problem for the same time
interval thatwas used to execute their serial counterpart. Exposing
application concurrency refers to the art of breaking down the
main problem into independent logical tasks that could be later
executed in parallel after mapping them to corresponding physical
processing elements. It is then no wonder that restructuring the
problem to exploit any available concurrency is indeed the first
mandatory step before implementing any serial algorithm using
a suitable parallel programming environment. The process for
finding concurrency starts by a decomposition step performed on
program data and the associated tasks. It is followed by an analysis
step where the decomposed parts are grouped, ordered, or share
their own data. Although exposing program concurrency may be
achieved by developing and analyzing the dependency graph that
in turn may be constructed in many ways [40], such methods
are suited to express concurrency of computationally expensive
algorithms or small scale systems. As the reservoir simulator
application is a little bit more complicated, we tend to utilize more
elegant methods from the software engineering general-purpose
UML modeling [41,42]. UML provides standard graphs to visualize
the design of large scale systems and their associated relations.
Throughout the FRS parallel implementation process, several
related and complementary diagrams that describe the whole
system from various design viewpoints have been constructed
to eventually aid in understanding and analyzing the parallel
program.

While theActivityDiagram represents the behavioral part of the
system, Deployment Diagram, also called Topology or Collabora-
tion Diagram, shows the structural aspect and demonstrates how
software and hardware work together [43]. The Deployment Di-
agram is usually the first recommended step in the modeling of
traditional large scale parallel applications [39,44]. The Activity Di-
agram shows the execution flow of the processes and what ac-
tions are performed to achieve an ultimate goal. In the context
of parallel application modeling, this diagram provides means of
representing communication, synchronization and computational
operations [39,42]. Sequence Diagram as well as Communication
or Collaboration Diagram, are also utilized to add another per-
spective to the behavioral description of the system. While the Se-
quence Diagram depicts dynamic system elements as they interact
overtime, Collaboration Diagram also shows how system compo-
nents are spatially related [45].

2.4. Many-core machines and the CUDA programming model

Many-core machines have emerged naturally as an answer to
the continuous demand and need for more performance. They
have been developed by considering the tricks and limitations
that have been learnt over the years of continuous improvement
on the design of both single and multicore systems. In addition
to exploiting all possible optimizations to their limits, many-core
machines came to existence after realizing that Instruction Level
Parallelism (ILP) techniques could only deliver constant factors
of speedup [46]. Moreover, it has been firmly realized that clock
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speed could not be increased anymore without melting the chip.
As a result, the design consideration for many-core systems was
centered around optimizing the architecture for power rather than
performance [47]. On NVidia’s GPUs for instance, teraflop perfor-
mance, or even exaflop in the near future, is achieved via hun-
dreds of thousands cooperating threads performing the same task
simultaneously to be later executed on simple cores operating
at MHz clock. Unlike the previous trend in manufacturing high
performance computing machines, designing dedicated through-
put oriented devices rather than utilizing general purpose latency
oriented ones had enabled smarter utilization of Moor’s observa-
tion [48]. Doubling the number of transistors every eighteenmonth
on a chip is nowused to create eithermany-core processors, or sin-
gle chips having multiple processor cores [46,49,50].

The product line at NVidia is continuously introducing new
generations of high performance power efficient hardware.
Besides the offered extreme computing capabilities, the new
Kepler architecture [51] has introducedmore features that enables
increased GPU utilization and simplify parallel program design.
For example, by allowing kernels to have full control on spawning
other kernels, dynamic parallelism gives more flexibility for
parallelizing nested loop iterations and performing recursion.
Moreover, and to better utilize the system’s multicores, Hyper-Q
allows multiple simultaneous connection lines from those cores
to launch work on the GPU, thus supporting computation and
communication overlapping optimization.

With a support to 2688 CUDA Cores, 6 GB memory with
250 GB/s bandwidth, the Tesla K20 GPU is capable of delivering
1.32 TF and 3.95 TF double and single precision peak performance,
respectively. The accelerator that is made of more than 7.1 Billion
transistors is shipped with 15 streaming multiprocessors (SMX)
and 1.5 MB L2 cache. Each SMX supports a maximum of 2048
threads, 16 thread blocks, 64 K 32-bit registers, up to 48 K shared
memory. Each thread block can have a maximum of 1024 threads,
while every thread can have a maximum of 255 registers. The
computing Grid can support a maximum of 232

− 1 threads. Four
warps each containing 32 threads can be issued and executed
concurrently. Threads within a warp can share data through the
new implemented Shuffle instruction and therefore reduce the
amount of shared memory needed per thread block.

The NVidia GPU memory (Fig. 4) is organized at different levels
each of which varies in speed, usage, size, and scope [51]. Data
stored in global memory are allocated and destroyed from the host
and are visible by all threads in the application. With a similar
scope and certain considerations, the read only 512 kB Constant
Memory provide a relatively faster access speed than the global
memory by reducing bandwidth usage through caching constant
values and broadcasting them to all threads in a warp. At the block
level and being visible to all threads in the block, the configurable
shared memory and in the absence of bank conflicts, provide
even much faster access speed and allow data sharing and reuse
among threads within the block. Finally, and with a lifetime of the
thread that created it, registers are considered the fastest memory
elements requiring zero clock cycle per instruction in the absence
data dependency.

For more detailed information about the architecture, the
programming model and suggested optimizations for K20x device
please refer to [51–55] for CUDA programming guide.

It is always intimidating to utilize more resources that grant
higher throughput like registers, but unfortunately that comes
with the price of limiting concurrency. After all, one key aspect
through which GPU devices achieve their Tera-flop performance
is through latency hiding. When a given warp stalls because
of unavailable data and while these data being fetched, other
warps are switched and scheduled for execution. Similarly, when
a block stalls for any reason, other blocks are switched in by the

Fig. 4. Memory hierarchy in NVidia GPU.

scheduler. As a result, a smart selection for the number of blocks
to be executed as well as the number of threads used by each
block is mandatory for any successful exploitation of GPU device
capabilities for achieving higher performance.

Each streamingmultiprocessor (SMX) inKeplerGK110 supports
a maximum of 65536 registers, 16 blocks, 2048 threads and 64
warps. Forcing CUDA kernel to use registers for variables may
be achieved by explicitly using scalar variables and via loop
unrolling. However and as mentioned above, using more registers
will hinder performance as it limits the number of lunched blocks.
For example, assume we are using 256 threads each uses 100 32-
bit registers (50 double private variables). Then each block will
demand 256 × 100 = 25600 registers. As a result, the maximum
number of blocks that can be launched is calculated by dividing
the maximum number of registers supported by each SMX over
the utilized registers or (65536/25600) × 2 blocks. This means
utilizing only 12.5% of themaximum blocks allowed per SMX! As a
result, a good optimization to be followed lies in decreasing the use
of registers as possible and shifting variables tomake use of shared
memory.

In a similar way and although its latency is almost 100× lower
than uncashed globalmemory latency, the exorbitant use of shared
memory may also limit the pledged device performance. If 48 kB
of shared memory is to be used among 8 blocks, then each block
should utilize a maximum of 6 kB shared memory! Moreover,
to prompt for higher bandwidth utilization, shared memory is
distributed into concurrently accessed, equally sized 32 4-Bytes
logical banks each with bandwidth of 64 bits per clock cycle.
Memory bank conflict degrades shared memory performance by
serializing bank accesses and occurs when multiple simultaneous
requests by different threads aremade to the samebank. Therefore,
whenever shared memory is utilized, the associated variables
should be placed under scrutiny to avoid possible bank conflicts.
To enable better optimization when double precision variables are
used, device bank size should be configured to be 8 bytes instead
of the default on.

NVIDIA provides a CUDA Sparse Matrix library (cuSPARSE) for
manipulating and operating on sparse matrices [38]. The library
provides a collection of basic linear algebra functions that are called
from C++ programs. They reported around 8× faster performance
gain over their direct competitor Math Kernel Library (MKL)
offered by Intel [56]. The library has been used extensively by the
researchers as it provides fast and reliable performance with ease
of programming and development effort. For example [57] utilize
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Table 1
Condition number for various samples of the reservoir simulator.

Matrix size 120,000 × 120,000 Average number of iterations required for convergence with relative tolerance of (1.0e−6)
Sample time Condition number GMRES(5) GMRES(15) GMRES(50) GMRES(1000) BiCGSTAB

0 1.279E+05 45 39 38 36 26
31 1.112E+06 377 204 155 140 95
62 1.873E+06 484 231 189 169 115
93 3.548E+06 751 434 296 236 164

124 4.708E+06 945 397 378 288 205

it to implement (ILU) and Cholesky factorization for iteratively
solving linear systems, while [58] used it to accelerate the
modeling of deformation of soft tissue using (FEM). [59] made
use of the library to boost image segmentation implementation;
and [60] apply it for image reconstruction.

Similar to cuSPARSE, the CUSP library [61] provides a wrap-
per for many functions in cuSPARSE. It was designed solely to
take advantage of the intensive computational aspect of the mas-
sively parallel NVidia’s GPUs. It is released under the Apache 2.0
open source license. The CUSP library is an inevitable starting point
for CUDA developers writing parallel scientific computing applica-
tions. The library not only provides abstraction and easy to use call
to cuSPARSE and cuBLAS [62] routines, but also reports good per-
formance. Moreover, the developed applications can be smoothly
integrated with THRUST library [63] to enable fast prototyping.
CUSP could be used directly by including the associated interface
files, and provides dozens of graph algorithms and sparse linear al-
gebra routines easily deployed with many available sparse storage
schemes and preconditioners.

Simulations that target Oil Reservoir, and just like other scien-
tific applications, have continuously and increasingly attempted
to speed up their computations by taking advantage of the ex-
cessive throughput offered by the above state of the art mas-
sively parallel many-core GPUs. For example, [64–66] presented
a parallel CUDA implementation of related preconditioned linear
solver, and reported promising speedup after incorporating it with
some reservoir simulations. Verified with some predefined collec-
tion of preconditioning techniques, Sudan et al. introduced a flex-
ible version of the famous GMRES solver and implemented it on
early versions of many-core GPUs using CUDA [67]. They experi-
mented various reordering mechanisms to reduce memory access
latency and hence improve the overall execution time. They finally
validated the usefulness of the suggested implementation named
FGMRES across different practical reservoir simulations. Taking it
from there, the authors of [68] have further developed a hybrid
novel solver that exploits both data and functional parallelism to
orchestrate using some heuristics operations between multicore
CPU and many-core GPU. The authors reported what they consid-
ered a significant speedup after performing various experiments
on complex reservoirs. In their work, [69] attempted to quantify
the impact of using the emerging GPUs on reservoir simulation by
parameterizing bothmodel size and the number of GPUs as well as
utilizing a highly parallel simple linear equation solvers. Their con-
clusion on the conditionally attained speed up was in accordance
with the above studies. They also introduced a development of a
special mixed precision solver that provide good performance on
four GPU accelerators.

Authors of this paper believe that the promising work of [68]
could be further enhanced by utilizing other optimizations that
have been made available in current state of art GPU architectures
with higher computing capabilities [52,70]. These include: (1) the
cautious use of CUDA Pinned memory, page-locked, to exploit
Direct Memory Access (DMA) on GPU and enable asynchronous
data transfer. This will not only allow better utilization of the
PCI-E bus, but also amortize the natural high latency of memory
transactions by overlapping computation and communication. (2)

Employing some CUDA-Aware MPI implementations [71,72], to
directly pass GPU buffers to MPI through the newly introduced
Unified Virtual Addressing (UVA) feature. This would result in
yet faster code as the underlying transactions could be further
pipelined and GPUDirect technologies would be transparently
utilized [73]. Also, from the above discussion and despite all
the reported promising speed up that relies heavily on the
utilized technology, the development process of any parallel
reservoir simulator, including the one presented in this paper,
is both context and problem dependent because of the many
underlying configuration parameters. Hens, we believe that a
detailed comparative review for all published and verified parallel
reservoir simulators, would be very useful to standardize such a
process and to help guide industry to better utilize such cutting
edge technologies.

3. Methods

Five large samples at different time iterations of the forward
reservoir simulator have been extracted and their condition
number was measured, Table 1. Each sample represents a 3-D
structured grid with (2 × 2) block entries distributed in a Hepta-
diagonal fashion as resulted from finite volume discretization.
Sample_0 is assembled at the first time iteration of the simulator,
and its coefficients are a combination of various reservoir
parameters (permeability, compressibility. . . ), oil pressure values
Po andwater saturation levels Sw . When simulation time proceeds,
elements composing the coefficient matrix changes as both Po and
Sw get updated. Tests were performed on a node in an HPC cluster
offered by the Information Technology Center at KFUPM featuring
a Xeon E5-2680 10-Core, 2.8 GHz (Dual-processor) and Tesla k20x
GPU [74].
Experiment 1

The first experiment examines how the parallel execution
time of different solvers is behaving with different sparse storage
mechanisms. Four different sparse storage schemes were consid-
ered [26,75]: coordinate storage scheme (COO), Compressed Row
Storage (CSR), ELLPACK (ELL) and Hybrid (HYB). The CUSP version
of a parallel solver accompanied with the mentioned storage for-
mats for eachmatrix in Table 1was tested using different restarted
versions of GMRES (5, 15, 50, and 1000) and BiCGSTAB. We made
use of the available Bridson approximate inverse preconditioner
that reduces the fill-in and improves convergence vi reordering
elements in coefficient matrix [76,77]. Each experiment was re-
peated ten times and the average as well as some statistics were
reported.

After getting an idea on the solver thatwill be utilized, potential
parallelism in the whole FRS application was analyzed and a
parallel CUDA program for the entire application based on various
suggested optimizations was implemented.
Experiment 2

Aquick glance at the sequential implementation of the reservoir
simulator reveals and in a broader sense a number of write after
write [78,79] data hazards for each flow calculation. The issue
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Fig. 5. The activity diagram for the reservoir simulator, with its computational scheme shown in Fig. 3.

has been resolved by giving off some space in order to create
independent tasks. Instead of having one variable location being
updated sequentially, multiple copies of the same variable have
been allocated with proper renaming. Moreover, by refereeing

back to FRS Computational Model (Fig. 3), one can establish
the associated corresponding detailed Activity Diagram (Fig. 5).
Moreover andwithout loss of generality, the concurrent operations
of flow calculations from north to south are shown in Fig. 6.
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Fig. 6. The activity diagram for a sample North–South flow calculation inside the Newton iteration.

As a result, the following could be concluded about the matrix
assembly stage:
• The system operates on large data structures. Basically large

arrays that store (Po and Sw, Pon and Swn) values that are shared
among all workers.

• The shared data arrays in (Po and Sw), are solely read during
matrix assembly stage. Before passing them to thenext iteration
they are modified and written back after solving the assembled
ill conditioned unsymmetrical sparse linear system.

• Unlike the Newton and time loops, and if managed properly,
grid iterations are independent and do not carry dependency.

• Data portions of the arrays are read independently, for every
flow direction.

• The update of the variables inside the array is done through
multiple consecutive function calls.
The previous behavior and the established notes suggest that

the parallelization process starts by data decomposition step over
the large arrays and incorporate task decomposition whenever
needed.

The process of data decomposition is about mapping a global
index space into a task local index space [47]. It is associated
with a granularity level that determines the amount of data
each chunk holds. The more the granularity gets smaller, the
more independent tasks are created and the more communication
overhead to manage the dependencies among chunks is required.
It has been suggested that a good data decomposition will poses
the following characteristics [47]:
• It has to yield dependencies that scale at a lower dimension

than the computational effort associated with each chunk;
i.e. making chunks large enough so that the computational
effort required to update data, offsets any resulted dependency
overhead. Moreover, larger chunks will offer more flexibility
when scheduling operations on the processors.

• Preserves load balancing among the execution elements. If
not, then the speed at which the computation finishes will be
haunted by the speed of the lowest process; i.e. the one with
more work. This will be soon reflected on the overall perfor-
mance as the problem being parallelized is scaled via either
increasing resources or problem dimension. After all, better
scaling is achieved through the minimization data movement
and reducing the serial bottlenecks like barriers to the limit [46].

The analyzed concurrency pattern presents an additional force
that influences the way tasks are mapped to processing elements.
The simulator consists of multiple independent tasks or weakly
related tasks that share a common data structure as well as a
sequence of tasks with a static and regular flow ordering pattern.
When applicable the so called not true dependency was removed
by suitable code transformations. Moreover, a replication of the
data structurewas donewhennecessary.Whenever applicable, the
whole program has been restructured to create more work with
more potential concurrency. Also, optimized routines in Thrust
library like reduction and their special data structure has been
employed and utilized.

Throughout the program execution, each function call can be
thought of as a task which in turnmay be composed of other tasks.
Moreover, as the iterations in themost inner loop that spans all grid
points are independent, each iteration, or even group of iterations,
could be thought of as a separate task that in turns operate on
its assigned data portion. Again, the general rule of thumb lies
in ensuring the creation of enough independent tasks that keep
processors busy. In CUDA terms, a global function will launch
enough number of thread blocks that handles specific portion of
the input data. Threads in the associated blocks will then bring
to shared or local memory necessary related data, calling any
necessary device functions and operate on them. Table 2 lists some
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Fig. 7. Average parallel execution times for Sample_0.

Table 2
List of utilized optimizations in the developed parallel FRS code.

Target optimizations Details

Shared memory utilization Intensive use of device shared memory and making use of its broadcast property to serve data among threads at a fast pace.
Titling To handle large vectors, each thread at first load data into shared memory and performs the corresponding desired

operation. It then stores the result back to global memory before another kernel take data accumulated in this new vector in
global memory and continue operating on it.

Memory coalescing A warp can access a number of successive memory locations in a single transaction. Therefore, maximizing BW utilization.
Occupancy and latency hiding Launching enough threads to keep resources busy.
Data transfer Minimize copying, and makes use of asynchronous data transfer between host and device by utilizing pinned memory and

streams. Kepler GK110 introduces HyperQ mechanism that supports 32 hardware managed connections for communication
between host and device. As a result, device utilization has been increased as multiple processors on the CPU could initiate
work on a single GPU at the same time.

Overlap communication and
computation

Host and kernel execution overlap: when possible, the original code was restructured in a way that a call to device kernel is
followed by a many calls to host functions. By default, kernel launch is asynchronous or non-blocking. So while the GPU is
busy, the host computes part of the algorithm. If used properly, this mix, combined with streaming has great impact on
performance.

Computation intensity Loop unrolling was utilized to further increase computation intensity.

utilized optimizations in the developed FRS code. More detailed
information with examples could be found in [80,81].

Unlike the IMPES method, our developed simulator utilizes an
implicit formulation which does not impose any restriction on the
time-step. However, to maintain an acceptable level of accuracy,
the time-step should not be too large particularly during the early
times (the start of simulation). Nonlinear convergence is checked
as follows: first, we find the l2-norm of the error in each phase and
compare the highest residual of all phases with a preset tolerance
(1e−6). Before making the comparison, we multiply each residual

by 1t and divide by bulk volume of each grid block (in bbl). I.e.
inside each grid iteration we calculate the following residuals:

Rwn =

Rwn + R2
w

Ron = Ron + R2
o

and before going to the next time step, the following is calculated:

Rw_norm =

(1t/Vb)
√
Rwn,

Ro_norm =

(1t/Vb)
√
Ron,

Rnorm = max (Rw_norm, Ro_norm)
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Fig. 8. The average execution time schemes for parallel implementation of BiCGSTAB and GMRES(m) solver using CUSP for different storage. Measurements were separately
taken for each sample matrix that was extracted from our implemented FRS (Table 1).

Table 3
Various constants utilized in the developed FRS.

Model properties Values

Rock compressibility 5e−6

Isothermal compressibility Water 5e−7
Oil 1.2e−5

Initial reservoir porosity, assumed uniform 0.25

Constant for the equation used when computing viscosity Water(cµw) 6e−8
Oil(cµo) 2e−6

Initial density Water(ρw_sc) 62.238
Oil(ρo_sc) 40

Skin factor 1.2
Well radius 0.25

The reason for scaling with 1t/Vb is to ensure a uniform
tolerance for different problem sizes and different time-steps. That
is, regardless of the time-step used or grid dimensions used, the
same tolerance can be utilized.

Table 3 shows some utilized values that describe our sample
model.

The previous described model was implemented and the
obtained execution time was compared with a serial version that
makes use of Eigen library [82]. The fact that the permeability
tensor k is nonsmooth results in the condition number of the
Jacobianmatrix being high. Correctness of results has been verified
by comparing the output pressure values from the two programs
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Fig. 8. (continued)

Table 4
Well distribution for both the producer and the injector over grid space of
(20 × 30 × 2).

X-Coor Y -Coor Z-Coor Stb/day P limit (Psi)

1 1 1 −550 7000
10 1 1 −850 7000
5 5 1 550 2000
1 10 1 350 2000

10 10 1 600 2000
1 20 1 −550 7000

10 20 1 −850 7000
5 15 1 500 2000

15 5 1 600 2000
20 1 1 −550 7000
20 10 1 650 2000
15 15 1 600 2000
20 20 1 −550 7000

for the given well distribution (Table 4). Source code along with
detailed comments that relate to the above optimizations will be
documented in a separate work.

4. Results and discussion

Without loss of generality, Fig. 7 shows the obtained results
of running experiment 1 on sample 0, along with some useful
statistics. Fig. 8 shows the results of plotting the execution time for
different matrix storage schemes at different samples drawn from
our simulator and for the two mentioned preconditioned iterative
linear solvers. Every Sample plot is accompanied with another
semi-log plot that shows the relative residual per-iteration with a
minimum2 tolerance value of 1e−6. Let i be the iteration number,
and the residual Res = ∥r − Ax∥2, then the relative-residual is
calculated as RelRes = log10(res (i) /res (0)).

2 It may also reach 1e−7 or 1e−8 depending on the matrix sample.

The following could be concluded:

• As time step in our reservoir advances, more iterations would
be needed for reaching an accepted convergence level. This is
clearly seen in the relative error plot as it is steeper in early
reservoir samples. Compare for instance the relative error in
Sample_0 and Sample 93. The previous behavior is due to an
increase in the condition number of the assembled system as
the time advances; the thing that in turns requiremore iteration
to converge.

• A proper restarted version of GMRES(m) may be shown to
outperform BiCGSTAB for different storage formats. However,
automatic identification of an optimal restart value is not
possible. Moreover, and although GMRES(m) enjoys a smoother
convergence behavior shown in the relative residual plot, it
demands lot of storage space.

• Even for the same matrix structure but with different element
values, it is difficult to specify an absolute storage scheme that
gives the best performance time. For example, in Sample_0
and for all solvers, COO outperforms HYB. This is not the
case for GMRES (5) in Sample_93. This could be attributed
to the utilized preconditioner that approximate the inverse
by exploiting the reordering property to minimize the fill
in [61,76,77]. Although, various other assumptions related to
implementation considerations, randomness of block execution
or matrices condition number could be established as valid
vindications, further investigations should be carried out to give
more reasonable justification.

Fig. 9 shows the execution time of BiCGSTAB Solver for all
considered samples with different storage schemes. The following
could be further established and emphasized:

• Different Hepta-matrix data layout has different impact on
the solver convergence time. Hence, the solver may have
different execution time depending on the simulation step and
its corresponding data layout.
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Fig. 9. The average execution time for parallel implementation of BiCGSTAB using CUSP for allmatrix samples and different storage schemes.Measurementswere performed
on various test matrices extracted from our implemented FRS. Table 1.

Fig. 10. Pwf at injectors, Pc is included, no flow BC for 20 ∗ 30 ∗ 2, specified flow
rate at injector.

Fig. 11. Pwf at producers, Pc is included, no flow BC for 20 ∗ 30 ∗ 2, specified total
rate at producer.

• The larger the matrix sample, the higher the condition number
and the longer it takes to converge.

• BiCGSTAB with CSR storage scheme outperformed others from
Samples_0 to Sample_93. It came second in Sample_124. As a
result it seems a reasonable choice for our implementation.

Validating the correctness of parallel program output was done
in two stages. First, an already verified MATLAB code developed
by Abeeb in [5,83] was compared against the implemented serial
C++ program for small grid dimensions (20 × 30 × 2). No
flow boundary condition was initially assumed, six injectors with

Fig. 12. Pwf at injectors. Constant flow BC (5000psi) at m-J and m-HJ, no flow BC
for the rest. Water–oil reservoir of dimensions (20 ∗ 30 ∗ 2) and specified flow rate
at 6 injectors.

Fig. 13. Pwf at producers. Constant flow BC (5000psi) at m-J and m-HJ, no flow BC
for the rest. Water–oil reservoir of dimensions (20 ∗ 30 ∗ 2) and specified total rate
at 7 producers.

specified water rate and seven producers with specified total
rate were utilized. Fig. 14 shows the permeability map with the
distribution of wells taken from Table 4 shown on the map.

Fig. 10 demonstrates the verified output when the effect
of capillary pressure (Pc) is included by plotting the flowing
bottom-hole pressure (Pwf ) in psi for the injectors and producers
while Fig. 11 plots the results of a similar configuration where
capillary was not included. Next Figs. 12 and 13 show the running
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Fig. 14. Permeability map for the utilized wells shown in Table 4.

Fig. 15. The execution time (ET) for serial and parallel FRS.

simulator when constant pressure boundary condition is applied
fromcertain directions (m-HJ,m-J)with a value of 5000psi, no flow
boundary condition was assumed for all other directions. Again
six injectors with specified water rate and seven producers with
specified total rate were utilized.

In the second verification phase, larger grid dimensions
(240 × 240 × 2) were considered and tested for both the serial
C++ code and the developed parallel version. As mentioned before,
the serial version uses Eigen library to provide implementation
of the BiCGSTAB solver and the ILU preconditioner while the

parallel program calls our developed parallel routine for BiCGSTAB
based on various cuSPARSE and cuBLAS library calls. Similar to
the work in [57] the parallel version of the ILU preconditioner
available in NVidia cuSPARSE Library was also utilized to speed up
convergence. The output of pressure and water-cut values for both
versions (the serial and the parallel code) were the same. Fig. 15
shows the execution time and the obtained speedup.

Next Figs. 16 and 17 demonstrate how the parallel execution
time of the entire FRS varies when doubling reservoir dimension.
The objective is two folded: First, to quantify the importance of the
above obtained speedup shown in Fig. 15 and see what reservoir
dimension is simulated in the same time used to produce results
in the serial version. Second: to get an idea on how the developed
parallel FRS scales when increasing problem size so that further
optimizations could be implemented in subsequent work. For the
sake of experimentations, only 25 wells were used.

In accordance with common observation on GPUs, data shows
that the GPU simulation becomes more efficient with increasing
model size. They reflect the fact that GPUs need a large amount
of independent work to operate at maximum efficiency. The serial
implementation of FRS took 311.55 min to solve a problem with
230,400 grids. On the other hand, the interpolated data from
Fig. 16, speculates that a problem with 18,873,402 grids could
be solved in parallel in 311.55 min. In other words the CUDA
parallel implementation of FRS enables solving an 82 times larger
grid dimension, given the same time to produce results from the
counterpart serial implementation.

5. Conclusion

This work has presented a CUDA based parallel implementation
for a flexible, two phase, 3D Forward Reservoir Simulation (FRS).
Results showed that CUDA parallel implementation of FRS enables
solving an 82 times larger problem than the serial counterpart.
Moreover, if accompanied by proper preconditioning, BiCGSTAB
was shown to be a stable solver that could be incorporated in such
simulations instead of the more expensive and usually utilized
GMRES that demands storage because of long recurrences. Despite
the achieved performance, current implementation uses many
registers per kernel, the thing that restricts block concurrency and
affects thread latency hiding. Various optimization opportunities,
detailed documentation of the implementation as well as the
source code will be described in a separate work. Besides the
mentioned observations that requiredmore in depth investigation,

Fig. 16. The parallel execution time of CUDA based FRS for various grid dimensions.
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Fig. 17. A double-log plot for the parallel execution time of our developed FRS for various geometries.

implementing a parallel oil reservoir in CUDA is only the first step
for many interesting studies to come. Future work includes: FRS
based MIC implementation, FRS based OpenACC implementation,
FRS on a cluster of GPUs, utilizing Multigrid preconditioners,
testing different variants of Krylov solvers and others.
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