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a b s t r a c t 

YouTube is one of the most popular and volume-dominant services in today’s Internet, and has changed 

the web for ever. Consequently, network operators are forced to consider it in the design, deployment, 

and optimization of their networks. Taming YouTube requires a good understanding of the complete 

YouTube stack, from the network streaming service to the application itself. Understanding the interplays 

between individual YouTube functionalities and their implications for traffic and user Quality of Experi- 

ence (QoE) becomes paramount nowadays. In this paper we characterize and model the YouTube stack 

at different layers, going from the generated network traffic to the QoE perceived by the users watching 

YouTube videos. Firstly, we present a network traffic model for the YouTube flow control mechanism, 

which permits to understand how YouTube provisions video traffic flows to users. Secondly, we inves- 

tigate how traffic is consumed at the client side, deriving a simple model for the YouTube application. 

Thirdly, we analyze the implications for the end user, and present a model for the quality as perceived by 

them. This model is finally integrated into a system for real time QoE-based YouTube monitoring, highly 

useful to operators to assess the performance of their networks for provisioning YouTube videos. The 

central parameter for all the presented models is the buffer level at the YouTube application layer. This 

paper provides an extensive compendium of objective tools and models for network operators to better 

understand the YouTube traffic in their networks, to predict the playback behavior of the video player, 

and to assess how well they are doing in practice in delivering YouTube videos to their customers. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

YouTube is one of the most popular services in today’s Internet

nd is responsible for more than 20% of the overall Internet traf-

c [9] , including mobile. Every minute, 100 hours of video material

re uploaded and more than 1 billion unique users visit YouTube

ach month [10,11] . YouTube’s enormous popularity introduces se-

ere challenges for network operators, who need to design their

ystems properly in order to cope with the high volume of traf-

c and the large number of users. Mobile operators are particu-

arly sensitive to these challenges, as YouTube traffic is rapidly in-

reasing in mobile networks, with more than 40% of all YouTube
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iews coming from mobile devices today [10] . Since network oper-

tors need to offer satisfying video quality levels to prevent clients

rom churning, YouTube is an important application which has to

e considered by operators, both in current highly competitive mo-

ile and fixed broadband markets. 

Consequently, Internet Service Providers (ISPs) do not only try

o cope with a service like YouTube in the network. Instead,

hey actively include it in considerations of network optimiza-

ion and operations. Thus, Quality of Service (QoS) provisioning

s done in the network to meet requirements and provide guar-

ntees, primarily, in order to ensure a good application quality.

ll these provisions strictly need a comprehensive understand-

ng of the YouTube service in the network. More precisely, not

nly bandwidth requirements or minimum latency needs to be

nown, but also the impact of user interaction, the adaptation

apabilities of the service, or possible implications for the users

re required to be known. In short, for a specific consideration

f YouTube in a network, one must understand YouTube at all its

ayers. 
ack: From packets to quality of experience, Computer Networks 
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In this paper we present three models to explain the main fea-

tures of YouTube in the network and for the user. We focus our

attention on the buffer level of YouTube at the application layer.

We show that both the flow control at the network level and the

user Quality of Experience (QoE) is directly related to the buffer

level, making it to the central point of contact for a possible re-

sources management or possible optimizations [8,12] . The other

way round, this also means that with the ability to monitor or es-

timate the buffer level, a key element of YouTube is known and

far-reaching conclusions can be stated about QoE, packet flow, and

application properties. 

Several works have been carried out in the research community

to characterize and investigate YouTube. In [13] , authors character-

ize the YouTube traffic and investigate correlations between net-

work and user behavior; the underlying infrastructure of YouTube

is studied in [6,14] ; YouTube characteristics in mobile (cellular)

networks are investigated in [15] , whereas YouTube performance

degradation events are detected and diagnosed in [16,17] . Quality

of Experience , i.e., the quality perceived by end users of YouTube,

was evaluated both in controlled lab studies [18,19] and in field

trials [20] . 

We revisit in this paper the YouTube application through an ex-

haustive end to end study of the service, considering every layer

from the network traffic up to the QoE as perceived by end-

users. We start by characterizing the way YouTube servers send

video flows to the end-users, describing and modeling the flow

control mechanism currently used by YouTube. An initial view to

YouTube’s flow control was provided by [14] in 2011, but since

then the mechanism used by YouTube has much evolved, moving

from a server-based control paradigm to a client-based one. To the

best of our knowledge, we are the first in characterizing and mod-

eling the new flow control mechanism used by YouTube. 

Going a step further from the network to the client, we analyze

how the video traffic is consumed and played-back at the client

YouTube player, additionally deriving models to assess the qual-

ity directly perceived by the end-user from the player state. Pre-

vious studies [19,21] have shown that both the number of stalling

events and their duration are the most important features influ-

encing the final QoE undergone by the end-user. A stalling event

corresponds to the interruption of the video playback due to the

depletion of the playback buffer at the YouTube player. When the

available bandwidth is lower than the required video bitrate, the

playback buffer becomes gradually empty, ultimately leading to the

stalling of the playback. Using both controlled lab studies [18] and

field studies [20] , we conceive a model which can map stallings to

end-user QoE. 

Finally, at the end of our analysis, a large-scale YouTube QoE

monitoring system based on passive traffic analysis is presented.

Once we have analyzed and understood how YouTube works from

the server to the end-user perception, we devise a real-time moni-

toring system to extract YouTube performance indicators related to

the QoE perceived by end-users, relying exclusively on packet-level

measurements. 

Overall, this paper provides a complete overview on how to-

day’s YouTube application works at both the server and the client

side. Table 1 lists the contributions and assigns them to the respec-

tive layers, from transport level to the user level. In addition, a list

of potential network operational “interests” provides a possible ap-

plication of the models for network operators in the practice. The

main objective of the study is to provide network operators with

tools to model YouTube traffic and the client-side player for per-

formance evaluations, and to generally assess how good they are

doing in delivering the right QoE to their end-customers watching

YouTube videos. 

This work is structured as follows: Sections 2 and 3 outline

background and related work for YouTube video streaming, and
Please cite this article as: F. Wamser et al., Modeling the YouTube st
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ive an overview of different streaming approaches with emphasis

n progressive streaming techniques. Among other things, the evo-

ution of progressive streaming is shown, including the paradigm

hift and its reasons. Section 4 describes the tools and data sets

sed in the modeling study at the different layers. In Section 5 we

resent an overview on the proposed YouTube models at the net-

ork, application, and user layers respectively, going into deeper

etails and analysis of the network layer and YouTube flow con-

rol model in Section 6 . Sections 7 and 8 focus on the YouTube

layer and YouTube QoE models respectively; in addition, YouTube

oE-based monitoring in real mobile networks is also discussed in

ection 8 . Finally, we draw conclusions in Section 9 . 

. Starting from scratch: Background on YouTube video 

treaming 

YouTube is a streaming platform mainly offering small to

edium-sized video clips to its users. The encoding of the video

lips is done according to the H.264/MPEG-4 Advanced Video

oding (AVC) as default video compression format. YouTube uses

TTP(S) as streaming protocol for the videos. The client applica-

ion is a precompiled Adobe Flash player assembly which runs in

he web browser. It essentially downloads the video data over at

east one HTTP(S) connection and already starts playing the video

hile the download is still ongoing. Downloaded data is stored

n the memory or in a temporary file which serves as buffer for

ideo playtime. In this context, YouTube employs buffering which

eans that the client starts playing out data from the buffer only

fter a certain level of playtime has been stored. The time from re-

uesting a video until the buffer is sufficiently filled to start play-

ng the video is called initial delay . While the video is playing the

erver fills the buffer by transmitting blocks of video data to the

lient. Stalling , i.e., an interruption of the video playback, occurs if

he playtime buffer becomes empty during video playback. The ac-

ual data arrival at the client is governed by TCP and depends on

he available bandwidth. These two transmission phases, the ini-

ial filling of the buffer before the video starts playing, and the

lling of the buffer while the video is already playing, are dic-

ated by the YouTube flow control algorithm . Video streaming over

he Internet based on HTTP(S) has evolved considerably in recent

ears: 

Progressive download: in the beginning, HTTP-based video

treaming was implemented using a simple file server providing

he video file for the users. To avoid the resulting waiting time for

he download, the video playback was started already during the

ownload. It was done even though the file was not completely

vailable on the client device. This principle marks the beginning

f the so-called progressive download . The advantage is that the ex-

sting, well-established infrastructure can be used. The disadvan-

age is however, that a best effort download is not always auto-

atically sufficient for streaming video. The download usually has

o be adjusted with complicated means by the server (server-based

treaming) to satisfy the video requirements, user demands, and

etwork conditions in order to carry out a useful streaming. There

re three essential requirements for a video streaming server to

onsider for a useful and efficient streaming: first, it has to adjust

he download rate according to the video content encoding. Sec-

nd, it must estimate or know what capabilities (screen size, hard-

are support, etc.) the client device offers. Third, the server must

stimate the current access network conditions of the user and

djust the download accordingly. The crucial point is that, even

hough the server knows the video content, it does not directly

now the conditions at the client side, which can be very different

epending on the user preferences, the end device, and the net-

ork. 
ack: From packets to quality of experience, Computer Networks 
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Table 1 

Comparison of the potential interests of network operators and the contribution in this paper. 

Network operator interests Contribution in this work 

(and reference to the relevant section) 

Network level YouTube CDN structure Estimate amount of traffic 

and traffic flow, selective content caching according 

to network characteristics 

- (see related work in Section 3 , references [1–6] ) 

Transport evel YouTube flow control Insights into traffic patterns, 

per-flow optimization for YouTube, flow-level 

impact on other applications 

Network traffic model Section 6 

Application evel Video Playback Behavior Optimization taking into 

account the playout behavior of the YouTube 

player, see e.g. [7,8] , buffer management, video 

quality optimizations 

Video player application model Section 7 

User evel User-perceived quality Network performance 

monitoring, see Section 8 , user-centric optimizations 

to avoid user churn 

User QoE model Section 8 
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YouTube, like many video service platforms, meets these re-

uirements by offering videos in different bit rates, more precisely,

n different resolutions. Still, the drawback is that the server is

ot aware of the user conditions, and must estimate which quality

hould be delivered in order to achieve a smooth playback. An-

ther problem for video service providers are users which abort

he playback of a video [13,22] . In order to fill the client’s buffer to

ompensate for changing network conditions, the server transmits

ideo data in advance. When the video is aborted, all data in the

ideo buffer is discarded, and thus, was transmitted in vain. The

ideo service provider can save resources by (ideally) only trans-

itting video data that will eventually be watched. This is pre-

isely what is generally referred to as streaming . 

Client-based streaming with progressive download: To ap-

ly the streaming principle for progressive downloads, the servers

which until then controlled the download) are superseded by the

lients, which take over control of the streaming and request video

ata from the servers. Clients only request data if their buffer is

elow a critical threshold. The other way round, above this thresh-

ld, no more data is requested. This limits the amount of video

ata which is wasted in case of playback abortion, and thus, also

he amount of data that is transmitted in vain by the servers. This

esults in a more efficient resource utilization for the video service

rovider. 

Adaptive client-based streaming (HTTP adaptive streaming): 

o be more flexible and to avoid the need to estimate the client’s

etwork conditions, the paradigm change evolved even more.

owadays, video files are no longer stored as a whole file for each

uality level (i.e., bitrate). Instead, they are stored as many files,

o-called chunks or segments, consisting only of a few seconds of

layback time each. The mapping of files to video parts is specified

n a dedicated media description file. This allows for a more fine-

rained quality selection (adaptive streaming). In combination with

lient-based streaming, the benefit arises since the client directly

nows about its current network condition. It is aware of its physi-

al layer for data transmission. Further on, it also knows about the

ideo streaming options due to the media description file. Conse-

uently, adaptive client-based streaming can seamlessly adapt to

hanging network conditions by requesting video chunks of appro-

riate bit rates from the server. This results in the highest possible

layback quality and reduced number of stalling events which in-

reases users’ QoE [23] . Many proprietary solutions implemented

his new client-based adaptive streaming paradigm. Recently, also

ouTube followed the current trend by integrating the standard-

zed adaptive streaming technology MPEG Dynamic Streaming over

TTP (DASH) [24] . 
u  

Please cite this article as: F. Wamser et al., Modeling the YouTube st

(2016), http://dx.doi.org/10.1016/j.comnet.2016.03.020 
. Related work 

Related work for YouTube can be divided into different areas of

esearch. There is, first of all, work on the content delivery infras-

ructure at network level of YouTube [1–6] . In order to avoid bot-

leneck links in the networks and to bring video content closer to

nd users, video service providers federate many servers and data

enters to form a content delivery network. The videos are dis-

ributed among the servers based on certain criteria (local popu-

arity, time of day, etc.), and when a user requests a video, a server

lose to him transmits the video. For example, it is shown in [3] ,

ow the YouTube video player selects the content servers. Based

n the insights about the current CDN structure, in [25,26] , it is

onsidered how an efficient caching for YouTube can be achieved. 

In terms of our work, particularly the transmission characteris-

ics of YouTube for the end-to-end transport is interesting. In [27] ,

etwork characteristics of the two most popular video streaming

ervices, Netflix and YouTube are presented. The authors show

hat the streaming strategies vary with the type of the applica-

ion (web browser or native mobile application), and the type of

ontainer (Silverlight, Flash, or HTML5). In particular, they identify

hree different streaming strategies that produce traffic patterns

rom non-ack clocked ON-OFF cycles to bulk TCP transfer. Further-

ore, they present an analytical model to study the potential im-

act of these streaming strategies. In [28] , a YouTube server traf-

c generation model is proposed. The derived characterization and

odel are based on experimental evaluations of traffic generated

y the application layer of YouTube servers. Another well-known

aper about the YouTube flow control is [29] . Alcock introduces

ere in detail the streaming behavior of the YouTube throttling al-

orithm. In [30] , the characteristics of mobile YouTube traffic are

nalyzed. 

Going a step further, the question is how the CDN structure and

he flow control finally influences the user perceived quality at the

nd device. In both works [19,21] , the authors state that the im-

act on the user quality depends on the stalling duration and the

umber of stalling events. Consequently, for an optimization in the

ense of the user, the focus must be on the buffer of the video

layer at the individual user. In [18] , moreover, the influence of

he initial waiting for filling the buffer is discussed. 

Several works propose optimization for a network, based on the

revious insights [8,12,31–34] . In [12] , both network-level resource

anagement for YouTube as well as content and client-based con-

rol for access network with YouTube traffic are proposed. The

uthors of [8] , propose a special QoE-oriented scheduling in the

ir interface of OFDMA mobile communication networks. Prereq-

isites for all optimization is the knowledge of how well YouTube
ack: From packets to quality of experience, Computer Networks 
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currently behaves in a network. Various monitoring solutions have

been presented such as [35–38] . 

Finally, there are numerous statistics and characterizations of

the YouTube content and the usage of YouTube, both in the cel-

lular environment as well as for normal computers [13,15,39–41] .

For example, in [13] usage patterns, file properties, popularity char-

acteristics, and transfer behaviors of YouTube are presented, and

compared to traditional web and media streaming workload char-

acteristics. In [41] , the video traffic generated by three million

users across one of the world’s largest 3G cellular networks is mea-

sured. 

General papers with guidelines about monitoring, management

of YouTube, and optimization for YouTube within the network are

presented in [7,12,33,42–44] . 

As we explain in next sections, our paper builds on top of our

many previous studies on YouTube at the multiple layers, from net-

work traffic to QoE. While some of the results of the individual

studies presented in this paper have been partially presented in

previous work [18,20,43–45] (in particular, the YouTube QoE mod-

els presented in Section 8 ), the additional value of this paper is to

provide a single source of information compiling all these studies

into a single and complete modeling effort of probably the great-

est and more complex Internet-scale service ever, which is chang-

ing even the structure of the whole Internet. We expect this pa-

per to be highly useful for ISPs willing to provision YouTube and

future similar video streaming services through their networks, al-

lowing them to better understand how to dimension and manage

their networks in order to correctly provision this surge of services.

4. Measurement tools and data sets 

For the characterization of YouTube, three different types of

measurements are used. Each type of measurement operates on

different layers and measures different properties from YouTube.

First of all, network packet traces were carried out while playing

YouTube videos. Second, video and player information during play-

back were retrieved at the client using the official YouTube player

API. They were stored in a second data set. Third, the results from

a set of QoE subjective tests performed in our previous work, as

well as measurements performed at the core of a mobile network

were used to model and quantify the overall user satisfaction of

YouTube. Table 2 enumerates the list of conducted measurements

and assigns them to the models described in this study. 

4.1. Packet traces 

For comprehensive packet traces, measurements in two differ-

ent time periods were performed. The first measurements were

carried out in November and December in 2012 (22.11.2012–

22.12.2012) at the University of Würzburg. Here 84 videos were

measured, and the packet arrival times and packet sizes were pas-

sively monitored. In order to investigate in this work as many, but

also popular videos, the YouTube videos were selected as follows.

A YouTube search was done according to a random dictionary en-

try. The first two search results are accepted for each search. That

way, only popular videos get selected. This method is used until

100 different videos are selected. Some of the videos did not ex-

ist anymore when we tried to watch them or could not be re-

played for different reasons. This reduced the number of videos

that are finally measured to 84, which were replayed several times

at the Campus network of the University of Würzburg. The net-

work bandwidth was not limited. 

The second series of measurements were carried out in April

2015 (23.03.2015–15.04.2015). 1 Here exactly 1060 videos were ran-
1 Dataset is available at http://youtubedb.informatik.uni-wuerzburg.de . 

a  

n  

v

Please cite this article as: F. Wamser et al., Modeling the YouTube st
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omly selected and watched. Some videos were selected twice,

hich resulted in 1002 different videos. This data set includes

pproximately 13 million log items. The network bandwidth was

imited to 3 Mbit/s, 1 Mbit/s, 700 kbit/s. These values were se-

ected empirically, to specifically cover the different events of the

ouTube streaming under study. There are 384 videos measured

ith a limitation of 3 Mbit/s, 331 videos were measured at a

imit of 1 Mbit/s, and 345 videos were measured at a limitation

f 700 kbit/s. There are about 16 GB transferred video data and

bout 258 h of video content. 

Finally, the study focuses on three standard video resolutions:

40p, 360p and 480p. The first two resolutions correspond to the

ost popular ones in the 2012 dataset, whereas the 480p reso-

ution was added for completeness. While it is true that higher

esolutions were available for the 2015 measurement campaign,

e took a conservative approach to keep consistency among both

atasets. 

.2. Video player measurements 

YoMo [35,36,46] is a YouTube monitoring tool for the YouTube

ideo player developed at the University of Würzburg. It is used

o analyze the buffered playtime and the playout behavior of

ouTube. YoMo uses a Mozilla Firefox extension which retrieves

ata from the YouTube player. In general, it works as follows. Since

he buffered playtime is monitored, it knows if a video is play-

ng or stalling. If a new video is requested, the YouTube player

pens a new TCP connection to download the video file. A sig-

ature is contained within the header of the video file which is

etected by YoMo. As YoMo looks also at all other TCP flows to a

ouTube server, the flow that contains the signature can be iden-

ified. YoMo then investigates all of the data of this specific TCP

tream. Since the video tags are parsed in real-time, YoMo can re-

urn the buffered playtime of the video. For the new YouTube algo-

ithm, YoMo especially parses the packets that contain the HTTP-

equest over a certain range of bytes. The playtime is sent to YoMo

rom the plugin which in return retrieves it from the YouTube

layer API. To overcome end-to-end encryption, a simple state of

he art man-in-the-middle attack was done at the measurement

lient. A more detailed insight of YoMo is given in [32,36] . 

YoMo was used to study YouTube videos. The application data

ere collected in conjunction with the first measurement of the

acket traces. The scope and duration of the measurement corre-

ponds exactly to the specified information in the previous subsec-

ion. The measurement was conducted in the period 22.11.2012 to

2.12.2012 for 84 videos. Several samples had measurement errors,

.g., some HTTP requests for parts of the video content were not

eceived or were received multiple times. We omitted these runs

rom the analysis and ended with 778 measurement samples. 

.3. YouTube QoE and Performance monitoring studies 

The third dataset is composed of the results obtained from sev-

ral subjective YouTube QoE studies we have conducted between

011 and 2014 [18,20,21,43] , which address the influence of the

ost relevant characteristics of the YouTube service on the qual-

ty as perceived by the end users. This dataset is complemented

ith real network and QoE-based measurements we have per-

ormed at a nationwide mobile operator [43] . These are composed

f YouTube videos streamed through cellular connections, which

re passively captured at the packet level in the core of a mobile

etwork, and additionally stamped with the real QoE feedback pro-

ided by the users actually watching the videos. 
ack: From packets to quality of experience, Computer Networks 
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Table 2 

List of measurements and underlying data sets. 

Data set Corresponding model 

Transport level (1) Packet traces Network Traffic model 

Application evel (2) Player measurements [35,36,46] Video player model 

User evel (3) Stalling and performance monitoring studies [18,20,21,43] user QoE Model 

Fig. 1. Modeling of YouTube at the transport, application, and user level. 

Table 3 

Input parameters and variables used in the model. 

Name Description Unit 

VS Size of video [B] 

r Resolution of video [p] 

br ( VT ) Video bit rate at playtime VT [B/s] 

n Number of blocks - 

BS r Maximum size of a block for resolution r [B] 

BB i Size of block i [B] 

C Bandwidth/Download capacity [B/s] 

β i Download time of block i [s] 

t i Request time of block i [s] 

�t i Inter-arrival time between block i and block i + 1 [s] 

PT i Playtime of block i [s] 

D ( t ) Downloaded bytes at time t [B] 

B ( t ) Buffered playtime at time t [s] 

DT ( t ) Downloaded playtime at time t [s] 

VT ( t ) Video playtime at time t [s] 

�0 Playing threshold [s] 

�1 Stalling threshold [s] 

α Block request threshold [s] 

ψ Stalling indicator {0, 1} 

N Number of stalling events - 

S ( t ) Stalling time at time t [s] 

�S i Stalling time between t i and t i +1 [s] 
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. Modeling YouTube 

We now introduce first a model for YouTube considering differ-

nt layers. We describe the model components, the variables, and

he input parameters that are needed for the overall model. 

In order to take the traffic on transport layer , the YouTube appli-

ation in the browser as well as the quality perception of the user

nto account, we divide our model into three parts. All the parts

re interconnected via a central parameter, the buffer level at ap-

lication layer, which is discussed below. The input parameters and

ariables which are used in the model are summarized in Table 3 .

hey are introduced in detail in the following paragraphs: 

Transport level: At the transport level, we describe the trans-

er of data over time. Since YouTube uses a block-wise transmis-

ion, we specify here when a block is transmitted and how large

t is. We consider a video of size VS which consists of n blocks.
Please cite this article as: F. Wamser et al., Modeling the YouTube st

(2016), http://dx.doi.org/10.1016/j.comnet.2016.03.020 
s depicted in the upper part of Fig. 1 , the following parameters

re used: (1) downloaded bytes D ( t ), (2) block size BB i , and (3)

lock inter-arrival time �t i between two blocks. The downloaded

ytes D ( t ) depend on the time t and are shown on the y-axis in

he subfigures in the upper part of Fig. 1 . Furthermore, block i is

B i bytes in size and is requested at time t i . All blocks are down-

oaded over a link with capacity C in bytes per second, such that

i is the download time of block i in seconds with βi = 

BB i 
C . 

Application level: At application level, we describe the play-

ut behavior of the YouTube player at the client, particularly the

uffered video playtime B ( t ), the video thresholds �0 and �1 , and

arameter α are introduced. B ( t ) is illustrated on the y-axis in the

iddle part of Fig. 1 , as well as in Fig. 4 later on. In order to cal-

ulate B ( t ), the model takes into account the downloaded playtime

T ( t ) and the video playtime VT ( t ), such that the following holds

t any time: 

 (t) = DT (t) − V T (t) (1)

The downloaded playtime DT ( t ) is calculated from the sum of

ownloaded playtime PT i per block i . In particular, PT i depends on

he video bit rate br ( VT ), which is a continuous function of the

ideo playtime that determines the amount of bytes needed to

lay out the video at time VT . If B ( t ) is larger than �0 the video

layback starts, cf. Fig. 1 (a). Blocks are requested steadily as long

s the buffered playtime is smaller than the threshold α. Then, no

locks are requested until the buffered playtime drops below α
gain. This means the application parameter α controls the gen-

rated network traffic. Once the buffered playtime is lower than

1 the playback is interrupted until enough data is in the buffer,

.e., stalling occurs if �1 is reached. 

User level: Based on the findings of [47] , we use a simplified

pproach in order to model the impact on the user. We quantify

he impact as number of stalling events and total stalling dura-

ion while watching the video. We introduce a boolean variable

 which indicates whether the video is playing ( ψ = 0 , green)

r stalling ( ψ = 1 , red). S ( t ) indicates the total stalling duration

ntil time t . The stalling is illustrated in the bottom subfigure of

ig. 1 (b). Fig. 1 illustrates two cases and outlines (1) the course

f the downloaded bytes, (2) the course of the buffer level of

he video player, and (3) whether the video is stalling or not.
ack: From packets to quality of experience, Computer Networks 
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Fig. 2. Study on the download behavior. Downloaded data over time and cumula- 

tive distribution function for the block size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Studies on the request time of the blocks. 

Fig. 4. Management of the playback buffer in YouTube. 
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Fig. 1 (a) shows the general case if a sufficient downloading speed

is available, i.e., the current video bit rate is smaller than the

maximum download rate. The figure shows an exemplary down-

load of a YouTube video over time with a fixed download capac-

ity C . The upper part shows the downloaded bytes D ( t ), the mid-

dle part shows the buffered playtime B ( t ), and in the bottom part,

ψ indicates whether the video is playing. The first blocks of the

video are downloaded steadily and during the initial delay phase,

in which the video is not playing, each block adds its contained

playtime to the buffer. After a certain amount of playtime is stored

in the buffer, the video playback starts and the buffered playtime

increases more slowly, as data is played out of the buffer at the

same time. After the download of Block 2, the buffered playtime

has surpassed α and thus no immediate block request occurs. Only

after B ( t ) drops down to α due to the playback, a new block is

requested at transport layer. This oscillating behavior of B ( t ) con-

tinues until the end of the video. In Fig. 1 (b), the contained play-

time in the blocks 5–8 is lower than time needed to download the

blocks. Thus, the playout buffer empties which eventually results

in periodic stalling. Finally, Block 9 then contains enough playtime

again, in order to present the video without any interruptions. In

the following sections, each level is described in detail. 

6. YouTube flow control: A network traffic model 

Since early 2012, YouTube uses a new algorithm to transfer

videos to the users. We investigate this algorithm in the following

as the basis for subsequent modeling for the transport level traf-

fic. The performed measurement is combined with a second mea-

surement of the buffer level at the application layer, which gives

insights into the behavior of the video player and the quality pre-

sented to the user. 

6.1. Download behavior 

In this section, we describe the general findings about the

YouTube player and streaming. Our results show that YouTube em-

ploys a block-wise download behavior. First of all, we define and

measure the block size. Next, we investigate the exact points in

time when blocks are requested. For this purpose, in particular the

measurement of application parameters such as buffer level and

video resolution is required. 

6.1.1. Blockwise download 

The flow control algorithm manages the way data is down-

loaded. Fig. 2 (a) shows the cumulative data downloaded over time

for 12 samples of two example videos (Video1, Video2). 

There are major differences compared to the download of

videos with the old algorithm [29] . For example, there is no longer

a consistent download of the video data. Instead, Fig. 2 (a) shows
Please cite this article as: F. Wamser et al., Modeling the YouTube st

(2016), http://dx.doi.org/10.1016/j.comnet.2016.03.020 
hat there are long periods where no data is downloaded. Further-

ore, there are short periods of time where a lot of data is down-

oaded very fast. We call the data that is downloaded in such a

hort period a block . From our measurements, we see in Fig. 2 (a)

hat each video consists of different blocks which are downloaded

t different times. However, the measurement curves of a specific

ideo are located one above the other, which means that the same

lock of a video was always downloaded at approximately the

ame time. In order to initiate the download of a block, a HTTP-

equest for a certain range of bytes is sent to the YouTube video

erver. In the following, we use the terms GET-request or block re-

uest . No such request of the same resolution is sent as long as a

lock of one resolution is still being downloaded. 

.1.2. Block size 

Having analyzed the blockwise download behavior, we now dis-

uss the size of the blocks. In Fig. 2 (b), we see how the size of the

locks is distributed. For a resolution of 240p and 360p, a block of

.78 MB (rounded value) is requested. For 480p, a block of 2.46 MB

rounded value) is requested. The header of the video container,

hich has a size of 13 B, is not downloaded because it is the same

or every video and the player already has this information. Hence,

he size of the first block is 13 B smaller than the standard block

ize. In our measurements the last block is always smaller than

he other blocks since the size of our selected videos is not an ex-

ct multiple of the normal block size. Instead, the size of the last

lock is equal to the video size minus all previous blocks minus

3 B. The resulting value follows a uniform distribution as expected

ecause all of our videos contain more than one block. 

.1.3. Request time of blocks 

Next, we analyze the exact time when a block is requested.

ig. 3 (a) shows the buffered playtime in seconds over time for

wo example videos. We observe that in the first two seconds, a
ack: From packets to quality of experience, Computer Networks 
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ig part of the video (over half of the total playtime) is down-

oaded. The requests for the remaining data are sent each time the

uffered playtime drops to approximately 50 s. 

To investigate this in more detail, we measure the buffered

laytime right after the block download is completed. In Fig. 3 (b),

his value is compared to the time between the end of a block

ownload and the next request. The results can be separated into

wo parts at around 50 s. If the buffered playtime is under 50 s,

he time between two downloading periods is independent of the

uffered playtime as the next block is requested almost instantly

fter the previous block download finishes. If greater than 50 s, the

uffered playtime seems to correlate linearly with the time until

he next block is requested. 

In order to interpret the results at about 50 s accurately, we

urther consider in the following the results in detail. After fit-

ing these values for videos with 240p, 360p, and 480p sepa-

ately, we notice that all resolutions return very similar results.

or a buffered playtime greater than 52 s, we fit the values to

 linear function with an average slope of a = 1 . 00 and an av-

rage y-intercept of b = −49 . 82 s. Here, only an insignificant de-

iation of less than 2% between the different resolutions is ob-

erved. We assume that this value is pre-configured by YouTube.

ence, it seems reasonable to accept that the next block is re-

uested in ( bufferedplaytime ) − 50 s in average after the previous

lock download. For a buffer level of under 48 s, the average time

etween two requests is 0.3 s in our measurements. Since blocks

f one resolution are always downloaded successively, it takes at

east the download time of a block until a new block is requested

gain. Therefore, the time between two downloading periods is in-

uenced by the download speed of the Internet connection at our

ocal network. 

.1.4. Dynamic adaptive streaming over HTTP 

Since 2013, YouTube supports the dynamic adaptive streaming

ver HTTP (DASH) protocol, which was first presented in [48] . With

ASH, the player switches to a lower video resolution if there is

ittle data in the buffer and if it is not growing quickly. Next, if the

uffer contains a lot of data or if it is growing quickly, the video

esolution may be increased. A first complete analysis of DASH in

ouTube was done in [49] . There are many possibilities on how

o optimize adaptive streaming. A comprehensive study that dis-

usses relevant adaptation algorithms is given in [50] . However, ex-

ct video adaptation strategies are out of scope of this paper and

ill not be discussed any further. Nevertheless, any future adaptive

pproach may easily be integrated into the model presented in this

aper. 

.2. Flow control model 

Finally, we create a model of the Range algorithm for the flow

ontrol of a YouTube video. With this model, the network traffic

an be simulated, while a video is viewed. Each video is defined

y its size VS , its resolution r ∈ {240p, 360p, 480p}, and its bit

ate br ( VT ). Based on these three characteristics, we define the flow

ontrol model for YouTube traffic, i.e., we describe when and how

uch traffic is generated by streaming this video. For the sake of

implification, we assume that the download capacity C does not

hange during a video download and that the YouTube servers are

lways able to saturate the users’ download capacity. Further, we

onsider the bit rate to be constant within a block. Finally, we as-

ume that the download of the first packet of a block starts with-

ut delay after the request. Based on these assumptions, the model

an be described in detail. 
Please cite this article as: F. Wamser et al., Modeling the YouTube st
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The resolution determines the maximum size BS of a block ac-

ording to 

S = 

{
1 . 78 MB if r = 360p or 240p , 

2 . 45 MB if r = 480p . 
(2) 

he maximum block size BS is the size of all blocks except for the

rst and last block. This is due to the fact that the first 13 B of a

ideo file are always known, hence, they need not be downloaded.

he last block usually is smaller than the maximum block size, as

t contains the remaining bytes of the video. This gives the block

izes for all n blocks of the video: 

BB 1 = BS − 13 B 

BB i = BS for 2 ≤ i < n 

BB n = V S − ∑ n −1 
j=1 BB j 

(3) 

Next to the block size, the request times t i of block i are im-

ortant to fully describe the network traffic. Therefore, we update

everal variables at each block request t i . We assume the first block

s requested at time t 1 = 0 and consider in the following the time

ifference �t i = t i +1 − t i . From our measurements, we found that

he next block is downloaded if the buffered video time B ( t ) is less

r equal to a threshold α. In order to compute the next block re-

uest t i +1 from the previous request time t i it is necessary to con-

ider the amount of playtime PT i contained within block i . If the

uffered playtime is lower than α after the download of block i ,

he next block is requested immediately. This means, the time be-

ween block i and i + 1 is only the download time β i of block i . If

he buffered playtime is larger than α after the download of block

 , the next block request occurs when the buffered playtime de-

reases down to α. Thus, the time �t i between the requests of

lock i and block i + 1 can be computed as described in Eq. (4) :

t i = 

{
βi if B (t i ) + P T i < α + βi , 

B (t i ) + P T i − α otherwise , 
(4) 

here the download time of block i βi = BB i /C is negligible for

ery high download capacities. While α lies between 48 s and 52 s

n almost any download sample, we recommend an approximation

f α = 50 s according to our investigations in Section 6.1.3 . 

To compute the buffered playtime, we use the formula 

 (t i ) = DT (t i ) − V T (t i ) (5)

DT ( t i ) refers to the sum of the playtime which is contained

n the previously downloaded blocks and can be calculated recur-

ively as 

T (t i ) = 

{
0s if i = 1 , 

DT (t i −1 ) + P T i −1 otherwise . 
(6) 

VT ( t i ) refers to the amount of time from the video that has

een played out until block i is requested. While the video time

s initially 0, at each block request t i , i ≥ 2, the video time can be

alculated by adding the time between the block requests �t i −1 

ut subtracting the time during which the video was not playing

i.e., initial delay and stallings) in that interval. As S ( t ) is the total

talling duration until time t , �S i −1 = S(t i ) − S(t i −1 ) is the sum of

he length of all stalling events (including startup delay) between

 i −1 and t i . 

 T (t i ) = 

{
0 if i = 1 , 

V T (t i −1 ) + �t i −1 − �S i −1 otherwise . 
(7)

We consider the model for the flow control at distinct time

oints when a new block is requested. Thus, stalling can only occur

f the video playtime at the next block request time t i +1 is larger

han the downloaded playtime at that time DT (t i +1 ) . In this case,
ack: From packets to quality of experience, Computer Networks 
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the previous stalling time can be computed as the difference be-

tween the needed playtime V T (t i ) + �t i and the actual available

playtime DT (t i +1 ) : 

�S i = 

{
0 s if V T (t i ) + �t i < DT (t i +1 ) , 
V T (t i ) + �t i − DT (t i +1 ) , otherwise . 

(8)

The presented model allows for a simulation setup which com-

putes the time and amount of traffic generated by a YouTube

video. Moreover, the occurred stalling time can be calculated

which can be used to estimate the perceived quality of the video

streaming. The needed input parameters are video size VS , resolu-

tion r , contained video playtime per block PT i , and download ca-

pacity C . 

7. Video player application model: Measuring and modeling 

the YouTube player 

In previous sections we have explored YouTube from a network

perspective, measuring and modeling the flow control mechanisms

it uses to deliver the videos through the network. Grasping such

mechanisms is paramount for ISPs, both to understand the impact

of YouTube traffic on their networks, as well as to assess the traffic

delivered to the customers’ end-devices. With a proper assessment,

traffic bottlenecks in the network can be avoided and network is-

sues can be resolved. Let us now turn from the network to the

application and shed light on how the video flows are consumed

at the end devices, which ultimately defines how the customers

perceive the YouTube service. This is in fact the most important

part of the end-to-end YouTube provisioning for a network opera-

tor: how good or bad is the YouTube quality as experienced by the

customers. 

For doing so, we measure and model the YouTube player buffer-

ing and playback behavior. Later on in Section 8 we investigate

how to estimate the quality experienced by YouTube users, pro-

viding a QoE model translating the behavior of the YouTube player

into a measure of user satisfaction. 

As explained in Section 5 , the YouTube player works with an

internal playback buffer where the chunks of video being down-

loaded are stored at and played from. During the simultaneous

downloading and playback, the buffer grows and shrinks depend-

ing on the download bandwidth and the video bitrate. Intuitively,

when the download bandwidth is lower than the video bitrate,

the playback buffer becomes gradually empty, ultimately leading

to the stalling of the playback. When the buffer runs empty, the

video stalls and the YouTube player state changes from “playing”

to “stalling”, until more video chunks are received and buffered. 

The YouTube player model uses the parameters presented in

Section 5 : it considers the buffering-based thresholds �0 and �1 

to control the way video frames are consumed from the playback

buffer. To further explain the YouTube player behavior in the prac-

tice, Fig. 4 describes an artificially generated video playback sce-

nario, in which a video is displayed under heavy downlink con-

gestion, forcing the player to visit all its states (note that this fig-

ure is a particular case of Fig. 1 ). At time t = 0 the player buffer

is empty, and video blocks are requested to the server. The video

starts playing immediately after the buffered video playtime B ( t )

exceeds the playing threshold �0 , flagged as event (a). Video blocks

are downloaded from the server as long as B ( t ) is below 50 s (see

Section 6.1.3 for a detailed explanation). Event (b) flags the end

of this buffering/blocks-request period. The playback of the video

continues without additional buffering activity as long as B ( t ) is

above the aforementioned 50 s threshold. Events flagged as (c) cor-

respond to a heavy downlink congestion situation, in which the

player requests additional video blocks but the video content gets

to the player only sporadically, i.e., the video buffer slightly in-

creases. The video playback continues until B ( t ) falls below � ,
1 

Please cite this article as: F. Wamser et al., Modeling the YouTube st
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agged as event (d). The player remains in stalling state until B ( t )

xceeds �0 . 

.1. The model in the practice 

To verify the applicability of the proposed model, we compare

he buffered playtime B ( t ) as measured for a video watched in the

esktop YouTube player with the buffered playtime ˆ B (t) estimated

y the model through a simulation. For this purpose, the data

et and the measuring methodology described in Section 4.2 are

sed. The same video is downloaded/replayed 14 times under per-

ect network conditions (i.e., bandwidth is high enough to avoid

talling), to account for potential network performance variations.

ig. 5 shows the buffered playtime over time. Colored in black, we

ee the result of 14 measurements of the same video on top of

ach other. Colored in brown, we see the result of the simulation.

o simplify the evaluation, we assume that the startup delay of the

ideo playback is zero in the model, i.e., we take �0 = 0 . Given

hat no stalling is observed for this video, we also set the stalling

hreshold �1 = 0 . 

There is only one curve for the simulation since it is deter-

inistic. We first notice that the measurement and the simula-

ion seem to be very close to each other, as depicted in Fig. 5 (a).

owever, there are some deviations which are visible if we look

t the curves in detail in the following two figures. In Fig. 5 (b),

he buffered playtime over time in the initial phase is depicted for

he measured data and the simulation. Here, it can be seen that

he first blocks are requested faster in the simulation since we ig-

ore the waiting time between requests in the initial phase. There-

ore, data is downloaded faster in the initial phase and the buffered

laytime increases faster as compared to the real measurements. In

ddition, a new block is requested in our model when the buffered

laytime drops to 50 s. In our measurement results, these values

ary slightly, cf. Fig. 5 (c). Thus, the point in time when a block is

equested deviates by up to two seconds compared to the mea-

ured values. These variations do not add up but instead, they are

emoryless. Furthermore, ignoring the startup delay (i.e., till B ( t )

 �0 ) causes the playback to be started up to one second before it

tarts according to our measurement. Fig. 5 (d) shows a CDF of the

ifference in block request time between the simulation and the

easurement results, considering different video resolutions. For

60p, the mean is at around −0 . 40 s with a variance of 0.55 and a

ean squared error of 0.71. Similar values are observed for other

esolutions. The main cause for the negative offset is the zero play-

ack delay considered in the model parametrization. Furthermore,

he mean buffered playtime at which blocks are requested is 49.8

 for the samples, in contrast to 50 s that are used in the model. 

.2. Using the player model To extract stallings 

The YouTube player conditions the experience of the user

atching a video, specially because of its influence on the stalling

attern of a video (i.e., the number and duration of stalling events),

hich ultimately determines the YouTube QoE. We therefore pro-

ose to use the described YouTube player model to extract the

tallings of a video. In [44] we have introduced a very simple tech-

ique that permits to reconstruct the stalling patterns of a video

rom the aforementioned player model, following a similar ap-

roach to the one considered to the YouTube flow control model

s presented in Section 6.2 . 

The main difference we consider now wrt the flow control

odel is the temporal-granularity: instead of updating the differ-

nt parameters for every new requested block at time t i , the tech-

ique works at the packet time level, updating the state with ev-

ry new video packet TCP ACK received at time τ i . This provides a

uch finer granularity to estimate not only the complete stalling
ack: From packets to quality of experience, Computer Networks 
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Fig. 5. Comparison of the buffered playtime for different measurements of the same video and the estimations provided by the video player model by simple simulation. 

The estimation is almost perfect, but there are some small misalignments in the specific times when additional video blocks are requested, both at the initial pre-buffering 

phase as well as doing the video playback. Still, differences are almost negligible, being always below 2 s. 
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ime of a video, but also the individual length and time of sin-

le stalling events during the video playback. To work at such low

emporal granularity, we resort to the analysis of the metadata

ontained in the flow of YouTube packets. 

The playback times of the video frames composing the video

an be obtained by dissecting the metadata present in the so-

alled video container (e.g, MP4, VP9 etc.). Each YouTube video

s compressed and encoded as a MP4, VP9, etc. file which is a

ontainer format for media files. The container includes the com-

ressed video and audio, as well as the information needed by

he YouTube player to decode and display the video content. The

eader of these media files starts with a well-defined signature

dentifying the corresponding container format, and contains meta-

ata information such as the times when the video frames have to

e actually displayed. The developed technique consists of identi-

ying the beginning of a new YouTube video flow as marked by

he signature of its container, and extracting the corresponding

lay times of the downloaded content to estimate the accumulated

ideo play time at the buffer. 

Let us describe the parameters which are used in this tech-

ique, recalling their definitions from Table 3 . The first and most

mportant parameter is the total downloaded video play time at

ime τ i , namely DT ( τ i ), which is updated from every new TCP ACK

eceived at time τ i . As we said before, the value of DT ( τ i ) is ob-

ained by parsing the video container metadata. We additionally

onsider the video play time VT ( τ i ) and the stalling time S ( τ i ),

hich are the user experienced video play time and stalling time

fter the reception of the i th TCP ACK. The buffered video play-

ime at time τ i is indicated as B ( τ i ), and it corresponds to the

ifference between the downloaded video play time DT ( τ i ) and

he actually played time VT ( τ i ), i.e., B (τi ) = DT (τi ) − V T (τi ) (cf. Eq

1) ). We also consider the boolean stalling variable ψ , which in-

icates whether the video is currently playing ( ψ = 0 ) or stalling

 ψ = 1) , depending on the relations between the buffered video

laytime and the playing/stalling thresholds, �0 and �1 respec-

ively. The measurement studies performed in [44] revealed that

hese two buffer thresholds can be reasonably taken as �0 = 2 . 2 s

nd �1 = 0 . 4 seconds for YouTube players running on laptops and

esktop PCs. While these two thresholds are not strictly constant

nd might depend on the specific characteristics of a video, results

hown next suggest that the estimations are highly accurate with

hese approximations. Even more, other studies such as [28] have

stimated these thresholds in very similar values ( �0 = 1 . 9 s and

1 = 0 . 5 ), reinforcing the selection done in this paper. Using these

efinitions, the stalling pattern of a YouTube video over time can

e obtained as follows: 

ψ i = ψ i −1 ∧ ( B (τi −1 ) < �0 ) ∨ ¬ ψ i −1 ∧ ( B (τi −1 ) < �1 ) 

S(τi ) = S(τi −1 ) + 

{
τi − τi −1 , if ψ i 

0 , if ¬ ψ i 
Please cite this article as: F. Wamser et al., Modeling the YouTube st
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 T (τi ) = V T (τi −1 ) + 

{
0 , if ψ i 

τi − τi −1 , if ¬ ψ i 

B (τi ) = DT (τi ) − V T (τi ) 

Finally, the time elapsed between the previous ACK at time τi −1 

nd current ACK at time τ i increases the stalling time S ( τ i ) or

he play time VT ( τ i ), depending on the resulting video state (i.e.,

talling or playing). Since YouTube first starts buffering (i.e., stalling

tate) until the threshold �0 is exceeded, the iterative computation

f the different variables is initialized with S(τ0 ) = V T (τ0 ) = 0 and

 0 = 1 . 

Fig. 6 reports validation results for the proposed tech-

ique. Results correspond to 386 YouTube videos streamed from

outube.com through a bottleneck link of controlled capacity

from 128kbps to 20Mbps). Fig. 6 (a) and 6 (c) show that the num-

er and total duration of stallings per video computed by the

forementioned technique are highly consistent with the stallings

easured at the YouTube player. Fig. 6 (b) shows that for 131

ideos, the number of stallings is zero and the absolute difference

etween the estimated ( n e ) and the real ( n a ) number of stallings

s 0. For the 255 remaining videos, the relative difference | n e −n a | 
n a 

s still 0 for 30% of the cases, and below 15% for about 90% of the

ideos. Hence, for more than 93% of the 386 tested videos, the es-

imation is either exact or there are errors for n a > 6. According

o the QoE model we described in Section 8 next, MOS differences

or n > 4 are negligible. 

These results show that the YouTube player model and the pre-

ented technique can actually be used to extract the stalling pat-

erns that occur during the streaming of a YouTube video, which

an then be mapped to QoE values by applying the models pre-

ented next. The main limitation of this estimation technique as

resented so far is that it has not been conceived as a tool for

onitoring the QoE of YouTube from the perspective of an oper-

tor, who actually needs to run such estimations in the core or

lose to it to have an idea of the overall quality his customers are

xperiencing. The last step to achieve such a monitoring system is

escribed in the last part of the paper. 

. Quality of experience in YouTube: From packets to user 

erception 

The experience of a user with any application is conditioned by

ultiple influence parameters, including dimensions such as tech-

ical characteristics of the application, user personality and ex-

ectations, user demographics, device usability, and usage context

mong others. In the case of YouTube, the most relevant param-

ters defining its QoE are the stallings of the video playback. Au-

hors in [18] show that, while initial playback delay has also an in-

uence in QoE for video streaming, most users tolerate it because

hey are used to them. Stalling, on the other hand, has a huge im-

act as already little stalling severely degrades the QoE. 
ack: From packets to quality of experience, Computer Networks 
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Fig. 6. Estimated (a) number of stallings, (b) distribution of errors, and (c) duration of stallings for 386 YouTube videos. 

Fig. 7. MOS vs number of stallings from Lab and Crowdsourcing measurements: 

stallings of 2 (left) and 4 (right) seconds of duration. 

Fig. 8. MOS vs average number (left) and average duration (right) of stallings per 

video from field measurements. 
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In this section we study the relations between both the number

and the duration of these stalling events and the users’ perception.

Having a model which can map stallings to QoE has a very pow-

erful advantage, that of becoming independent of the underlying

specific characteristics of the network in which the YouTube QoE

will be evaluated. 

Figs. 7 and 8 depict these relations for both controlled stud-

ies (lab and crowdsourcing) and field experiments we have per-

formed in [18,20,21] . In the case of lab and crowdsourcing studies,

37 participants watched different YouTube videos for which a fully

controlled stalling pattern was applied (i.e., number and duration

of stalling events were perfectly defined), and then rated the per-

ceived overall quality according to an ordinal ACR mean opinion

score (MOS) scale [51] , ranging from “bad” (MOS = 1) to “excellent”

(MOS = 5). The 37 users were adults aged between 20 and 72 years

(18 female, 19 male, average age of 39 years old), and about 65%

had a daily Internet usage between 1 and 5 hours. The obtained

results are depicted in Fig. 7 . 

In the case of field studies, a group of 33 participants used

mobile broadband 3.5G modems connected to the network of a

mobile network operator to watch their preferred YouTube videos

on their own laptops, rating the overall perceived quality. In this

study, the average age of participants (12 female, 21 male) was 32

years old, and more than 70% had a daily Internet usage between

1 and 5 hour. Stalling patterns can not be controlled in field stud-

ies; for this reason, participants’ traffic was rate-limited to differ-

ent down-link bandwidth values, and the resulting stallings were
Please cite this article as: F. Wamser et al., Modeling the YouTube st
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easured at the application layer using the aforementioned YoMo

ool. Fig. 8 shows the results. 

Both lab and field studies show that user perception of stalling

vents is highly non-linear, with one single stalling event already

ignificantly impairing the overall experience. In both cases, a sin-

le stalling event reduces the video quality from excellent to fair

i.e., 1 MOS point in the scale). Note that the maximum ratings

rovided by users in both Fig. 7 and Fig. 8 are never 5 but some-

here between 4.3 and 4.6. This is a well known phenomenon

n QoE studies, where users hardly employ the limit values of

he scale for their ratings [52] . A second stalling event has also

 strong influence on YouTube QoE, but saturation already starts

fter 2 stallings, as even getting more than 4 stallings slightly re-

uces the QoE from around 2 to 1.6. Stallings duration also plays

n important role in YouTube QoE, but shows to be less critical in

his case. For example, doubling the stalling duration from 2 to 4

econds in the lab studies has a limited impact, but increasing its

alue to more than 8 seconds shows degradation of the user expe-

ience in the field. 

.1. Combining models for QoE-based traffic monitoring 

In this section we combine the results obtained from previous

oE studies into a single YouTube QoE model. By coupling this

odel with the YouTube player model and the stalling reconstruc-

ion technique so far presented, we have designed an on-line pas-

ive monitoring system for assessing, in real time, the QoE under-

one by customers watching YouTube videos in the mobile net-

ork of a major European ISP. The system is known as YOUQMON

43] . 

The proposed monitoring system consists of passive data anal-

sis of the traffic observed in the well known Gn data interface of

 mobile operator. YouTube flows are identified on the fly using

attern matching and deep packet inspection techniques [43] , and

talling patterns are extracted for every observed YouTube video,

roducing a per-video report in a time-slotted temporal basis (in

he practice, every minute). To map the extracted number and du-

ation of stalling events into MOS values, we have adapted the

atasets and curves presented before to the specific slotted time

unctioning of the monitoring system. In particular, we have con-

idered a new mapping function where we take the ratio λ be-

ween the total stalling time and the total video elapsed time (i.e.,

laying + stalling time) in the corresponding time slot as a better

mage of the impacts of stalling time on YouTube QoE. This per-

its to limit the effects of videos with different durations, as we

re now considering the stalling time relative to the length of the

valuation (i.e., the length of the time slot). The resulting YouTube

tallings–QoE mapping model depicted in Fig. 9 is decomposed in

ve different functions, depending on the value of λ computed in

he time slot of length T ( T = 60 s). The five functions have all the
ack: From packets to quality of experience, Computer Networks 
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Fig. 9. MOS vs number of stallings, depending on the fraction λ of total stalling 

duration. 

Table 4 

MOS vs. # stallings operational model parameters. 

i λ a i b i c i 

1 λ < 0.05 2.97 0.74 2.03 

2 0.05 < λ < 0.10 3.07 0.96 1.93 

3 0.10 < λ < 0.20 3.17 1.55 1.83 

4 0.20 < λ < 0.50 3.21 1.66 1.79 

5 λ > 0.50 3.24 1.79 1.76 

Fig. 10. On-line QoE monitoring results. Validation with real traces from the field 

trial. 
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ame shape, in the form of 

OS (n ) i = a i · e −b i ·n + c i , ∀ i = 1 , 2 , 3 , 4 , 5 . (9)

where n is the number of stalling events estimated on the time

lot of length T and { a i , b i , c i } depend on the computed value for

, see Table 4 . At every new time slot where a YouTube video is

etected, the value of λ is obtained as follows: first, we compute

he total stalling time σ and the total play time ρ for this time

lot; then, if the total video elapsed time ρ + σ is smaller than

he length of the time slot T , then we compute λ = σ/ (σ + ρ) ;

therwise, λ = σ/T . The curves depicted in Fig. 9 deserve some

larifications: firstly, the MOS value computed for n = 0 stallings

nly makes sense for the curve in which λ < 5%; in all the other

ases, n > 0. Secondly, the curves only show mappings for up to

 = 6 stallings; this is because a YouTube video with more than

uch a number of stalling events can be directly declared as very

ad quality (cf. Figs. 7 and 8 ), and no extra mapping is therefore

equired. 

To validate the QoE estimation properties of the proposed sys-

em, we replay some of the network packet traces captured in the

eld trial study conducted in [20] , for which we have the MOS val-

es declared by the users as ground truth. Fig. 10 compares both

he declared MOS and the predicted MOS values for 50 different
Please cite this article as: F. Wamser et al., Modeling the YouTube st

(2016), http://dx.doi.org/10.1016/j.comnet.2016.03.020 
ideos which experienced different stalling patterns in the field

rial. All the considered videos have a total duration of less than

0 seconds, just to avoid any biased comparison due to the differ-

nt evaluation procedure used in the field trial and on this eval-

ation. Obtained results are very accurate and close to the MOS

alues actually declared by the participants, but some strange de-

iations occur at the edges of the rating scale, both at very low or

ery high MOS values. This difference comes from the edge-ratings

henomenon previously mentioned. In the field study, ratings for

 stallings correspond to MOS values around 4.5, while the model

epicted in Fig. 9 gives a MOS value of 5 on these situations. Sim-

larly, the limit values for very bad quality provided by the model

re slightly higher than the actual opinion of the users; for this

eason, the model provides a MOS value around 1.8 when users

ctually rate around 1.5. In any case, the reader should note that

one of both identified differences are an issue to consider, as they

ccur so at the edges of the scale. 

To conclude, we present the YouTube QoE monitoring results

btained by using this system with the real mobile broadband traf-

c of the aforementioned operator. Fig. 11 (a) depicts an histogram

n the number of reported tickets (a ticket reports the QoE esti-

ation results for every video and every time slot T ) and the total

layed seconds of YouTube videos at the different estimated QoE

evels, for one hour of real traffic monitored at the live network.

s reported by the pie charts in Figs. 11 (b) and 11 (c), the resulting

ouTube QoE in this network is excellent (i.e., MOS = 5) for about

0% of the issued tickets and of the video time consumed during

he analyzed hour. For 9% of the issued tickets and 4% of the to-

al video time, the quality achieved was average (i.e., MOS = 3.4

n this case). Regarding bad quality events, one of the main lim-

tations of doing only monitoring is that the system can not say

hether bad quality events come from problems on the network

r in any other part of the end-to-end path (the customer termi-

al, the YouTube servers, a bad SNR, etc). Still, the level of visibility

he operator gets by following such an approach is solely by itself

 great asset. 

.2. YouTube QoE in DASH 

So far we have focused the QoE analysis on the fixed-quality

ideo streaming approach normally followed by YouTube. Still, the

assive application of YouTube DASH, as well as its growing us-

ge in mobile networks and end devices, introduces some inter-

sting aspects from the QoE perspective that we discuss next. In-

eed, whilst adaptive streaming concepts are known for a long

ime, their broad commercial usage has only risen recently, and

he topic is getting more and more attention within the research

ommunity. In the case of adaptive streaming, a new KPI becomes

elevant in terms of QoE: quality switches. It is well-known that

ynamic quality adaptation can dramatically reduce stalling when

andwidth decreases in a mobile environment, but at the same

ime, quality switches might have an important impact on QoE, as

hey increase or decrease the video quality during the playback. 

Fig. 12 reports the overall quality results obtained for YouTube

n mobile devices (i.e., smartphones) in subjective lab tests we

ave recently conducted in [53] , where we have compared two dif-

erent flavors of the YouTube smartphone application. Whereas in

ne case we fix the quality of the watched videos to constant HD

uality, in the other one we configure the application to use adap-

ive streaming (i.e., DASH). In the DASH case, videos are also re-

uested in HD quality, but the service itself adapts the subsequent

ideo quality resolutions to throughput variations. 

Figs. 12 (a) and 12 (b) compare the QoE experienced by the

articipants using the fixed HD quality configuration against the

ASH configuration, assuming always a constant downlink band-

idth value during the video display. It is quite impressive to
ack: From packets to quality of experience, Computer Networks 
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Fig. 11. YouTube QoE-based monitoring in a real network. The monitoring is performed at the Gn interface of the mobile network of a leading European network operator, 

on a period of one hour. 

Fig. 12. Overall QoE for YouTube in smartphones, considering both DASH and non- 

DASH applications. Videos are UHD 4k, but due to the device capabilities, there are 

re-scaled to 720p. 
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appreciate how the DASH approach results in a nearly optimal QoE

for all the tested conditions (from 1 Mbps to 4 Mbps), whereas the

fixed HD quality approach results in poor QoE for downlink band-

width values below 4 Mbps. The main difference here is that DASH

changes the video quality without incurring in playback stallings,

whereas the fixed quality configuration definitely results in video

stallings. 

The main takeaway of these simple evaluations is that, what-

ever new YouTube QoE-based monitoring systems relying on net-

work throughput measurements, it must definitely address the def-

inition of new metrics considering the characteristics of YouTube

DASH. Indeed, results from the end-user perspective in the case of

DASH are completely different from the traditional bandwidth-QoE

relations observed in the past. We have recently presented some

first promising results in terms of modeling QoE for DASH [54] ,

but there is still a long way to go when it comes to live monitor-

ing systems as the one we described before. 

9. Conclusion 

This paper characterized and modeled YouTube, the most pop-

ular and volume-dominant service in today’s Internet. Going from

the generated network traffic to the Quality of Experience per-

ceived by the users watching YouTube videos, we have investigated

and derived different models to better understand the functioning

of YouTube. In particular, we introduced a network traffic model

for the new YouTube flow control mechanism, which permits to

understand how YouTube provisions the video traffic flows to the

users. We have also investigated how the traffic is consumed at

the client side, and derived a simple model for the YouTube ap-

plication. Finally, we analyzed the operation of YouTube from an

end-user perspective, presenting a model for the quality perceived

by them. All in all this paper provides objective tools and mod-

els to network operators to better understand the YouTube traffic

in their networks, to predict the playback behavior of the video
Please cite this article as: F. Wamser et al., Modeling the YouTube st

(2016), http://dx.doi.org/10.1016/j.comnet.2016.03.020 
layer, and to assess how well they do with the YouTube traffic in

erms of the satisfaction of their customers. 
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