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ABSTRACT

In this work, we investigate the computation on a shape manifold for atlas generation and application to atlas
propagation and segmentation. We formulate the computation of Fréchet mean via the constant velocity fields
and Log-Euclidean framework for Nadaraya-Watson kernel regression modeling. In this formulation, we directly
compute the Fréchet mean of shapes via fast vectorial operations on the velocity fields. By using image similarity
metric to estimate the distance of shapes in the assumed manifold, we can estimate a close shape of an unseen
image using Naderaya-Watson kernel regression function. We applied this estimation to generate subject-specific
atlases for whole heart segmentation of MRI data. The segmentation results on clinical data demonstrated an
improved performance compared to existing methods, thanks to the usage of subject-specific atlases which had
more similar shapes to the unseen images.

Keywords: Shape, Manifold, Atlas Generation, Segmentation, Whole Heart Segmentation, Cardiac MRI

1. INTRODUCTION

Computation on shape manifolds is useful for population based studies such as regression modeling1,2 and
manifold learning.3–5 To better represent the natural variability of shapes, many works proposed to employ the
computation of statistics on a Riemannian manifold, instead of on the Euclidean vector space for the study of
shapes and images.1,3, 6, 7 In this setting, the distance metric can be naturally defined to the geodesic distance
in the manifold and the statistics computation is generally achieved by iterative optimization schemes.

The computation on diffeomorphisms can be converted to simple and efficient computation of velocity vectors
on the Euclidean vector space via the Log-Euclidean framework6 or the DARTEL framework assuming a constant
velocity field.8 In the setting, a diffeomorphic transformation between two coordinates, on which two shapes
are defined, is mapped to a velocity vector field, and then the distance metric between two diffeomorphisms
can be defined to the Euclidean distance of the two corresponding velocity vectors. This formulation provides
a mechanism for fast computation of Fréchet mean or expectation of diffeomorphisms, which can potentially
lead to an easy implementation of the Nadaraya-Watson kernel regression function for regression modeling and
manifold learning studies.1,3

Motivated by this idea, in this paper we first propose a formulation for fast computation of the Fréchet mean
on a shape manifold. In this formulation, we parameterize the shape of an image using a diffeomorphic coordinate
transformation between the studied image and the reference image. The advantage of this parametrization is
that it provides the mechanism to study variations of shapes via the computation on diffeomorphic deformation
fields, which has been the focus of several works in the literature such as.1,6, 7 Then, we propose a framework to
estimate the shape of an unseen image using the Nadaraya-Watson kernel regression function, where the kernel
function is defined in relation to image similarity measures.

For demonstration, we employ the computation on shape manifold and shape estimation for atlas generation
and apply the generated atlases for atlas propagation based whole heart segmentation of cardiac MRI. In cardiac
MRI, the major challenge of automated segmentation comes from the large shape variability of the heart. Locally
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Figure 1. Fréchet mean of two cardiac shapes using different weighting scheme, w ∈ 0 : 0.1 : 1 for one and (1 − w) for
the other; the most top left is a hypertrophic cardiomyopathy (HCM) case (left ventricle hypertrophy) while the most
bottom right is a right ventricle hypertrophy case. They yellow contour line indicates the endocardial surface.

affine registration method was proposed to deal with the large shape variations of the heart across different
pathologies.9 It was also shown in10 that the closer the shape of the atlas was initialized to the unseen image,
the better the segmentation result could be. Therefore, we propose to estimate the shape of an unseen image and
generate the corresponding atlases for atlas propagation and segmentation. This estimation is computed from
the Fréchet mean of a set of training data. Fig. 1 demonstrates an example where the new atlases are generated
from two training images. The generated atlases are expected to have closer shapes to the unseen image than
any one from the available training data set, and therefore better segmentation results are expected using the
generated atlases compared to directly using the training atlases.

The rest of the paper is organized as follows. We first present the methodology in Section 2, then provide the
detail of experiment and results in Section 3, and finally draw the conclusion and discuss the potential future
work in Section 4.

2. METHOD

In this section, we first describe representation of shapes and computation of Fréchet mean on a shape manifold;
then, we define the distance of shapes using the Log-Euclidean framework, where the computation of Fréchet
mean and Nadaraya-Watson kernel regression function can be fast computed; finally we describe the shape
estimation and atlas generation techniques.

2.1 Shape and Fréchet mean

We formulate the shape of an image I using a transformation T which registers the local coordinates of I to that
of the reference image Ir:

Shape(I) ≡ arg
T

REG (I, Ir, T ) . (1)

Given a set of N images, with associated transformations {Ti, i = 1 . . . N}, the general weighted Fréchet mean
of the transformations is given by:1,3

m({Ti}) = arg min
T

N∑
i

wi × dist(Ti, T )2 , (2)

where dist(Ti, T ) is the distance between two shapes on an assumed manifold and wi = 1/N if the same weight
is used for all observations. For example, by assuming transformation T on the pEuclidean vector space, the
distance metric is then defined as the Euclidean distance, dist(Ti, T ) ≡ ||Ti − T ||2. However, a number of works
proposed that shapes of images should be studied on a Riemannian manifold, a manifold of diffeomorphisms, to
better represent the natural variability of shapes.1,3, 6, 11,12 Therefore, a diffeomorphic deformation between two
images is used to define the distance between the two shapes.
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2.2 Distance on shape manifold

The Lagrangian ordinary differential equation (ODE) can be used to estimate a solution for a diffeomorphic
transformation between the coordinates on which the studied images or shapes lie:

d

ds
φs(x) = vs(x) , (3)

where s ∈ [0, 1] is the time parameter, φs and vs are displacement and velocity vectors respectively, and T (x) =
x + φs(x). To represent the geodesic distance between two shapes, a constraint which penalizes the integrated
distance of the flow is applied to the registration of the two images:

REG (I, Ir, T ) ≡ arg max
T

SIM(I, Ir, T ) , subject to min
v

∫ 1

0

||vs(x)||2L , (4)

where SIM is the similarity metric and operator L can be defined in relation to magnitude and derivatives of
vs.

7,13

Given two images, I1 and I2, and their associated deformations T1 and T2 computed from the registration to
reference image Ir using (4), the distance between the two shapes is defined to the distance of T1 and T2 on the
diffeomorphism manifold:

dist(Shape(I1),Shape(I2)) ≡ dist(T1, T2) . (5)

2.3 Log-Euclidean formulation for computation of constant velocity

In,6,8 the constant velocity (flow) field is assumed for the diffeomorphic registration. Given T which is a resultant
deformation of registration formulated in (4) and represents the shape of image I in a reference coordinate of Ir,
we can estimate the corresponding constant velocity v using the Log-Euclidean framework as follows:

v(x) = log φ(x) = log(T − Id)(x) . (6)

Similarly, the transformation T can be recovered from the constant velocity v using T (x) = x+ exp(v(x)). The
computation of logarithms can be estimated using the scaling and square rooting steps, while the computation
of exponentials can be fast estimated using the scaling and squaring steps.6 In the cardiac MRI experiment in
Section 3, the computation of logarithms takes about one hour, while the computation of exponentials only takes
a few seconds.

The advantage of using constant velocity field representation for shapes is that it provides a well defined
distance metric between two diffeomorphisms via a Euclidean norm, e.g. the second order norm || · ||2, on
velocity vectors:

dist(T1, T2) = || log(φ1)− log(φ2)||2 = ||v1 − v2||2 . (7)

It should be noted that this computation does not guarantee a geodesic distance on the shape manifold M,
instead it is on the local tangent space of M near the identity. However, this metric, (7), can be efficiently
computed compared to traditional computation of geodesics, and it satisfies the definition of distance and thus
is well defined.

Motivated by this definition of distance metric for shapes in (7), we then extend the computation of Fréchet
mean in (2) as follows:

m({Ti}) ≡ x+ exp(v̄) , (8)

where,

v̄ = arg min
v

N∑
i

wi||vi − v||2 and vi = log φi . (9)

Because the velocity vectors {vi} are on Euclidean vector space, the Fréchet mean of them can be directly

computed usingp v̄ =
∑N

i wivi. Hence, the Fréchet mean (sum) of shapes is then given by:

m({Ti}) ≡ x+ exp(

N∑
i

wivi) . (10)

Proc. of SPIE Vol. 8669  866941-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/30/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



1.55

1.5

1.45

1.4

1.35

1.3

1.25

1.2

1.15

1.1

1.050
1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11

Figure 2. NMI values against distance of transformations (dist(Id, T )). Left: NMI is computed between atlas intensity
image IA and transformed atlas image T (IA),10 T is computed using (10) where {wi} are random values from [0,1] and
{vi} are computed from training shapes. Right: NMI is computed between IA and test images.

Fig. 1 illustrates a set of generated shapes from two shapes (the most top left and the most bottom right) using
different weights.

Similarly, the Nadaraya-Watson kernel regression function for shapes in,1,3

mk = arg min
T∈M

∑N
i=1Kh(t− ti)dist(T, Ti)2∑N

i=1Kh(t− ti)
, (11)

can be computed in the proposed formulation, using (10), as follows:

mk ≡ x+ exp

(
N∑
i

wivi

)
and wi =

Kh(t− ti)∑N
i=1Kh(t− ti)

, (12)

where Kh(t) is a kernel function which satisfies
∫
R
K(t)dt = 1.

2.4 Estimating shape for atlas generation

For illustration, we apply the computation on the cardiac shape manifold to generate new atlases for atlas propa-
gation based whole heart segmentation. Given a cardiac atlas which consists of an intensity image IA and a label
image IA, in theory we can register the atlas intensity image to any unseen image for segmentation propagation.9

However, it has been shown in both single propagation9 and multiple propagation and segmentation10 that using
an atlas, which has a similar heart shape to the unseen image, has the potential to achieve better results for
cardiac MRI. Therefore, we propose to generate new atlases which have more similar shapes to unseen images
for atlas propagation and segmentation.

Let IA be an atlas intensity image as the reference image and {Ii} be a set of training images. The shapes
of {Ii} are defined by the coordinate transformations {Ti} computed from the registration between the atlas
and training images. For an unseen image Iu, we propose to estimate the shape of Iu using the Nadaraya-
Watson kernel regression model in (12). The variable t in the kernel function is defined to the distance between
the two shapes of the atlas and unseen image, t = dist(Id, Tu), where Id is identity and Tu is the coordinate
transformation between IA and Iu. However, Tu is unknown before the propagation registration. Image similarity
measures are commonly used to estimate the distance between two images, as Fig. 2 shows the relation between
normalized mutual information (NMI) of cardiac MRI images10 and the transformation distance. Furthermore,
we also need to define the kernel function Kh in order to compute (12). Therefore, we define Kh(dist(Id, Tu))
using NMI, as follows:

Kh(dist(Id, Tu)) =

{
a(NMI(IA, Iu)− b), if NMI(IA, Iu)− b > ε
0, otherwise

(13)
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Figure 3. Left: root mean square surface distance of whole heart segmentation error by muppsB(N) and muppsM(N)
with respect to number of fused segmentations. Right: box plots of whole heart segment errors by the five segmentation
methods and the mean and standard deviation of each group.

where a will disappear when plugging (13) into (12), b can be estimated from training data as follows:

b = min {NMI(Ti(IA), Iu)} , i = 1 . . . N, (14)

and ε ≥ 0 is a user-defined value to exclude these samples which are far away from Iu.

Using (12) and (13), we can estimate a shape, transformation T̂u, for the unseen image Iu, and generate a
new atlas, T̂u(IA), which has similar shape to Iu for segmentation propagation.

3. EXPERIMENT

We employed 24 in vivo cardiac MRI data, {Ii}, among which 19 were from different pathologies (myocardium
infarction, atrial fibrillation, tricuspid regurgitation, aortic valve stenosis, aortic coarctation, Alagille syndrome,
Williams syndrome, HCM, and Tetralogy of Fallot) and 5 were from healthy volunteers. Each of these images has
a manually labeled (segmentation) image on four chambers and great vessels, {Li}. To compare with existing
methods,9,10 we constructed the reference atlas using another set of 10 volunteer data. The atlas intensity
image, IA, was the mean intensity of the 10 registered cardiac MRI images and the label image, LA, was defined
on the mean shape of them.9 The atlas hence did not have any statistical information of either shapes or
intensity distributions. The shapes of the 24 test images were defined by the transformations {Ti} which were
accurately computed from the registration between Li and LA. Logarithms were applied to these transformations
to compute the velocity fields {vi}. For experiment, we employed leave-one-out strategy by considering one of
the test images as the unseen image and the others as the training shapes. For each unseen image, we employed
five segmentation methods:

• single: use (Ti(IA), Ti(LA)), i = 0, 1, . . . , 23, as an atlas for single propagation,9 where T0 is the identity
transformation;

• singleB: use (TB(IA), TB(LA)) as an atlas for single propagation where TB = maxTi
NMI(Ti(IA), Iu) using

the global affine registration ranking;10

• singleM: use (TM (IA), TM (LA)) as an atlas for single propagation where TM is the estimated shape of the
unseen image using (12) and (13);

• muppsB(N): use {(Tb(IA), Tb(LA))}, b = 1, . . . , N as the atlas pool for applying the multiple propagation
strategy in10 where {Tb} are the transformations which provide the best NMI values among all training
shapes;

• muppsM(N): randomly select 15 cases from all available training shapes and use them to estimate the
shape, TM1

, of the unseen image. This process is repeated N times, resulting in N shapes and atlases,
{(TMi(IA), TMi(LA))}, i = 1, . . . , N for multiple propagation.
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Both muppsB(N) and muppsM(N) used the majority voting scheme to fuse the multiple segmentations into
one result.14 The segmentation error was defined to the root mean square distance between the segmented whole
heart surface and the gold standard, including endocardium of the four chambers and epicardium of the left
ventricle.9

Fig. 3 provides the results. Fig. 3 (left) shows that muppsB(N) achieved the best performance when 11
best atlases (N=11) was used for propagation and fusion. Also, the segmentation using generated atlases,
muppsM(N), was always better than muppsB(N) regardless the number of fused segmentations. The gain
from fusion of multiple segmentations, from 2.17±0.70 to 2.07±0.62 (mm), was evident; while for muppsM(N),
whose segmentation accuracy was always better than muppsB(N) regardless the number of propagations, the
gain was smaller. Fig. 3 (right) presents box plots of whole heart segment errors where N=11 was used for
muppsB and muppsM. The mean and standard deviation of the five segmentation results were 2.47 ± 1.31,
2.17± 0.70, 2.07± 0.62, 1.96± 0.38 and 1.86± 0.28 (mm) respectively. The segmentation using generated atlases
demonstrated better robustness, as it had smaller standard deviation and less outliers in the box plots. This is
also confirmed in Fig. 3 (right): compared to muppsB(11), singleM not only had smaller mean error (1.96 vs
2.07 mm), but also had smaller standard deviation (0.38 vs 0.62 mm) and less outliers in the box plots, which
indicates a better robustness. Finally, using the multiple propagation strategy muppsM(11) further improved
the segmentation from 1.96± 0.38 (by singleM) to 1.86± 0.28 mm.

4. CONCLUSION AND DISCUSSION

In this work, we have presented a new formulation for computing the Fréchet mean on a shape manifold. In
this formulation, the distance metric is defined on the constant velocity fields of the coordinate transformations.
The transformations define the shapes of images and their corresponding velocity fields lie on a Euclidean
vector space. Therefore, the Fréchet mean and Nadaraya-Watson kernel regression model of shapes can be
directly and fast computed using vectorial operations on the velocity vectors. We further proposed a method to
estimate the shape of an unseen image using the Nadaray-Watson regression function, where the kernel function
was defined in relation to the similarity metric between images. We employed this shape estimation for atlas
generation and applied to the atlas propagation based whole heart segmentation of cardiac MRI, where the
generated atlases had more similar shapes to the unseen images. We compared the segmentation performance
from both single and multiple propagations with existing segmentation schemes which employed atlases directly
from a training dataset. The experimental results on cardiac MRI showed that even using single one atlas,
the proposed segmentation method still achieved better accuracy and robustness than the multiple propagation
method in,10 in particular for the challenging cases where the shapes could differ significantly from any available
atlas. Furthermore, the segmentation performance was further improved by combining the atlas generation
technique with the multiple propagation strategy.

The proposed computation of Fréchet mean on a shape manifold is generally applicable to other population
studies such as regression modeling on brain images1 where the Nadaray-Watson kernel regression function can
be efficiently computed using (12), given the constant velocity fields are computed. For the application of whole
heart segmentation, in future work we will consider to use local similarity measures to generate a best atlas for
each local region.15 The shape of the final atlas will be a fusion of all these locally best shapes via the proposed
shape computation framework, where the transformations will be computed from the fused local velocities.
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