
Contents lists available at ScienceDirect
Information Systems

Information Systems 39 (2014) 233–255
0306-43

doi:10.1

n Corr

E-m
1 Ph
journal homepage: www.elsevier.com/locate/infosys
Mining frequent itemsets in a stream
Toon Calders a, Nele Dexters b, Joris J.M. Gillis c,n,1, Bart Goethals b

a Eindhoven University of Technology, The Netherlands
b University of Antwerp, Belgium
c Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
a r t i c l e i n f o

Available online 30 January 2012

Keywords:

Frequent itemset mining

Datastream

Theory

Algorithm

Experiments
79/$ - see front matter & 2012 Elsevier Ltd. A

016/j.is.2012.01.005

esponding author. Tel.: þ32 11 26 82 07.

ail address: joris.gillis@uhasselt.be (J.J.M. Gill

D Fellow of the Research Foundation Flande
a b s t r a c t

Mining frequent itemsets in a datastream proves to be a difficult problem, as itemsets

arrive in rapid succession and storing parts of the stream is typically impossible.

Nonetheless, it has many useful applications; e.g., opinion and sentiment analysis from

social networks. Current stream mining algorithms are based on approximations. In

earlier work, mining frequent items in a stream under the max-frequency measure

proved to be effective for items. In this paper, we extended our work from items to

itemsets. Firstly, an optimized incremental algorithm for mining frequent itemsets in a

stream is presented. The algorithm maintains a very compact summary of the stream

for selected itemsets. Secondly, we show that further compacting the summary is non-

trivial. Thirdly, we establish a connection between the size of a summary and results

from number theory. Fourthly, we report results of extensive experimentation, both of

synthetic and real-world datasets, showing the efficiency of the algorithm both in terms

of time and space.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Mining frequent itemsets in large static so-called
transaction databases has been the topic of numerous
studies for over the past 15 years. Many efficient algo-
rithms and optimizations have been discovered, which
have already made it into several commercial database
and data mining products. When the given database is a
dynamically and fast evolving stream of data, for which
also a continuously up-to-date analysis needs to be
provided, these known techniques are suddenly no longer
applicable. Mining frequent itemsets over such streams of
itemsets presents interesting new challenges. The speed
of new arriving itemsets excludes revisiting the history,
unless it is stored. But storing large parts of a stream is
typically impossible, however, as huge volumes of data
ll rights reserved.

is).

rs—FWO.
pass. Yet, mining streams has numerous interesting
applications, for example, opinion and sentiment mining
from social networks, network traffic analysis, sensor
network analysis, time-dependent market basket analysis,
stock price analysis, and much more.

Mining frequent itemsets over streams is an extension
of mining frequent items over streams. For a comprehen-
sive overview of the current state of the art, see Cormode
and Hadjieleftheriou [9]. Although many of the techni-
ques developed for frequent items can be reused; see, e.g.,
the hMiner algorithm of Wang and Chen [21] based on
hCount and Lossy Counting, there are specific challenges
associated with mining frequent itemsets, including the
combinatorial explosion of the number of patterns, and
that any transaction arriving over the stream can support
an exponential (in its length) number of patterns. Some
interesting approaches have been taken to tackle these
problems, most of them focusing either on (1) a sliding
window model [11–14,17–19] where only the frequent
itemsets in the w most recent transactions is required for
a given w; a slight deviation is the time-sensitive sliding

www.elsevier.com/locate/infosys
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2012.01.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2012.01.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2012.01.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2012.01.005&domain=pdf
mailto:joris.gillis@uhasselt.be
dx.doi.org/10.1016/j.is.2012.01.005


T. Calders et al. / Information Systems 39 (2014) 233–255234
window, where not the length of the window is fixed, but
the time span, (2) the time-fading model [16], or (3) the
landmark model [10,13,14,21,23]. In most of these works,
a datastructure is maintained for the current window that
either directly contains the frequent patterns, or is a
convenient representation of the transactions in the
window, such as a bit-sequence or a trie, that allows for
quickly determining the frequent itemsets. In order to
reduce the memory overhead, sometimes the number of
patterns to be monitored is reduced to a condensed set;
e.g., the closed itemsets [5,7], or approximate solutions
are computed [10,15,21]. Next to mining the frequent
itemsets in one stream, further extension to, for instance,
distributed streams [22] have been proposed, or even to
mining graph patterns over streams [1]. For a survey on
many of the techniques for mining frequent itemsets over
streams, see [6].

The sliding window or decay models typically require
some user-specified parameters, such as a fixed window
length or decay factor. Choosing one value of such a
parameter adequately for every itemset is practically
impossible [3,4]. For example, consider a large retail chain
of which sales can be considered as a stream. Then, in
order to find frequent itemsets to do market basket
analysis, it is very difficult to choose in which period of
the collected data you are particularly interested. For
many products, the amount sold depends highly on the
period of the year. In summer time, sales of ice cream
increase and during the world cup, sales of beer increase,
while during the new-year festivities, the sales of cham-
pagne and many other typical gifts increase. Such seaso-
nal behavior of a specific item can only be discovered
when choosing the correct window size for that item. This
size, however, can hide a similar behavior of other items
in another window. Therefore, we introduced the max-

frequency measure and a new mining algorithm for sol-
ving this problem [3,4]. Using this new measure, the
window length can vary for each itemset separately. More
specifically, for every itemset, the optimal window length,
for which the itemset’s frequency is the highest, is being
considered.

In this paper, we significantly extend our previous results.
First, we revisit the definitions for max-frequency and its
properties, and we explain the basic algorithm for mining a
single max-frequent itemset in a stream [4]. Essentially, we
have to maintain a summary of the stream in order to
provide the max-frequency at any given time, which needs
to be kept up to date continuously with the stream.

Several optimizations for speeding up the algorithm
and a worst case analysis, based on well-known results
from number theory, are given.

Then, we extend the work on items to itemsets and we
investigate whether we need to maintain a summary for
every itemset occurring in the stream and dig into
compressing the memory size needed. Unfortunately, as
we will show, attempting to exploit the subset relation
between itemsets in order to compact the summaries is
futile. Finally, we report results of extensive experimenta-
tion with our software, both on synthetic and real-world
datasets. These experiments show that our algorithm is
efficient both in terms of time and space.
2. Max-frequency revisited

In this section we review the definition of the max-
frequency measure and the problem definition [2–4].
Throughout the paper, we assume that a finite set of
items I has been given. An itemset is any subset of I .

Definition 2.1 (Calders et al. [3]). A stream S is a
sequence of itemsets /s1 s2 � � � snS. n¼ 9S9 is the length

of the stream. s1 is considered the first and oldest itemset
in the stream, and sn the latest and youngest. We will use
st, 1rtrn, to denote the t-th itemset in the stream S.
We call st the itemset at timestamp t in stream S.

The concatenation of two streams S1 and S2 will be
denoted S1 �S2.

Let 1r ir jr9S9. S½i,j� denotes the stream /si siþ1

� � � sjS. S½i,� denotes S½i,9S9�, and S½,j� denotes S½1,j�.
The suffix of S consisting of the last k itemsets of S,

denoted lastðk,SÞ is

lastðk,SÞ :¼ S½9S9�kþ1,�:

Throughout the paper we will be illustrating our
algorithms by a running example based upon the follow-
ing stream (the numbers at the top denote the time-
stamps of the itemsets in the stream):

1 2 3 4 5 6 7 8 9 10 11

S ¼ a b | ab | b ab a b | ab

We use the shorthand a, b, ab as shorthand for the sets
of items fag, fbg, and fa,bg, respectively. For this example
stream, 9S9¼ 11, s1 ¼ a, s7 ¼ ab, S½5;9� ¼/| b ab a bS,
S½,3� ¼/a b |S, and lastð3,SÞ ¼/b | abS.

A stream is here defined as a static object. In reality,
however, a stream is an evolving object that is essentially
unbounded. When processing a stream, it is to be
assumed that only a small part of it can be kept in
memory. When analyzing algorithms and in examples
we will therefore assume a stream S of sufficient length.
St will denote the stream S up to timestamp t; that is
S½1,t�, the part of the stream that already passed at time t.
At time t only St has been observed so far.

2.1. Counts, frequencies and max-frequency

In [2,4], the following new frequency measure for
items in streams was introduced. This measure was
trivially extended to itemsets in [3].

Definition 2.2 (Calders et al. [2]). countðA,SÞ denotes the
number of times itemset A occurs in stream S and is
defined as

countðA,SÞ :¼ 9f1rtr9S99ADstg9:

The frequency of A in S is defined as

freqðA,SÞ :¼
countðA,SÞ

9S9
:

Finally, the max-frequency mfreqðA,SÞ of itemset A in a
stream S is defined as the maximum of the frequencies of



Fig. 1. Running example: reference chart; entry t,i of the matrix MA of

itemset A contains freqðA,S½i,t�Þ in percent; i.e., the frequency of A in the

suffix starting at position i of St . mfreqðA,StÞ is hence maxi ¼ 1,...,t ðMA½t,i�Þ.

T. Calders et al. / Information Systems 39 (2014) 233–255 235
A over all suffixes of the stream; that is

mfreqðA,SÞ :¼ max
k ¼ 1,...,9S9

ðfreqðA,lastðk,SÞÞÞ:

Example 1. Consider Fig. 1 which reports the frequencies for
the itemsets a, b, and ab in our running example stream. The
stream S has length 11. For timestamps t¼ 1, . . . ,11, the
frequencies of the itemsets in suffixes of the stream St are
given. Consider, e.g., the first row in the first matrix: 100. This
number indicates that the frequency of the itemset a in the
suffix starting at position 1 of S1 ¼/aS is 100%. Consider
now the stream at timestamp 5; i.e., S5 ¼/a b | ab |S.
The frequency of a in the suffixes of that stream is 40% (suffix
S5½1,�), 25% (suffix S5½2,�), 33% (suffix S5½3,�), 50% (suffix
S5½4,�), 0% (suffix S5½5,�), as indicated by the fifth row in the
matrix Ma. The matrices are lower diagonal matrices as a
stream of length n has exactly n suffixes.

The max-frequency at timestamp t of itemset a (b, ab

respectively) is now, by definition, equal to the maximum
value in the t-th row in the matrix Ma (Mb, Mab respec-
tively). For example, mfreqða,S6Þ ¼max f33%,20%,25%,33%,

0%,0%g ¼ 33%. Other examples are mfreqðb,S9Þ ¼ 100%
(maximum value in the 9th row of the second matrix),
and mfreqðab,S10Þ ¼ 28% (maximum value in the second
to last row of the third matrix).

2.2. Minimal window length

One of the problems with the max-frequency measure
that is clearly illustrated in Fig. 1 is that every time a
transaction arrives in the stream, the frequency of all
itemsets, that are contained in that transaction, suddenly
peaks and becomes 100%. In Fig. 1 we can observe this,
e.g., at timestamp 4 when itemset ab arrives. For itemsets
a, b, and ab the frequency peaks to 100%, as these sets
have a frequency of 100% in the suffix /abS. The solution
for this problem, however, is simple: we can disallow too
short windows by setting a minimal window length mwl.

Definition 2.3 (Calders et al. [3]). Given a minimal win-
dow size mwl, the max-frequency with minimal window

length mfreqmwl
ðA,SÞ of itemset A in a stream S is defined

as the maximum of the frequencies of A over all suffixes of
S with a length of at least mwl; that is

mfreqmwl
ðA,SÞ :¼ max

k ¼ mwl,...,9S9
ðfreqðA,lastðk,SÞÞÞ:

If the length of the stream is less than mwl, the max-
frequency is defined to be 0.

Example 2. Consider once more Fig. 1. Setting a minimal
window-length mwl actually comes down to ignoring the
last mwl�1 entries of all rows in the matrices, as they
correspond to frequencies in suffixes of the streams that
are too short. Let mwl¼ 3; hence, we ignore the last two
entries in all rows. We get mfreqmwl

ða,S6Þ ¼max f33%,
20%,25%,33%g ¼ 33%, mfreqmwl

ðb,S9Þ ¼ 75% (the last two
entries 50, 100 are ignored), and mfreqmwl

ðab,S4Þ ¼ 33%
(the last two entries 50, 100 are ignored).

By setting a minimal window length we can reduce the
problem of sudden peaks in frequency for sparse items.
Instead of peaking to 100%, the items will peak to a
frequency of only 1=mwl. This behavior can even be
further suppressed in the case we only report itemsets
that reach a certain minimal frequency minfreq, as will be
the case in the general problem statement as introduced
in the next subsection. In that case, if we carefully chose
the minimal window length such that 1=mwlominfreq, a
single occurrence of a sparse item will no longer result in
any peak in frequency whatsoever.

2.3. The max-frequent itemset mining problem

The main problem we study in this paper is the
following:

Problem 2.4 (Calders et al. [3]). Given a minimal frequency

threshold and a minimal window length, for an evolving
stream S, maintain a small summary of the stream, such
that, at any timepoint t, all currently max-frequent item-
sets can be produced instantly from this summary.

Example 3. For minimal frequency minfreq¼ 0:4, and
mwl¼ 3, the frequent itemsets with their respective



T. Calders et al. / Information Systems 39 (2014) 233–255236
frequencies will be as follows for our running example
(cfr. Fig. 1):
Time
 Itemsets
a (%)
 b (%)
 ab (%)
1
 –
 –
 –
2
 –
 –
 –
3
 33
 33
 –
4
 50
 66
 –
5
 40
 50
 –
6
 –
 66
 –
7
 50
 75
 50
8
 66
 66
 40
9
 66
 75
 –
10
 50
 60
 –
11
 60
 66
 40
A dash denotes that the set is not part of the output; only
if it is present in the output, its frequency is reported in
the table.

More formally, we will introduce a concise summary,
summaryðStÞ, and efficient procedures Update, and
Get_mfreq, such that UpdateðsummaryðStÞ,IÞ equals
summaryðSt �/ISÞ, and Get_mfreqðA,summaryðStÞÞ equals
mfreqðA,StÞ.

Because Update has to be executed every time a new
itemset arrives, it has to be extremely efficient in order to
be finished before the next itemset arrives. Similarly,
because the stream continuously grows, the summary
must be independent of the number of items seen so far,
or, at least grow very slowly as the stream evolves.
3. Mining a single itemset

In this section we introduce the algorithms for mining
the max-frequency of an itemset with and without mini-
mal window length and/or minimal (max-)frequency
threshold. Before we go into the details of the algorithms,
first some important notions are revisited.
3.1. Maximal windows, borders, and summaries

The longest window in which the maximum frequency
is reached is called the maximal window for A in S, and
its starting point is denoted startmaxðA,SÞ. That is,
startmaxðA,SÞ is the smallest index such that

mfreqðA,SÞ ¼ freqðA,S½startmaxðA,SÞ,9S9�Þ:

If the minimum window length is set, the starting point
of the maximal window, denoted by startmaxmwl ðA,SÞ, is
the smallest index smaller than or equal to 9S9�mwlþ1
satisfying

mfreqmwl
ðA,SÞ ¼ freqðA,S½startmaxmwlðA,SÞ,9S9�Þ:

Obviously, checking all possible windows to find the
maximal one is infeasible algorithmically, given the con-
straints of the stream problems. Fortunately, not every
point in the stream needs to be checked.
Definition 3.1. Timestamp q is called a border for itemset

A in S if there exists a stream B such that q¼

startmaxðA,S �BÞ:

Thus, a border is a point in the stream that can still

become the starting point of the maximal window. Based on
the next theorem and corollary, it is possible to give an
exact syntactic characterization of the borders.

Theorem 3.2 (Calders et al. [4]). Let S be a stream of

length L, and let S½q,L� be the maximal window for the

itemset A. Then, for any p, r with poqrr: freqðA,S½p,q�1�Þo
freqðA,S½q,r�Þ.

Corollary 3.3 (Calders et al. [4]). Let S be a stream, and let

1rqr9S9. Position q is a border for target itemset A in S if

and only if for all indices j,k with 1r joq and qrkr9S9, it

holds that freqðA,S½j,q�1�Þo freqðA,S½q,k�Þ.

Theorem 3.2 and Corollary 3.3 characterize exactly
which positions in a stream are borders, i.e., potential
starting points of the maximal window. They state that a
position q in a stream S cannot be a border if there is a
block before q (i.e., S½p,q�1�) with an equal or higher
frequency than a block after q (i.e., S½q,r�). Thus, if a
before- and after-block satisfying the conditions can be
found, the position can be pruned from the summary as a
border. This is because the before-block will boost the
frequency of S½p,� up to or over the frequency of S½q,�.

Example 4. Consider the stream of our running example.
The border positions of itemsets a, b, and ab have been
indicated by vertical bars with the set as subscript:

1 2 3 4 5 6 7 8 9 10 11

S¼ aj a b

�� b | ab

�� ab | b

�� b aj ab a b | a,b,ab

�� ab

As can be seen, not all occurrences of an itemset in the
stream result in a border for that item; e.g., for a, there is
no border at position 8. Similarly for ab there is no border
at 7, since, for example, the frequency of ab in the block
½4;6� is at least as large as the frequency of ab in the block
½7;10�. Therefore, 7 can never become a maximal position
for ab anywhere in the future, as the position 4 will
always represent a window in which the frequency of ab

is larger.

This theorem and corollary form the basis of an
incremental algorithm to efficiently update the summary
for one itemset A. The summary at timestamp t of the
itemset A is denoted St. From the summary the current
max-frequency of A can be produced instantly. The
summary of itemset A at time-stamp t will consist of
the list of all borders of A in St , together with counters
that store the number of occurrences of A between the
borders; e.g., the summary

½ðp1,a1Þ, . . . ,ðpr ,arÞ�

denotes that A has borders at positions p1, p2, y, pr. The
count ai equals countðA,S½pi,piþ1�1�Þ for i¼ 1, . . . ,r�1,
and ar ¼ countðA,S½pr ,�Þ.



T. Calders et al. / Information Systems 39 (2014) 233–255 237
The algorithm for maintaining the summary is now
based upon the following observations (for a detailed
explanation and proofs, see [4]):
�
 The frequency of A in the suffixes starting at the
borders is increasing from left to right; i.e.,

freqðA,St½p1,�Þo freqðA,St½p2,�Þo � � �o freqðA,St½pr ,�Þ:
�
 As such, the maximal border is always the last one; i.e.,

mfreqðA,StÞ ¼ Get_mfreqðA,summaryðStÞÞ ¼
ar

t�prþ1
:

�
 Borders disappear always from right to left; i.e., if
p1, . . . ,pr are the borders in St , and pi is no longer a
border in Stþ1, then neither are piþ1,piþ2, . . . ,pr . Thus
we start from ðpr ,arÞ and work towards ðp1,a1Þ.

�
 Borders only disappear if non-target items arrive in the

stream; i.e., if A � I, and p is a border in St , then p is
also a border in St �/IS.

�
 If a target item arrives in the stream, a new border is

added to the stream, unless the max-frequency of A

was already 100%; i.e., if A � I, then the summary of
St �/IS will be ½ðp1,a1Þ, . . . ,ðpr ,arÞ,ðtþ1;1Þ� if
ar ot�prþ1, and ½ðp1,a1Þ, . . . ,ðpr ,arþ1Þ� otherwise.
In Algorithm 1 it is shown how the summary at
timestamp tþ1, denoted Stþ1, is derived from the sum-

mary at the previous timestamp, St, and I, the itemset at
S½tþ1�. The algorithm is illustrated on the running
example in Fig. 2.

The combination of Update and the max-frequency
deduction is called Max-Freq-Miner. Next, we discuss
three extensions of the basic Max-Freq-Miner algorithm
to tackle some issues of Max-Freq-Miner. This results
in three algorithms derived from Max-Freq-Miner:
Max-Freq-Minermwl, Max-Freq-Miners and Max-Freq-
Minermwl

s . These three algorithms consider only one item-
set at a time and are potentially very inefficient when
tracking all itemsets satisfying the constraints. Therefore,
an optimized algorithm for mining all itemsets,
Max-Freq-Miner-Allmwl

s is given as well.
Fig. 2. Running example: max-freq
Algorithm 1. UpdateðSt ,IÞ for one target itemset A on time
tþ1, without minimal frequency threshold, and without

minimal window length.
ue
Require: St ¼ summaryðStÞ ¼ ½ðp1 ,a1Þ, . . . ,ðpr ,arÞ�

Ensure: Stþ1 ¼ summaryðStþ1Þ ¼ summaryðSt �/ISÞ

1: S
ncy
et Stþ1 :¼½ �
2: if
(St is empty) then

3:
 if (target itemset AD I) then

4:
 Stþ1 :¼ ½ðtþ1;1Þ�
5: e
lse

6:
 if (target itemset AD I) then

7:
 if ar ¼ t�prþ1 then

8:
 Stþ1 :¼½ðp1 ,a1Þ, . . . ,ðpr ,arþ1Þ�
9:
 else

10:
 Stþ1 :¼½ðp1 ,a1Þ, . . . ,ðpr ,arÞ,ðtþ1;1Þ�
11:
 else

12:
 Stþ1 :¼ St
13:
 i :¼ r
14:
 while i41 do

15:
 if ai

t�pi þ1 r ai þai�1
t�pi�1 þ1 then
16:
 ai�1 :¼ ai�1þai
17:
 remove ðpi ,aiÞ from Stþ1
18:
 i :¼ i�1
19:
 else

20:
 i :¼ 1
3.2. Minimal window length

As noted in the previous section, a minimal window
length resolves the frequency peaks of rare itemsets.

3.2.1. Pruning

In Max-Freq-Miner we use the fact that a border q

in stream S can be pruned if we can find two blocks
B1 ¼S½p,q�1� and B2 ¼S½q,r� such that the frequency of
the target in B1 is higher than in B2. The intuition behind
the proof of this theorem is that in such a situation, q can
never become a border again, because either the window
starting at p will have higher frequency, or the window
starting at rþ1 has. When we are working with a minimal
window length, however, this observation does no longer
imply that q can be pruned! Indeed, it could be the case
that the suffix of the stream starting at rþ1 does not meet

the minimal window length requirement. In that case, even
(no mwl, no minfreq).



T. Calders et al. / Information Systems 39 (2014) 233–255238
though the window starting at q has lower frequency than
the window starting at rþ1, it can still have the highest
← b → ← d → ← y → ← mwl →
a c x t

↑ ↑ ↑
p q r
frequency of all windows that meet the minimal window

requirement! The next example illustrates this situation.

Example 5. Consider stream S¼/9a a a b 9a aS in
which the borders 1 and 5 are marked with a vertical
bar. When itemset fbg arrives in the stream, resulting in
/9a a a b a a bS, then position 5 is no longer a border,
as the block /a a a bS before position 5 has a higher
frequency of the target item than the block /a a bS after
position 5. Therefore, in the algorithm without minimal
window length, the border at position 5 is pruned,
because no matter how the stream evolves, position 5
will never be a border again.

However, consider now the case where we do have a
minimal window length of 3. Then, position 5 can still
become a border again! Indeed, suppose two more target
itemsets are added to the stream, resulting in
/9a a a b :a a b 9a aS. In this stream, the window
starting at position 5 has the highest frequency of the
target items among the windows satisfying the minimal

window length.

Fortunately, as the next theorem states, this problem
can easily be resolved as follows:

Theorem 3.4 (Calders et al. [3]). Let S be a stream of

length L, and let mwl be the minimal window length. Let

S
�mwl denote S½1,L�mwl�. If q¼ startmaxmwlðA,SÞ, then,
�
 either q¼ L�mwlþ1

�
 or, q is a border in S

�mwl.
Proof (Only a short version of the proof was included in

[3]). First of all, because the length of the maximal
window is at least mwl, we have that qrL�mwlþ1. We
now can have that q¼ L�mwlþ1 or qoL�mwlþ1. In the
latter case, we have to show that q is a border in
S½1,L�mwl�. According to Corollary 3.3, we have to prove
that the frequency of target A in every block before
position q is strictly less than the frequency in every
block following q. More concretely, we pick a certain
1rpoq and we denote the occurrences of target A in
S½p,q�1� by a and we use the shorthand notation b for the
length of this substream, q�p. We also pick a certain
qrrrL�mwl and we denote the occurrences of the
target A in S½q,r� by c and we introduce the shorthand
notation d for the length r�qþ1. Finally, the occurrences
of the target A in S½rþ1,L�mwl� are denoted by x and y is
used to express the length of this substream, L�mwl�r.
Remark that in the case of q¼ L�mwl or qoL�mwl but
r¼ L�mwl, x¼0 and y¼0. We also denote the amount of
occurrences of the target A in lastðmwl,SÞ by t, and the
length of this last substream equals mwl. This situation is
depicted in the following visual:
It is sufficient to show that freqðA,S½p,q�1�Þo
freqðA,S½q,r�Þ, i.e., a=boc=d. Because q is the starting point
of the maximal window of length at least mwl in S, we
know that

cþxþt

dþyþmwl
4

aþcþxþt

bþdþyþmwl
and

cþxþt

dþyþmwl
Z

xþt

yþmwl
:

Notice that the first inclusion is strict, since startmaxmwl

ðA,SÞ is the smallest index on which the max-frequency is
reached in case of a tie. These inequalities are equivalent to

cþxþt

dþyþmwl
4

a

b
ð1Þ

and

c

d
Z

xþt

yþmwl
: ð2Þ

Assume now for the sake of contradiction that
a=bZc=d. We then have, according to (1), that

cþxþt

dþyþmwl
4

a

b
Z

c

d
)

xþt

yþmwl
4

c

d
,

which is not possible, as shown in (2). Therefore, the
assumption is wrong, illustrating that a=boc=d. &
3.2.2. Max-Freq-Minermwl

Hence, in order to know the maximal frequency with a
minimal window length mwl, it suffices to apply the
method without any minimal window length to keep track
of the borders for the stream St½1,t�mwl� ¼S

�mwl
t . Then,

when we need the max-frequency, we check the borders of
S
�mwl
t in the complete stream S, and the minimal window

itself, lastðmwl,SÞ. The summary of the stream St with
minimal window length is a pair consisting of the normal
summary of S�mwl

t and the content of the minimal window
itself; i.e., MWt :¼ lastðmwl,SÞ. We will call this summary,
the mwl-summary of St . Algorithm 2 explains how the
mwl-summary ðSt ,MWtÞ of St is updated upon the arrival
of a new itemset I in order to get the mwl-summary
ðStþ1,MWtþ1Þ for Stþ1 ¼St �/IS. Notice that for a new
stream the first mwl-summary will be created at time-
point mwl, and will be ð½�,SÞ. Notice also that Update refers
to the summary updating method without minimal win-
dow length as described in Algorithm 1.

Algorithm 2. Updatemwl
ððSt ,MWtÞ,IÞ for one target itemset

I on time tþ1, with minimal window length mwl, and
without minimal frequency threshold.
Require: ðSt ,MWtÞ, the mwl-summary of St

Ensure: ðStþ1 ,MWtþ1Þ the mwl-summary of St �/IS

1: S
tþ1 :¼ UpdateðSt ,MWt ½1�Þ
2: M
Wtþ1 :¼MWt ½2,mwl� �/IS



ion Systems 39 (2014) 233–255 239
From the mwl-summary ðS,MWÞ for itemset A in
stream S, we can no longer assume that the max-
frequency is in the last entry of the summary S; the fact
that this entry is the maximal one among all border
positions for S�mwl

t , does not necessarily imply that this
last entry is also the maximal one among the borders for
the stream S, as the following example illustrates:

Example 6. Let mwl be 5. Consider the following three
streams (border positions in S

�mwl
t and the minimal

window have been indicated by vertical bars and a
rectangle respectively):

All three streams S
i have an mwl-summary ðS,MWÞ with

S¼ ½ð1;1Þ,ð5;2Þ�g. Nevertheless, the maximal border
startmaxmwl for these three streams is respectively 1, 5,
and 9.

Therefore, the function Get_mfreqmwl is defined as
follows. t denotes the current time and A the target
itemset. Let St ¼ ð½ðp1,a1Þ, . . . ,pr ,ar�,MWtÞ; li will denote
pi�pi�1 for i¼ 1, . . . ,r�1, and lr ¼ t�prþ1. ci denotesPr

j ¼ i aj for all i¼ 1, . . . ,r. Furthermore, let a¼ count

ðA,MWtÞ.

Get_mfreqmwlðA,StÞ :¼ max
i ¼ 1,...,r

ciþa

liþmwl
:

3.2.3. Example

Fig. 3 shows the summaries and max-frequencies for
the itemsets a, b and ab at the various timestamps.

3.3. Minimal frequency threshold

Until now, we assumed that for the target itemset we
need to be able to report its frequency exactly at any
timepoint. We will now relax this requirement by setting
a minimal frequency threshold s. That is, at any time we
should be able to produce the exact max-frequency of the
target itemset, only if it is above the frequency threshold.
This relaxation will allow us to decrease the size of the
summary.

T. Calders et al. / Informat
Fig. 3. Running example: max-frequency with a minimal window

length (no minimal frequency threshold).
3.3.1. Pruning

Let St be a stream with summary St ¼ ½ðp1,a1Þ, . . . ,
ðpr ,arÞ�, and suppose that

freqða,St½p1,t�Þ ¼
a1þ � � � þar

t�p1þ1
os:

Then we can safely remove ðp1,a1Þ from the left-side of the
summary; even though it is possible that p1 can still become
the starting point of a maximal window in the future, it can
be proven that it can never be the starting point of a
maximal window in which the target item is above the

threshold. Indeed, suppose that freqðA,ðSt �BÞ½p1,�Þ exceeds
the minimal frequency threshold, then it is easy to show
that freqðA,BÞ must be even larger, and hence p1 is not the
maximal border.

3.3.2. Max-Freq-Miners
In order to be able to perform this pruning efficiently,

we store and maintain for the summary, the count
total¼ a1þa2þ � � � þar . When the left-most border is
pruned, total is decreased by a1 to reflect the new total.
Algorithm 3 shows how the summary is updated in
Max-Freq-Miners.

Deriving the max-frequency is equivalent to deriving
the max-frequency in the case of no minimal frequency
threshold.

Algorithm 3. UpdatesðSt ,IÞ for one target itemset A on time
tþ1, with minimal frequency threshold s, and without

minimal window length.
Require: St ¼ ½ðp1 ,a1Þ, . . . ,ðpr ,arÞ� the summary of St

Ensure: Stþ1 the summary of St �/IS

1: to
tal :¼ a1þa2þ � � � þar
2: S
tþ1 :¼ UpdateðSt ,IÞ
3: if
 AD I then

4:
 total :¼ totalþ1
5: e
lse

6:
 while Stþ1 not empty and changing do

7:
 Let (p,a) be the first entry of Stþ1
8:
 if total
ðtþ1Þ�pþ1 os then
9:
 total :¼ total�a
10:
 remove ðp,aÞ from Stþ1
3.3.3. Example

Fig. 4 shows the summaries and the max-frequencies
for the itemsets a, b and ab at the various timestamps.

3.4. Minimal window length and minimal frequency

threshold

The last variation of Max-Freq-Miner combines the
minimal window length and minimal frequency threshold
constraints into one algorithm. We start from
Max-Freq-Minermwl, with the mwl-summary, and extend
the update algorithm to incorporate the minimal fre-
quency threshold.

3.4.1. Pruning

A border pi in the summary S of S�mwl of the
mwl-summary ðS,MWÞ of S can be pruned if A is infre-
quent in S�mwl

½pi,�, but it cannot necessarily be pruned if
A is infrequent in S½pi,�. The reason of this difference with



Then p is a frequent border of S�mwl; i.e.,

Fig. 4. Running example: max-frequency with a minimal frequency (no

minimal window length). When the max-frequency is below the thresh-

old, based on the summary a support of 0 will be reported. These

situations are denoted by ‘‘–’’ in the column frequency.

T. Calders et al. / Information Systems 39 (2014) 233–255240
the situation without mwl is because the argument ‘‘the

border can be pruned because every extension that would

make it frequent again would itself be even more frequent’’ is
no longer conclusive to prune the border, as the extension
may not satisfy the minimal window length restriction.
The following example illustrates this point:

Example 7. Suppose that we have a minimal frequency
threshold of 1

2, and mwl¼ 3. Consider the following stream
S (borders in S

�mwl and minimal window are indicated in
the usual way):

The max-frequency of the singleton itemset a does not
exceed the minimal frequency threshold in the stream; its
max-frequency equals 2

5. Suppose now that at timepoint 6,
the itemset a arrives, resulting in the stream

Now the max-frequency with mwl¼ 3 will be 1
2 and

startmaxmwl will be the position 1, that was infrequent
in S. Notice that this is not in contradiction with the
observation that in the case without a minimal window
length, position 1 is not a border anymore at timestamp 5,
because without the minimal window length, the max-
imal border would be at position 6, with 100% frequency
for item a.

Nevertheless, as the following theorem shows, we can
apply pruning on the border positions in S�mwl; if the
target itemset A is not frequent in the suffix of S

�mwl

starting at position p, then p will never again become the
maximal border under the minimal window length con-
straint in the stream S.

Theorem 3.5. Let S be a stream, mwl a positive integer, and

0rsr1. Let po9S�mwl9 be a position in S
�mwl. Suppose

there exists an extension B such that

Fig. 5. Running example: max-frequency with a minimal window

length and a minimal frequency. When the max-frequency is below

the threshold, based on the summary a support of 0 will be reported.
�
 p¼ startmaxmwlðS �BÞ,
These situations are denoted by ‘‘–’’ in the column frequency.
�
 mfreqðA,S �BÞ ¼ freqðA,S �B½p,9S �B9�ÞZs.
freqðA,S�mwl
½p,9S�mwl9�ÞZs.

Proof. Let MW¼S½9S9�mwlþ1,9S9� be the minimal
window of S. From Theorem 3.4 it follows that p must
be a border. We will prove that p is also a frequent border
in S�mwl, by contradiction. Hence, suppose that p is not a
frequent border in S

�mwl for A; i.e.,

freqðA,S�mwl
½p,9S�mwl9�Þos:

Suppose there exists an extension B as in the statement of
the theorem. Then, mfreqðA,S �BÞ4s, this implies that

freqðA,MW �BÞ4 freqðA,S½p,9S9� �BÞ:

Therefore, p is not the starting point of the maximal
window, since suffix MW �B satisfies the minimal win-
dow length restriction and has a higher frequency. This is
a contradiction and hence the theorem is proven. &

3.4.2. Max-Freq-Minermwl
s

By Theorem 3.5 we know that a border for target
itemset A in stream S is also a frequent border of S�mwl.
We can thus maintain a summary for target itemset A

over the stream S
�mwl as if only the minimal frequency

threshold s is set. Algorithm 4 shows that implementing
procedure Updatemwl

s ððSt ,MWÞ,IÞ is simple, because it is
largely the same as Updates. Extracting all max-frequent
itemsets is demonstrated in Algorithm 6.

Algorithm 4. Updatemwl
s ððSt ,MWÞ,IÞ for one target itemset

A on time tþ1, with minimal window length mwl, and with

minimal frequency s

Require: ðSt ,MWÞ, the mwl-summary of St

Ensure: ðStþ1 ,MW
0
Þ the mwl-summary of St �/IS
1:
 Stþ1 :¼ UpdatesðSt ,MW½1�Þ
2:
 MW
0 :¼MW½2,mwl� �/IS
3.4.3. Example

Fig. 5 shows the summaries and the max-frequencies
of the itemsets a, b and ab at various timestamps.



T. Calders et al. / Information Systems 39 (2014) 233–255 241
4. Mining all itemsets

Until now, we focused on mining a single frequent
itemset. Of course, in reality, the goal is to find all

frequent itemsets in the stream. A straightforward way
� Either L�2mwloprL�mwlþ1 (border at one of the black positions)

� or: ADT ¼ Sp, A frequent in S½p,pþmwl�1� (border at T)
to do this is to apply Max-Freq-Minermwl
s for all item-

sets at the same time. Hence, for all itemsets A we need
to store the positions in the stream that can become a
maximal border. Theorem 3.5 reduces the number of
borders we need to store: either the minimal window
is the maximal window, or the maximal border is a
maximal border in S

�mwl. Hence, it suffices to store the
minimal window, and, for every itemset, its summary
in S

�mwl. This straightforward approach, however, is
not practical. The reason is as follows: suppose that a
transaction T with n items leaves the minimal window,
and enters S�mwl. Then, for each of the 2n subsets of T

we have to start a new summary, even if a subset is not
frequent in /TS �MW. For large transactions, the
number of new summaries would hence become
intractable.

The next lemma will explain how we can avoid this
exponential blow-up; if we are willing to store the last
2mwl transaction of the stream; that is, twice the minimal
window, it suffices to only start a summary for those
subsets of T that are frequent in S

�mwl just before T left
the stream. Usually the number of frequent itemsets in
← mwl → ← d →
a c

↑ ↑
q q + mwl
the minimal window will be much smaller than the
number of subsets in an arbitrary transaction. Of course,
if the minimal support is set too low, for example, lower
than 1=mwl, we may still experience an exponential
blowup. Nevertheless, the lemma below reduces the
number of summaries to be generated from ‘‘all subsets
of T ’’ to ‘‘all subsets of T that were frequent in the last
minimal window’’.

In other words, if an itemset A is mwl-frequent in St ,
then either the maximal border p of A in St is among the
last 2mwl positions of the stream, or A is frequent in the
sub-stream St½p,pþmwl�1�. In the latter case, at time
point pþmwl, A was a subset of the transaction leaving
the minimal window and A was frequent in the minimal
window at time point pþmwl�1. This situation is also
depicted in the following figure:

Border position p of itemset A:
Lemma 4.1. Let S be a stream of length L. MWt denotes

S½t�mwlþ1,t�; i.e., the minimal window at the time t.
Let mfreqmwl

ðA,SÞZs, with q the starting point of the

maximal window; i.e.,

q :¼ startmaxmwlðA,SÞ

then,
�
 either L�2mwlþ1oqrL�mwl; i.e., q left the minimal

window less than mwl steps ago, or
�
 A is frequent in S½q,qþmwl�1�; that is, A is frequent in

MWt for t¼ qþmwl�1 (Sq leaves the minimal window

at time tþ1).

Proof. Clearly qrL�mwl, otherwise the minimal win-
dow length requirement would be violated for the max-
imal window S½q,L�. Therefore, either the first statement
holds, or qrL�2mwlþ1. We will show that if
qrL�2mwlþ1, then the second statement holds.

Denote the number of occurrences of A in S½q,qþ
mwl�1� by a, the number of occurrences of A in stream
S½qþmwl,L� by c, and the length of S½qþmwl,L� by d:
We know that freqðA,S½q,L�ÞZs, i.e., ðaþcÞ=ðmwlþ

dÞZs, and we have to show that the frequency of A in
S½q,qþmwl�1�; i.e., a=mwl, is also greater than or equal to
s. Assume, for the sake of contradiction, that a=mwlos.
We then have

aþc

mwlþd
Zs4 a

mwl
)

c

d
4

a

mwl
3

c

d
4

aþc

mwlþd
:

This result shows that A is even more frequent in
S½qþmwl,L� than it is in S½q,L�, which is not possible
because q is the starting point of the maximal window of



T. Calders et al. / Information Systems 39 (2014) 233–255242
length at least mwl for A in S, and 9S½qþmwl,L�9Zmwl,
since qrL�2mwlþ1. Hence, our assumption is wrong,
meaning that a=mwlZs.

4.1. Algorithm

Hence, we do not need to maintain a summary for all
itemsets, but we only need to store those borders for
itemset A that were once the starting point of a minimal
window in which A was frequent. Furthermore, we can
prune any border that does not satisfy the minimal
frequency threshold in S

�mwl. The only price we have to
pay is that we need to check for the frequent itemsets in
the mwl windows S½L�2mwlþ2,L�, . . ., S½L�mwl,L�.

The algorithm to update the summary when a new
itemset I arrives is as follows: for every itemset A for which
we are maintaining a summary, update the summary with
the itemset that leaves the minimal window. Next we prune
the infrequent borders. We start pruning at the oldest
border and move towards the youngest one, because the
frequency, in S

�mwl of the borders is strictly increasing.
Thus we can stop pruning if we encounter a frequent
border. Remember that we keep track of the sum
total¼ a1þ � � � þar in every summary, to efficiently assess
the frequency of a border. Then, for all subsets of I that are
frequent in the minimal window and for which we are not
yet maintaining a summary, start a summary. In this way,
we guarantee that we are able to capture all maximal
windows with qrL�2mwlþ1. Furthermore, we always
keep the last 2 �mwl�1 transactions. When the frequent
itemsets are required, we need to generate all frequent
itemsets from the summaries plus all itemsets frequent in one

of the windows S½L�2mwlþ2,L�, . . ., S½L�mwl,L�. This can
be done efficiently with a small adaptation to efficient
Fig. 6. Running example: max-frequency with a minimal window length and

based on the summary a support of 0 will be reported. These situations are deno

all itemsets; we only start a summary for an itemset entering S
�mwl that was f

difference are underlined.
incremental algorithms that have already been proposed
in the literature [20], or with an incremental version of
existing frequent itemsets miners. Algorithm 5 shows the
procedure for updating all summaries. Fig. 6 illustrates the
UpdateAllmwl,s on the running example. Notice, e.g., that
when at step 7, s4 ¼ ab is appended to S

mwl. In the original
algorithm Max-Freq-Minermwl

s , this arrival resulted in a
summary being started for all its subsets that did not yet
have a summary; i.e., for a and ab (see Fig. 6). For
Max-Freq-Miner-Allmwl

s , however, these summaries are not
created as a and ab were not frequent in MW6 ¼/ab | bS.
Algorithm 6 shows how to extract the max-frequent item-
sets and their max-frequency.

Algorithm 5. UpdateAllmwl,sððS
A1
t , . . . ,SAn

t ,MW,ÞMW2,IÞ for
all itemsets on time tþ1, with minimal window length mwl,
and with minimal frequency s.
a minim

ted by ‘‘

requent
Require: ðSA1
t , . . . ,SAn

t ,MWÞ, the mwl-summary for all itemsets of St

and MW2 the second minimal window

Ensure: ðSB1

tþ1 , . . . ,SBm
t ,MW

0
Þ the mwl-summary for all itemsets of

St �/IS and MW2
0 the second minimal window of St �/IS
1:
 MW
0 :¼MW½2,mwl� �/IS
2:
 MW2
0 :¼MW2½2,mwl� �MW½1�
3:
 for all A frequent in MWt and AD I do
A

4:
 if St exists then

5:
 SA

tþ1 :¼ UpdatesðS
A
t ,MW½1�Þ
6:
 else

7:
 SA

tþ1 :¼ ½ðtþ1;1Þ�
A

8:
 for all A such that St exists and A is not frequent in MWt do

9:
 SA

t :¼ UpdatesðS
A
t ,MW½1�Þ
Algorithm 6. Pseudo-code of Get_mfreqmwl,s ððS
A1
t , . . . ,

SAn
t ,MWÞ,MW2,sÞ for extracting the max-frequent item-

sets with minimal window length mwl and with minimal
al frequency. When the max-frequency is below the threshold,

–’’ in the column frequency. The algorithm is modified for mining

in MW the step before. The summaries for which this implies a



T. Calders et al. / Information Systems 39 (2014) 233–255 243
frequency threshold s. Parameter MW
2 is the double

minimal window.
1:
 frequentItemsets :¼[]
2:
 freqItemsets :¼ fðA,p,f Þ j mfreqmwl
ðA,MW2 �MWÞ ¼

f Zs,p¼ startmaxmwlðA,MW2 �MWÞg
3:
 for all A such that SA
t exists or A 2 freqItemsets do
4:
 if A 2 freqItemsets then

5:
 (mFreqPos, mFreq) :¼freqItemsets[A]
6:
 else

7:
 (mFreqPos, mFreq) :¼(0, 0)
8:
 if SA
t exists then
9:
 c :¼ countðA,MWÞ
10:
 for ðp,aÞ 2 SA
t do
11:
 c :¼cþa
12:
 if mFreq r c
t�pþ1 then
13:
 mFreqPos :¼p
14:
 mFreq :¼ c
t�pþ1
15:
 if mFreq 4s then

16:
 frequentItemsets :¼frequentItemsets � (A, mFreqPos,

mFreq)
17:
 return frequentItemsets
4.2. Complexity

Let R be the maximum number of borders in any
summary while mining a stream. Let F be the number of
frequent itemsets in the stream with respect to the
minimal window length mwl and the minimal frequency
threshold s. Both the UpdateAllmwl,s and Get_mfreqmwl,s
need to be executed at each timestamp of the stream.

The procedure UpdateAllmwl,s consists of two main for-
loops. The first for-loop (lines 2–6) can be executed at
most O(F) times. In the worst case, the code in this for-
loop needs to investigate every border of the current
summary (if Updates is executed). As a result, the first for-
loop takes at most O(FR) time. Note however, that in
practice, only one or zero borders will be pruned at a time.
Also note that our experiments (on the blocks-10 and
compounds-60 streams) show that there are on average
only about 10 borders present in all summaries. Thus the
real-world complexity will be in the order of O(F) rather
than O(FR). The second for-loop (line 7) can also execute
at most O(F) times (if all frequent itemsets are currently
frequent). In the worst-case all borders need to be
removed, implying O(R) time. In total, the procedure
UpdateAllmwl,s consumes in the worst-case O(FR) time.

An important step in Get_mfreqmwl,s is finding max-
frequent itemsets in MW2 �MW. Section 7.1.2 describes
how we can find the max-frequent itemsets in St

½t�2mwlþ1,� such that the starting position is smaller
than or equal to t�mwlþ1. This procedure resembles the
iterative candidate-generation-then-pruning structure of
Apriori. This strategy traverses a portion of the itemset-
lattice. The number of states visited in the lattice is poly-
nomial in F, the number of frequent itemsets. Visiting a new
state requires merging at least two position summaries. Let
G be the size of the largest frequent itemset. We can
estimate the running time of this step by Oðmwl� G�

polyðFÞÞ, in which polyðFÞ is a polynomial of F.
There are at most O(F) frequent itemsets, thus the for-

loop (lines 3–16) can be executed at most O(F) times.
Within the for-loop the procedure loops (lines 10–14)
over all borders of the summary of the current itemset (if
the summary exists). The total complexity of the for-loop
is thus Oðmwl� G� polyðFÞþFRÞ.

The combined worst-case time complexity is thus
Oðmwl� G� polyðFÞþFRÞ. In Section 6 we show that the
number of borders grows (in the worst-case) sublinearly
with respect to the length of the stream. In Section 7 we
show that our algorithm can easily process long streams
(þ4 million transactions) with large itemsets (about 85
items). In our experience the performance of the algo-
rithms depends largely on the number of frequent
itemsets.
4.3. Optimizations

Whenever a non-target itemset arrives at the head of
the stream, all four algorithms try to prune borders from
the summary. Even if we could have predicted at the
previous timepoint that such an attempt would be in vain.

Example 8. Suppose we are mining the following stream
/9a b b 9a a a a bS with Max-Freq-Miner. The border
positions for itemset a are indicated by vertical bars. The
frequency between the first and second border is 1

3. From
the second border to the end of the stream, the frequency
is equal to 4

5. The second border can only be pruned from
the summary if there is a before block with a higher
frequency than an after block. Concretely, if x non-target
itemsets extend the stream, and thus 1

3Z4=ð5þxÞ holds,
the second border can be pruned. In other words, at this
timepoint we can be certain that the second border will
remain in the summary for at least another seven more
timepoints (xZ7).

Therefore, we introduce the checkscheduler, for delay-
ing prune checks as long as possible. Intuitively, this
optimization should prove most valuable in the context
of a long minimal window and a low minimal frequency
threshold. Because borders will remain put in the sum-
mary for quite some time.

One could say that the checkscheduler is lazy in trying
to prune borders from a summary. This laziness can be
taken one step further as the following example shows.

Example 9. Suppose we are mining the following stream
/9a a b b 9aS with Max-Freq-Miner. Again, there are
two borders, indicated by the vertical bars. The
checkscheduler would, at this timepoint, predict that the
second border might be pruned at the next timepoint.
Indeed, if the next itemset arriving in the stream is a non-
target itemset, the frequency between the border equals
the frequency from the second border to the end of the
stream. However, if the next three itemsets arriving in the
stream are also target itemsets, the checkscheduler could
have been even lazier in the sense that it could have
waited until after the arrival of the last target itemset to
make a prediction. This would result in just a single
prediction (x¼4), instead of four predictions (x¼1, x¼2,
x¼3 and x¼4), one after the arrival of each of the four
target itemsets.



2 Note that in the literature this is called simply border. However, as

we already use the term border and to avoid a naming clash in our

terminology, we call it the set border.

T. Calders et al. / Information Systems 39 (2014) 233–255244
A sequence of itemsets is called a burst of itemset A if
each of the itemsets is a superset of A. If the checksche-
duler waits until the end of a burst to predict the time-
point at which a border might be pruned, it is called lazy.
We call this optimization of the checkscheduler lazy

handling. Intuitively, lazy handling will perform best if a
stream contains many bursts.

During experiments with our software prototype, we
found that the lazy checkscheduler outperforms the
Max-Freq-Minermwl

s on bursty streams. The results are
listed in Section 7.

The length of the predicted minimal delay depends on
the pruning methods available to an algorithm and
depends on the exact value of the minimal window length
and minimal frequency threshold. For each of the four
algorithms we derive the equation to calculate the
minimal delay.

The Max-Freq-Miner algorithm prunes a border if
there exists a before block with a frequency that is higher
or equal to the frequency of an after block. Let
½ða1,p1Þ, . . . ,ðar ,prÞ� be the summary of stream St . Then
we can prune the youngest border ðar ,prÞ if

ar�1

pr�pr�1
Z

ar

t�prþ1þx
:

Indeed, the frequency of the youngest border drops if
non-target itemsets are added to the top of the stream.
We find the smallest satisfying integer value of x by
means of the following formula:

xZ
arðpr�pr�1Þ

ar�1
�ðt�prþ1Þ:

If the minimal window length is set, Max-Freq-
Minermwl keeps a summary for S�mwl

t . Calculating the
minimal delay is thus equivalent to the calculation for
Max-Freq-Miner.

Two pruning criteria are employed when a minimal

frequency threshold is set. The first is the same as in the
Max-Freq-Miner algorithm. Denote the delay for this first
criterion by x1. The second pruning criterion prunes the
oldest border if its frequency in St drops below s. Again,
the frequency of a border drops fastest if non-target
itemsets arrive: at least x2 non-target itemsets have to
arrive to make the oldest border prunable:

total

t�p1þ1þx2
os:

Remember that total denotes the sum of all the itemset
counts in the summary, i.e., total¼ a1þ � � � þar . Rewriting
the previous equation results in

total

s �ðt�p1þ1Þox2:

Now, we can delay checking for a before-after block
violation until tþx1 and for an infrequent oldest border
until timepoint tþx2.

When both the minimal window length and the minimal

frequency threshold have been set, the minimal delay
calculation is identical to the calculation for the
Max-Freq-Miners algorithm, except that it is now carried
out on the summary of S�mwl

t .
5. Greater border efficiency

In this section we will show some negative results w.r.t.
exploiting the relation between the itemsets in order to
increase the efficiency of mining all max-frequent itemsets.
More concretely, we will show that even though the max-
frequency measure is anti-monotone, the border positions of
super- and subsets do not possess any straightforward
relation; for any collection of sets we can find a stream and
a position in that stream such that exactly the given collec-
tion of itemsets has a border at that position. The collection of
itemsets does not need to be subset-closed and is not
restricted in any way. As an intermediate step towards this
result we first show that the border positions of the items do
not contain enough information to derive the border posi-
tions of larger itemsets, hence invalidating the extensions to
borders of state-of-the-art techniques for itemset frequency
based on maintaining tid-lists of items [24].

5.1. Item borders only

In this subsection we answer the following question:
‘‘Do we need to keep track of the summaries of all itemsets

or is it possible to keep track of the item-summaries (the

summaries of itemsets of length 1) and reconstruct the

itemset-summaries (the summaries of itemsets of length

greater than 1) from the item-summaries whenever

needed?’’ The next example will answer this question
negatively by showing two streams in which all item
summaries are the same for both streams, yet the sum-
mary for the itemset composed of the individual items is
not. As such we can conclude that the item summaries do
not contain enough information to derive the border
positions of non-singleton itemsets.

Example 10. Suppose the following two streams:
S

1
¼/a b ab c cS and S

2
¼/a b a bc cS. The item-

summaries for both streams are equal: S1
a ¼ S2

a ¼

½ð1;2Þ�, S1
b ¼ S2

b ¼ ½ð2;2Þ� and S1
c ¼ S2

c ¼ ½ð4;2Þ�. However,
the summary for the itemset ab is different in both
streams: S1

ab ¼ ½ð3;1Þ� and S2
ab ¼ ½�, as is the summary of

itemset bc: S1
bc ¼ ½� and S2

bc ¼ ½ð4;1Þ�.

The underlying reason for this result is in fact that in the
summary of an itemset we only keep enough information to
predict future maximal border positions of that itemset,
effectively reducing the storage needed. Storing all occur-
rences of all items clearly is not an option as this comes
down to storing the complete stream into the memory.

5.2. Border closure

In frequent itemset mining, a set of itemsets is fre-
quently abbreviated by its top elements. The top-ele-
ments are those itemsets that are not a strict subset of
another element in the set. The set of these top elements
is called the set border.2 In frequent itemset mining, where



T. Calders et al. / Information Systems 39 (2014) 233–255 245
all subsets of itemsets are frequent if the itemset itself is
frequent, the set border of a set of itemsets is in many
cases exponentially smaller than the original set.

Secondly, we observe: if at timestamp p itemset ab

arrives at the top of the stream, then p will be a border for
all the subsets: a, b and ab.

Combining both observations leads to the question:
‘‘Can we share borders between the summaries of related

itemsets?’’ For example: if itemset ab arrives, the current
timestamp can be a border for ab, a and b at the
same time.

Unfortunately, we will prove that for every arbitrary
collection of itemsets B there exists a stream and a
position p in that stream such that the itemsets that have
a border at p is exactly B. This theorem shows that there is
no relation between the border positions of the itemsets;
at a given timestamp literally any combination of item-
sets can have a border. This shows that there is no
obvious way to combine the summaries of the different
itemsets.

Example 11. Let A¼abcd and B¼ fabc,ag. In the following
stream at the indicated position, exactly the itemsets abc

and a have a border position and no other itemset:

/abcd ab ac bc | | jabcd abc a a | |S

A first step in the proof consists in identifying the bag
L of transactions that will come before the border posi-
tion, and the bag of transactions R occurring after the
border position. Remember that a position p is a border
for an itemset if and only if its frequency in every block
ending at position p�1 is less than its frequency in every
block starting at position p (Theorem 3.2). In our con-
struction this property will translate into the requirement
that for every set in B, the frequency in R (the transac-
tions to the right of the border) must be larger than the
frequency in L. For the other sets, the opposite must hold.

We will denote the number of times a set J occurs as a
subset of an element in a bag R by countðJ,RÞ; i.e.,

countðJ,RÞ :¼
X
JDR

RðRÞ,

where RðRÞ denotes the multiplicity of the set R in R.

Lemma 5.1. Let A be an itemset and BD2A. Then there exist

bags L and R such that for all JDA it holds that

J 2 B3countðJ,LÞocountðJ,RÞ:

Proof. We will prove this lemma by induction on the
number of elements in B.

The base case 9B9¼ 0 is trivially fulfilled by L¼R¼ fg.
In the general case, let J be a minimal set in B w.r.t.

set inclusion. By induction we assume that the lemma
holds for B\fJg. Let L0 and R0 be the bags. Let
n¼ countðJ,L0Þ�countðJ,R0Þ. Then, add nþ1 copies of J to
R0 to getR, and if 9J941, for all j 2 J, add nþ1 copies of all
sets J\fjg to L0 to get L, otherwise L¼L0. The resulting L
and R satisfy the conditions of the lemma.
Example 12. Consider again A¼abcd. We construct the
bags for B¼ fabc,ag using the inductive procedure given in
the proof:
B
 L
 R
{}
 {}
 {}
{abc}
 {ab,ac,bc}
 {abc}
{abc,a}
 {ab,ac,bc}
 {abc,a,a}
Hence, the following bags L and R satisfy the inequalities
of the lemma for B¼ fa,abcg:

L :¼ fab,ac,bcg,

R :¼ fa,a,abcg:

Indeed; for example: countða,LÞ ¼ 2ocountða,RÞ ¼ 3, and
countðab,LÞ ¼ 25countða,RÞ ¼ 1. Notice incidentally that
these bags correspond to the example before; in the
stream given in that example, the non-empty transactions
to the left of the position p are those in L, and the ones on
the right are those in R.

For the proof it is important to get a grip on the before
and after block for position p in which an itemset reaches
respectively its maximal and minimal frequency. The
following two lemmas are essential. The first extension
lemma shows that we can extend streams by appending a
sequence of empty transactions such that for every subset
of the first transaction of the stream, the suffix of the
stream in which the frequency of the itemset is maximized
among all suffixes, is the whole extended stream itself. We
will call such a stream suffix-maximized. We will use Zn to
denote a stream consisting of n empty transactions; i.e.,

Zn :¼ /| | � � � |
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{�n

S

Lemma 5.2. Let S be a stream of length m. There exists an

n0 such that for all nZn0 it holds that for any itemset

JDS½1�,

max
i ¼ 1,...,mþn

freqðJ,lastði,S �ZnÞÞ ¼ freqðJ,S � ZnÞ:

Proof. Let J be any itemset and split S in an arbitrary
way: S¼Sl �Sr . Let countðJ,SlÞ ¼ jl, countðJ,SrÞ ¼ jr ,
9Sl9¼ml, and 9Sr9¼mr . Notice that, since JDS½1�, jlZ1.
Let us consider the effect of extending S by appending Zn.
We get the following frequencies for J in the suffix Sr � Zn

and in the whole stream Sl �Sr �Zn:

freqðJ,Sr � ZnÞ ¼
jr

mrþn
,

freqðJ,Sl �Sr � ZnÞ ¼
jlþ jr

mlþmrþn
:

The ratio between these two frequencies (whole stream
divided by suffix Sr � Zn) is

jlþ jr

mlþmrþn

�
jr

mrþn
¼

jlþ jr

jr

mrþn

mlþmrþn

¼ 1þ
jl

jr

� �
mrþn

mlþmrþn

� �



T. Calders et al. / Information Systems 39 (2014) 233–255246
It is easy to see that with increasing n, this ratio will
converge in the limit to 1þðjl=jrÞ, which is strictly greater
than 1, since jlZ1. Therefore, from a certain index nj

0 on,
the frequency of J in the whole stream will be larger than
in the suffix Sr � Zn. Since the choice of JDS½1� and the
division S as Sl �Sr were arbitrary, we can extend the
result to all subsets of S½1� and divisions of S by taking
the maximum of all nj

0, which proves the lemma. &

Example 13. Consider the stream S :¼ /abcd ab ac bcS.
For this stream it suffices to append n0 ¼ 2 or more empty
transactions to make the maximal suffix equal to the
whole extended stream for all subsets of abcd. Let’s
consider the frequencies of the subsets of abcd in the
suffixes of the stream S � Z2 (since all transactions with d

also contain abc, there is no need to display the results of
the itemsets with a d, except for abcd itself):
Suffix
 Frequencies
a
 b
 c
 ab
 ac
 bc
 abcd
/abcd ab ac bc | |S
 1/2
 1/2
 1/2
 1/3
 1/3
 1/3
 1/6
/ab ac bc | |S
 2/5
 2/5
 2/5
 1/5
 1/5
 1/5
 0
/ac bc | |S
 1/4
 1/4
 1/2
 0
 1/4
 1/4
 0
/bc | |S
 0
 1/3
 1/3
 0
 0
 1/3
 0
/| |S
 0
 0
 0
 0
 0
 0
 0
/|S
 0
 0
 0
 0
 0
 0
 0
The second extension lemma shows the opposite of
the first lemma; any stream can be extended by append-
ing a sequence of empty transactions such that for every
subset of the first transaction of the stream, the prefix of
the stream in which the frequency of the itemset is
minimized among all prefixes, is the whole extended
stream itself. We will call such a stream prefix-minimized.

Lemma 5.3. Let S be a stream of length m. There exists an

n0 such that for all nZn0 it holds that for any itemset

JDS½1�,

freqðJ,S � ZnÞ ¼ min
i ¼ 1,...,mþn

freqðJ,ðS �ZnÞ½1,i�Þ:

Proof. The lemma can be proven in a similar way as the
previous lemma: clearly for any itemset it holds that its
frequency in any prefix of a stream S �Zn that contains
the complete S is more than the frequency of that itemset
in S � Zn; adding empty transactions only decreases the
frequency. Therefore we only consider prefixes that do
not contain the full S. Splitting a stream S arbitrarily into
Sl �Sr gives the following frequencies for the prefix Sl

and the whole stream S � Zn:

freqðJ,SlÞ ¼
jl

ml
,

freqðJ,S � ZnÞ ¼
jlþ jr

mlþmrþn
:

The ratio between the frequency in the whole stream and
in the prefix is

jlþ jr

mlþmrþn

�
jl

ml
¼ 1þ

jr

jl

� �
ml

mlþmrþn

� �
,

which goes to 0 in the limit, indicating that the frequency
in the whole stream becomes eventually less than that in
the prefix. Again, since the subset J of S½1� and the prefix
were arbitrary, the result can be extended to all subsets
and divisions and hence the lemma is proven. &

Example 14. Consider the stream S :¼ /abcd abc a aS.
For this stream it suffices to append n0 ¼ 1 or more empty
transactions to make the minimal prefix for all subsets of
abcd equal to the whole stream. The frequencies of the
subsets of abcd in the prefixes of the extended stream are
as follows (since all transactions with d contain abcd,
there is no need to display the results of the itemsets with
d, except for abcd itself; and every transaction with ab, ac,
or bc contains abc as well; therefore of these four sets,
only abc is displayed):
Prefix
 Frequencies
a
 abc
 abcd
/abcd abc a a |S
 4/5
 2/5
 1/5
/abcd abc a aS
 1
 1/2
 1/4
/abcd abc aS
 1
 2/3
 1/3
/abcd abcS
 1
 1
 1/2
/abcdS
 1
 1
 1
Theorem 5.4. Let A be an itemset, and let BD2A be a

collection of itemsets over A. Then, there exists a stream S

and a position 1rpr9S9 such that for any subset J of A it

holds that p is a border for J in S if and only if J 2 B.

Proof. Let L and R be bags as in Lemma 5.1; i.e., the sets
that occur more as a subset of transactions in R than as
subset of transactions in L are exactly the sets in B. Put
the transactions of L, respectively R, in an arbitrary order
to get the stream SL, respectively SR. According to
Lemma 5.2, there exists a number nl such that for all
nZnl, /AS �SL �Zn is suffix-maximized. Similarly,
according to Lemma 5.3, there exists a number nr such
that for all nZnr , /AS �SR �Zn is prefix-minimized. Now
choose n1Znl and n2Znr such that n1þ9SL9¼ n2þ9SR9.
The following stream and position p¼ 1þ9SL9þn1 satisfy
the conditions of the theorem (position p is indicated by a
vertical bar):

/AS �SL � Zn1
j/AS �SR � Zn2

:

Let us now analyze which itemsets have a border at
position p. Because /AS �SL �Zn1

is suffix-maximized,
for all itemsets JDA, among all before-blocks ending at
position p�1, the frequency of J is maximal in the whole
part before p. Similarly, since /AS �SR � Zn2

is prefix-
minimized, among all after-blocks starting at position p,
the frequency of J is minimized by the whole part starting
at position p. Hence, J has a border at position p if and
only if its frequency in /AS �SL � Zn1

is strictly smaller
than its frequency in /AS �SR � Zn2

. As n1 and n2 have
been chosen to make both of equal length, this means that
the absolute number of occurrences of J in /AS �SL �Zn1

,
which is 1þcountðJ,LÞ must be smaller than the absolute
number of occurrences of J in /AS �SR � Zn2

, which is



Fig. 7. Farey sequences of orders 1–5.

3 Note that in our definition, the fraction 0=k is not included in the

Farey set Fk.

T. Calders et al. / Information Systems 39 (2014) 233–255 247
1þcountðJ,RÞ. Because L, R satisfy by definition Lemma
5.1, this implies that J 2 B. Since J was chosen arbitrarily,
the itemsets having a border at position p are exactly
those in B, which proves the theorem. &

In the next example we illustrate the proof of
Theorem 5.4 by bringing all examples together.

Example 15. The construction of the stream and position p

in the proof of Theorem 5.4 for the collection of sets
B¼ fabc,ag will be the one given in Example 11. As
Example 12 shows, the bags L and R that are generated
using the procedure described in the proof of Lemma 5.1 are

L¼ fab,ac,bcg,

R¼ fabc,a,ag:

We form the streams SL and SR by putting the elements in
the bags in any order. Suppose that we chose for

SL ¼/ab ac bcS,

SR ¼/abc a aS:

Then we need to find numbers n1 and n2 such that abcd �

SL � Zn1
is suffix-maximized, abcd �SR �Zn2

is prefix-mini-
mized, and both have the same length. According to
Examples 13 and 14, the smallest numbers for which this
holds are n1 ¼ n2 ¼ 2, which results in the stream and
position:

/abcd ab ac bc | | jabcd abc a a | |S

6. Worst case analysis

In this section we study how large the summary can
become in worst case. For streams of a specific length L,
we will identify a stream of this length that maximizes
the number of borders and we show the asymptotic
behavior of this tight bound. Farey sequences play an
important role in this analysis.

6.1. Farey streams

Consider a stream SL of length L and a target itemset A.
In the following, p1, . . . ,pr will denote the borders of A in
SL. Consider the following r blocks: Bi :¼ S½pi,piþ1� for
i¼ 1, . . . ,r�1, and Br :¼ S½pr ,�. Let i¼ 1, . . . ,r, bi :¼ 9Bi9,
and ai ¼ countðA,BiÞ. We visualize these settings as
follows:

From Theorem 3.2, we know that the frequencies of
the target itemset in the blocks must be increasing:

a1

b1
o

a2

b2
o � � �o

ar

br
:

Thus, every stream with r borders corresponds to such an
increasing sequence of r fractions. We call this sequence
of fractions the block frequency sequence of the stream. We
can assume without loss of generality that the length of
the stream is the sum of the denominators b1þ � � � þbr

(we can always omit the leading non-targets in the
stream). The other direction is also true: for every
increasing sequence of numbers

0o
a01
b01

o
a02
b02

o � � �o
a0r
b0r

r1,

we can find a stream of length b01þ � � � þb0r with r borders,
namely:

9a . . . a
zfflffl}|fflffl{a0

1
�

b . . . b
zfflffl}|fflffl{b0

1
�a0

1
�

9a . . . a
zfflffl}|fflffl{a0

2
�

b . . . b
zfflffl}|fflffl{b0

2
�a0

2
�

9 . . . 9a . . . a
zfflffl}|fflffl{a0r�

b . . . b
zfflffl}|fflffl{b0r�a0r�

:

We will call this stream the canonical stream associated

with the sequence a01=b01oa02=b02o � � �oa0r=b0r . Therefore,
finding the maximal number of borders for a stream
length L corresponds to finding the largest number of
different fractions between 0 and 1, of which the sum of
the denominators adds up to L. In this context, the notion
of Farey sets and Farey sequences [8] will be crucial.

Definition 6.1. The Farey set of order k, denoted Fk is the
following set of completely reduced fractions3:

Fk :¼
a

b
jgcdða,bÞ ¼ 1, 0oarbrk

n o
:

The Farey sequence [8] of order k is the list where the
elements of Fk are ordered in increasing order.

In Fig. 7, the Farey sequences of orders 1–5 are given.
Just like any other increasing sequence of fractions, also

the Farey sequence Fk can be associated with its canonical
stream Fk, which has 9Fk9 borders, and a length that equals
the sum of the denominators of the elements in Fk. For
example, consider the Farey sequence of the fifth order:

F5 ¼
1

5
o

1

4
o

1

3
o

2

5
o

1

2
o

3

5
o

2

3
o

3

4
o

4

5
o

1

1
:

The corresponding Farey stream of the fifth order, F5, is
given in Fig. 8. This stream has 9F59¼ 10 borders and a
total length of 5þ4þ3þ5þ2þ5þ3þ4þ5þ1¼ 37.

We will now show that the Farey streams have the
maximal number of borders; that is, for every stream S of
length equal to the length of Fk, the number of borders in
S is less than or equal to the number of borders in
Fk ¼ 9Fk9. This property is based on the following straight-
forward observation. Let dsumðfa1=b1, . . . , ar=brgÞ ¼Pr

i ¼ 1 bi, i.e., dsum(S) is the sum of the denominators of
the (completely reduced) fractions in S.



Fig. 8. Illustration of F5, the Farey stream of fifth order.

Table 1

The length of Fk , a Farey stream of order k.

k Length of Fk # borders of Fk

1 9F19¼jð1Þ ¼ 1 9F19¼jð1Þ ¼ 1

2 9F19þ2 �jð2Þ ¼ 1þ1� 2¼ 3 9F19þjð2Þ ¼ 1þ1¼ 2

3 9F29þ3 �jð3Þ ¼ 3þ2� 3¼ 9 9F29þjð3Þ ¼ 2þ2¼ 4

4 9F39þ4 �jð4Þ ¼ 9þ2� 4¼ 17 9F39þjð4Þ ¼ 4þ2¼ 6

5 9F49þ5 �jð5Þ ¼ 17þ4� 5¼ 37 9F49þjð5Þ ¼ 6þ4¼ 10

6 9F59þ6 �jð6Þ ¼ 37þ2� 6¼ 49 9F59þjð6Þ ¼ 10þ2¼ 12

7 9F69þ7 �jð7Þ ¼ 49þ6� 7¼ 91 9F69þjð7Þ ¼ 12þ6¼ 18

^ ^ ^

4 As usual, i9kþ1 denotes that i is a divisor of kþ1.

T. Calders et al. / Information Systems 39 (2014) 233–255248
Lemma 6.2. Let S¼ fa1=b1, . . . ,ar=brg be a set of r different

fractions, with 0oaiobi, for all i¼ 1, . . . ,r. Let k be such

that 9S949Fk9, then

dsumðSÞ4dsumðFkÞ:

Proof. It is easy to see that dsumðSÞ�dsumðFkÞ ¼

dsumðS�FkÞ�dsumðFk�SÞ, and that 9S�Fk949Fk�S9.
Furthermore, any fraction in S�Fk must have a denomi-
nator of at least kþ1, and every fraction in Fk�S has a
denominator of at most k. Therefore,

dsumðSÞ�dsumðFkÞ

¼ dsumðS�FkÞ�dsumðFk�SÞ

Zðkþ1Þ � 9S�Fk9�k � 9Fk�S9

49S�Fk940:

Hence, dsum(S) must be larger than dsumðFkÞ. &

Theorem 6.3. Let S be a stream with 9S9¼ 9Fk9. Then, the

number of borders in S is at most the number of borders in Fk.

Proof. Consider the block frequency sequence S :¼
fa1=b1, . . . ,ar=brg of S. The number of borders in S equals
9S9, and the number of borders in Fk equals 9Fk9. Suppose
now, for the sake of contradiction, that the number of
borders in S is larger than the number of borders in F.
Then, 9S949Fk9, and thus, because of Lemma 6.2,
dsumðSÞ4dsumðFkÞ. This is in contradiction with the fact
that dsumðSÞ ¼ 9S9¼ 9Fk9¼ dsumðFkÞ. Hence, the number
of borders in S can maximally be the number of borders
in Fk. &

Corollary 6.4. Let L¼ dsumðFkÞ, and r¼ 9Fk9, for a fixed k.
A stream of length L has maximally r borders.

6.2. Bounds

For a Farey stream Fk the number of borders in it
equals 9Fk9 and the length equals dsumðFkÞ. This repre-
sentation does, however, not reveal the actual ratio
between the size and the number of borders of a stream.
Therefore, the asymptotic behavior of these quantities has
been worked out, based on known results in number
theory about Euler’s totient function f and the Möbius

function m.
The Euler’s totient function f maps positive integers j to

the number of integers i,1r ir j that are co-prime to j;
that is, gcdði,jÞ ¼ 1.

Example 16. fð5Þ ¼ 4, as 1;2,3;4 are all co-prime to 5.
fð8Þ ¼ 4, as only 1;3,5;7 are co-prime to 8.

It is not too hard to see that the number of elements in
the Farey set Fk, i.e., 9Fk9 equals

Pk
i ¼ 1 fðiÞ. Indeed, for k¼1,

this identity obviously holds. Furthermore, the number of
new elements in Fkþ1�Fk are exactly those fractions
x=ðkþ1Þ such that 1rxrðkþ1Þ and gcdðx,kþ1Þ ¼ 1
(x=ðkþ1Þ must be completely reduced). Hence, the num-
ber of new fractions equals the number of integers
x, 1rxrkþ1 that are co-prime to kþ1, which is
fðkþ1Þ. For some values of k, these numbers have been
given in Table 1.

Obviously, these characterizations are still not that
useful for getting insight in how the number of borders
relates to the size of the streams. Therefore, we show the
following asymptotic behaviors of the above sums:

Xk

i ¼ 1

fðiÞ ¼
3k2

p2
þOðk log kÞ,

Xk

i ¼ 1

i �fðiÞ ¼
2k3

p2
þOðk2 log kÞ:

For the first equality, it is well-known that

1

k2

Xk

i ¼ 1

fðiÞ ¼
3

p2
þO log ðkÞ

k

� �
: ð3Þ

Hence, asymptotically, 9Fk9 becomes 3k2=p2.
For the second sum we could not find a similar result

in the literature. Therefore, we give our own proof of the
asymptotic result for the second sum

1

k3

Xk

i ¼ 1

i �fðiÞ ¼
2

p2
þO log ðkÞ

k

� �
:

Our proof of this result uses similar techniques as the
known proofs for the asymptotic behavior of (3). This
result shows that asymptotically, dsumðFkÞ becomes
2k3=p2.

Lemma 6.5. For all integers 1r irk, it holds that

2
kþ1

i

� �3

þ3
kþ1

i

� �2

þ
kþ1

i

� � !
� 2

k

i

� �3

þ3
k

i

� �2

þ
k

i

� � !

equals 6ðkþ1Þ2=i2 if i9kþ1, and is 0 otherwise.4

Proof. Indeed, if i[kþ1, then ðkþ1Þ=i
	 


equals k=i
	 


.
Therefore, in this case, the expression trivially evaluates
to 0.

On the other hand, if i9ðkþ1Þ, then ðkþ1Þ=i
	 


¼ ðkþ1Þ=i,
and k=i

	 

equals ðkþ1�iÞ=i, as kþ1�i is the largest integer



0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 1
0
0

1 1
0
6

2 1
0
6

3 1
0
6

4 1
0
6

5 1
0
6

6 1
0
6

7 1
0
6

8 1
0
6

9 1
0
6

1 1
0
7

#
 b

or
de

rs

stream size

Farey
Bound

Fig. 9. Worst case number of borders.

T. Calders et al. / Information Systems 39 (2014) 233–255 249
divisible by i that is smaller than k. Therefore, in this case,
the expression equals

2
kþ1

i

� �3

þ3
kþ1

i

� �2

þ
kþ1

i

� �
�2

kþ1�i

i

� �3

�3
kþ1�i

i

� �2

�
kþ1�i

i

� �
¼

6k2
þ12kþ6

i2
: &

Let now mðjÞ denote the Möbius function. mðjÞ is defined
as follows: mðjÞ is 1 if the prime factorization of j is square-
free and has an even number of factors, is �1 if the
factorization is square-free and has an odd number of
factors, and is 0 otherwise.

Example 17. mð3Þ ¼ �1, because the prime factorization
has 1 factor and is square-free. mð8Þ ¼ 0, as the prime
factorization is 23, which is not square free. mð6Þ ¼ 1,
because the factorization 6¼ 2 � 3 is square free and has
an even number of terms.

mð1Þ is defined to be 1, as the number of factors can be
considered to be 0, which is even. The Möbius function
has some nice properties when combined with Euler’s
totient. For example, the following identity will be very
useful in the remainder of our proof:

fðkÞ
k
¼
X
i9k

mðiÞ
i
: ð4Þ

We have the following interesting relationship:

Lemma 6.6. Let k be a positive integer.

Xk

i ¼ 1

i �fðiÞ ¼
1

6

Xk

i ¼ 1

i � mðiÞ � 2
k

i

� �3

þ3
k

i

� �2

þ
k

i

� � !
:

Proof. We will prove this identity by induction.
For k¼1, fð1Þ ¼ 1¼ 1

6mð1Þð2þ3þ1Þ.
For kþ1: suppose that the equality holds for 1, . . . ,k.

Then, we still need to prove the following equality in
order to extend to kþ1: 6ðkþ1Þfðkþ1Þ equals

Xkþ1

i ¼ 1

i � mðiÞ � 2
kþ1

i

� �3

þ3
kþ1

i

� �2

þ
kþ1

i

� � !

�
Xk

i ¼ 1

i � mðiÞ � 2
k

i

� �3

þ3
k

i

� �2

þ
k

i

� � !

¼
X

i9ðkþ 1Þ
i o kþ 1

i � mðiÞ � 6ðkþ1Þ2

i2
þ6ðkþ1Þ � mðkþ1Þ

ðBy Lemma 6:5Þ

¼ 6ðkþ1Þ2
X

i9ðkþ1Þ

mðiÞ
i
¼ 6ðkþ1Þ2

fðkþ1Þ

ðkþ1Þ
ðIdentity 4Þ

¼ 6ðkþ1Þfðkþ1Þ: &

Theorem 6.7. Let k be a positive integer.

1

k3

Xk

i ¼ 1

i � fðiÞ ¼
2

p2
þO logðkÞ

k

� �
:

Proof. The proof is based on the identity given in Lemma
6.6, and the fact that we can lower and upper bound this
identity, using x�1o xb crx. Therefore, we get the fol-
lowing lower bound on ð1=k3

Þ
Pk

i ¼ 1 i � fðiÞ:

1

6k3

Xk

i ¼ 1

i � mðiÞ � 2
k

i
�1

� �3

þ3
k

i
�1

� �2

þ
k

i
�1

� � !

¼
1

6k3

Xk

i ¼ 1

i � mðiÞ � 2
k

i

� �3

�3
k

i

� �2

þ
k

i

� � !

¼
2

6

Xk

i ¼ 1

mðiÞ
i2
þO log ðkÞ

k

� �
:

Because
Pk

i ¼ 1 mðiÞ=i2 converges to 6=p2, we get the
following asymptotic behavior for the lower bound:

2

p2
þO log ðkÞ

k

� �
:

Similarly, the same asymptotic behavior can be proven for
the upper bound, thus establishing the theorem. &

This leads to the observation that, asymptotically, the
number of borders r and the length of the stream L in
worst case are related as follows:

r¼
p2L

2

� �2=3
3

p2
:

Fig. 9 shows the number of borders for Farey streams of
lengths up to 107 together with the upper bound given by
this formula. As can be seen, the bound on the number of
borders is almost exactly the actual worst case number.

7. Experiments

7.1. Implementation details

We have implemented a prototype of the max-fre-
quency stream mining algorithms using Python. Max-
Freq-Miner, Max-Freq-Minermwl and Max-Freq-Miners
are straightforward to implement. The implementation
of Max-Freq-Minermwl

s and Max-Freq-Miner-Allmwl
s , how-

ever, is more involved. Three problems need to be dealt
with. (i) We only need to create a summary for those
itemsets that leave the minimal window and that were
frequent in the minimal window. Thus, we need to find



5 Note that we, again, need to count the number of occurrences of an

item(set) in the minimal window.

T. Calders et al. / Information Systems 39 (2014) 233–255250
the frequent itemsets in the minimal window in an efficient
manner. (ii) In order to calculate the frequency of the
borders in the summary on S

�mwl over the whole stream,
we need to know the number of occurrences of an itemset
in the minimal window. Thus, we need an efficient
counting procedure. (iii) The starting point of the maximal
window is either L�mwlþ1 (i.e., the start of the minimal
window), or a border in the summary on S

�mwl, or it is a
position between L�2mwlþ1 and L�mwl. Thus, for all
frequent itemsets occurring on these positions, we need
to find the positions at which they are most frequent.

To solve the first two problems we implemented an
incremental version of Eclat, see Section 7.1.1. The tid-
lists used in Eclat are not deleted after mining the
minimal window. They can thus be reused at the next
timestamp and can also be used to efficiently count the
number of occurrences of an itemset in the minimal
window. The third problem is resolved by using a con-
densed per-item representation of the window
S½L�2mwlþ2,L�mwlþ1�, see Section 7.1.2.

Note that because the minimal window length is
typically extremely small compared to the size of the
stream, any itemset miner can be used to mine the
minimal window.

7.1.1. Incremental Eclat

Our incremental implementation of Eclat is identical to
Eclat (with the diffset optimization) [24,25], except that
we keep the diffsets of the items in main-memory and
update them incrementally, according to the itemset that
is entering (resp. leaving) the minimal window. Finding
the frequent itemsets is done by running the Eclat
algorithm.

We can also use the incrementally updated diffsets of
the items in the minimal window to count the number of

occurrences of an itemsets. Suppose we want to count how
many times itemset X occurs in the minimal window.
First, we check whether all the items of itemset X are
present (i.e., have a diffset). If all itemsets are present, we
calculate the diffset of X by taking the union of the diffsets
of the items of X. Subtracting the size of the diffset from
the minimal window length results in the number of
occurrences of X in the minimal window.

One could opt to keep all the diffsets (for items and
itemsets) in memory and update all of them incremen-
tally, instead of the method we employ. While this
alternative ‘‘incrementalization’’ of Eclat will definitely
prove valuable in the case where several of the frequent
itemsets are relatively long, storing all these diffsets will
require a large amount of memory.

7.1.2. Position summaries

Call the window of length mwl just behind the minimal
window, i.e., S½L�2mwlþ2,L�mwlþ1�, the second mini-
mal window, denoted by MW2. We keep a condensed per-

item representation of the second minimal window in
memory, called position summaries. A position summary
is similar to the summaries used in our main algorithm,
except that no positions are pruned and the summary is
always on a substream of length mwl.
How do we find the frequencies of the frequent item-
sets in the second minimal window? For each item,
occurring in MW2, we keep a list of pairs ðp,cÞ, stating
that the item occurs c consecutive times starting at
position p. Next we apply a two-stage iterative algorithm,
similar to the candidate generation and pruning in
Apriori, to find for all frequent itemsets, their maximal
frequency and the position at which this frequency is
attained. The iterative algorithm starts with copies of the
position summaries of the items present in the second
minimal window.
Stage 1:
 Given the position summary of an itemset and
the count of that itemset in the minimal window,
it is easy to calculate position producing the
highest frequency.5 The position summaries of
infrequent itemsets are pruned.
Stage 2:
 In the second step, we combine the frequent
items into candidate frequent two-itemsets. The
position summary of a two-itemsets ab can be
derived from the position summaries of a and b.
We keep two pointers, one pointing to a position
in the position summary of a, the other pointing
to a position in the position summary of b. At
each iteration, we check whether there is an
overlap between the sequence of a’s and the
sequence of b’s as defined by the position-
count-pairs pointed to by the pointers. The
pointer pointing to the oldest position (count is
used to break a tie) is moved to the next posi-
tion-count-pair. It is easy to generalize this
procedure to n position summaries. A new itera-
tion starts.
7.2. Datasets

7.2.1. Synthetic datastreams

Table 2 provides an overview of the synthetic datasets.
Column Probability distribution defines which probability
distribution was used to model the occurrence of items in
a stream. For a uniform distribution the uniform chance is
provided. For a sine distribution the period of the sine
function is provided. A sine distribution equals a sine
function plus with 0.5, i.e., the probability goes up and
down between 0 and 1. A Gaussian peak distribution
looks like a Gauss probability distribution with a mean
and a standard deviation but it is not normalized, i.e., the
probability rises from 0 to 1 and then drops back to 0.

The bursty 10, bursty 20 and sparse & bursty streams
are composed of ‘‘bursts’’ of an itemset, i.e., an itemset
occurs multiple consecutive times. In the case of bursty
10, the length of a burst is modeled by a normal
distribution with mean 10 and standard deviation 5. For
bursty 20 a normal distribution with mean 20 and
standard deviation 5 was used. The sparse & bursty
stream was created with a normal distribution with mean
40 and standard deviation 5. Moreover, during the



Table 2
Overview of the synthetic data streams used in the experiments. The

column probability distribution contains information on the probability

distribution used to generate the items.

Name Length # Item Probability distribution

Short 10 000 5 a Uniform 0.5

b Sine period 100

c Gaussian peak (4000, 100)

d Gaussian peak (6000, 200)

Bursty 10 10 000 5 a Uniform 0.57

b Uniform 0.57

c Uniform 0.57

Bursty 20 10 000 5 a Uniform 0.57

b Uniform 0.57

c Uniform 0.57

Sparse & bursty 10 000 5 | Uniform 0.5

a Uniform 0.3

b Sine period 200

c Gaussian peak (3000, 1000)

d Gaussian peak (4000, 1000)

e Gaussian peak (5000, 1000)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2000 4000 6000 8000 10000

a
c

a c

P(a)
P(b)

P(a c)

Fig. 10. A comparison between the actual frequency used while con-

structing one of the short streams and the frequency as mined by

Max-Freq-Minermwl
s in the actual stream. Top: frequency used for

constructing itemsets a, b and ac. Bottom: mined frequency of itemsets

a, b and ac.

Table 3
Characteristics of the blocks and compounds streams.

Stream Length Largest
itemset

Median
itemset
length

Blocks-10 3 968 417 85 0

Compounds-10 28 0

Blocks-60 661 403 87 0

Compounds-60 31 0

T. Calders et al. / Information Systems 39 (2014) 233–255 251
creation of the sparse & bursty streams, a burst of the
empty itemset was inserted with a 50% chance.

Does the max-frequency measure discover the fre-
quencies embedded in these synthetic streams? Fig. 10
shows the embedded frequency and the max-frequency of
three itemsets in one of the short streams. We clearly see
the embedded frequency (at the top of the plot) reappear
in the max-frequency (at the bottom of the plot), proving
the practical relevance of max-frequency.

7.2.2. Real-world datastreams: alarms

From a data mining company we received a dataset of
alarms. An alarm occurs when a sensor value exceeds a
prespecified threshold value. Alarms are grouped in blocks.
For example: the alarms of the sensors on a single machine
form a single block. Blocks are grouped into compounds. For
example: the alarms of the sensors of all the machines on a
single floor of a factory form a single compound.

From the raw timestamped data a stream of itemsets
was constructed by making 10-s and 60-s slices of blocks
(resp. compounds). There are 3873 blocks and 290 com-
pounds in the data. All four streams are sparse, as the
median length of an itemset is zero. The characteristics of
the four streams are presented in Table 3. Because very
large itemsets occur in the streams and most of them
occur at the end of the stream, we have to set appropriate
values for the minimal window length and the minimal
frequency threshold. Indeed, without a mwl and s each
and every subset of the 87-item itemset would become
frequent at some point, and thus require a summary.
Clearly, we would run out of memory instantaneously.
By setting the minimal window length and minimal
frequency threshold, only for those itemsets that are
frequent in the minimal window a summary is started.

7.3. Memory efficiency

A crucial point for the performance and applicability of
the stream mining algorithms in this paper is the number
of borders in the summaries. Large summaries may
require too much memory to remain feasible. The perfor-
mance of the algorithms with minimal window length
(Max-Freq-Minermwl, Max-Freq-Minermwl

s and Max-Freq-
Miner-Allmwl

s ) will also degrade: the max-frequency in
these algorithms is computed by comparing the fre-
quency of all the borders. Note that if the minimal
window length and minimal frequency threshold have
been set, some additional memory is used to store the
minimal window, the second minimal window and for
mining both. However, as noted before, the minimal
window length is constant and very small compared to
the size of the stream.

Therefore we computed, for several different streams
and various values of mwl and s, the mean, the median
and the maximum number of borders (summed over all
summaries) maintained during the run of the mining
algorithms. The results are shown in Figs. 11 and 12 for
a short and a sparse & bursty stream (results for the
bursty 10 and 20 streams are omitted as they are very
similar to the results of the short streams). As expected,
the number of borders tends to zero for high values of s
(i.e., virtually no border is frequent). On the other hand,



0 200 400 600 800 1000 0
0.2

0.4
0.6

0.80
20
40
60
80

100
120
140
160

Mean number of borders
Median number of borders

Maximum number of borders

mwl
sigma

Fig. 12. Mean and median number of borders in all summaries while

mining a sparse & bursty stream.

400
600 800

1000
0.4

0.6
0.80

500
1000
1500
2000
2500
3000
3500
4000

Mean number of borders
Median number of borders

Maximum number of borders

mwl sigma

Fig. 13. Mean, median and maximum number of borders in all summa-

ries while mining the blocks-10 stream.

200 400 600 800 1000
0.2

0.4
0.6

0.80
200
400
600
800

1000
1200
1400
1600

Mean number of borders
Median number of borders

Maximum number of borders

mwl
sigma

Fig. 14. Mean and median number of borders in all summaries while

mining the compounds-60 stream.

250
500

750
1000

0.4
0.6

0.8200
300
400
500
600
700
800
900

1000
1100
1200

Average running time

mwl
sigma

tim
e 

(s
)

Fig. 15. The running time of Max-Freq-Minermwl
s on the blocks-10

stream. At the origin mwl¼ 100 and s¼ 0:25, the running time starts

to increase dramatically. Further lowering the minimal frequency

threshold will make too many itemsets max-frequent.

0 200 400 600 800 1000 0
0.2

0.4
0.6

0.80
20
40
60
80

100
120

Mean number of borders
Median number of borders

Maximum number of borders

mwl
sigma

Fig. 11. Mean and median number of borders in all summaries while

mining a short stream.

T. Calders et al. / Information Systems 39 (2014) 233–255252
if the minimal frequency threshold is low (0 and 0.01),
there are on average between 30 and 35 borders in all the
summaries together while mining the short, bursty 10
and bursty 20 streams, and the maximum number of
borders does not exceed 120. Evidently, more borders are
needed to mine the sparse & bursty stream, as this stream
features five items. Nonetheless, these results show a
highly efficient memory usage: in the median case, about
10 borders are present.

How about the memory consumption in our real-world
datasets? We show the results of the blocks-10 and
compounds-60 streams. Figs. 13 and 14 show the mean
and median number of borders used, over all summaries,
in the respective streams. Despite the fact that the blocks-
10 stream consists of 3873 distinct items, at most 4000
borders need to be maintained. Even more strikingly, on
average only 2.5 borders are present, summed over all
summaries. Similarly, the compounds-60 stream consist of
290 distinct items and require, on average, less than eight
borders to track all frequent itemsets.

Fig. 15 shows the running time required to mine the
blocks-10 stream. Notwithstanding that this stream con-
tains itemsets of up to 85 items, with suitable minimal
window length and minimal frequency threshold they can
be effectively mined.

7.3.1. Conclusion

On average (and even in the maximum case), a very
limited amount of memory is consumed by the
summaries, both in the synthetic and in the real-world
dataset. We also showed that our algorithm can effec-
tively cope, both in terms of memory and time, with long
streams containing many items and large itemsets.

7.4. Checkscheduler and lazy handling

The checkscheduler and lazy handling are straight-
forward optimizations Max-Freq-Miner-Allmwl

s . In this
section we investigate their effectiveness both on syn-
thetic and real-world datasets.

7.4.1. Sparse & bursty streams

A stream is called sparse if many of its itemsets are
empty. A stream is called bursty if an itemset mostly
occurs on multiple consecutive time points. A sparse &



0
250 500 750

1000
0.2

0.4
0.6

0.8

-0.1

0

0.1

Relative Difference

mwl
sigma

Bursty 10 streams

0.8-0.2

-0.1

0

0.1

0.2

Relative Difference

T. Calders et al. / Information Systems 39 (2014) 233–255 253
bursty stream thus has many stretches of empty itemsets,
interrupted by bursts of an itemset. On such streams, one
would except a lazy handling checkscheduler to be
advantageous, because a burst forms a solid foundation
for a slowly decreasing frequency.

The experiment consists of running the mining algo-
rithm with and without the lazy handling checkscheduler
on the following parameter values: mwl¼1, 20, 100, 250,
500, 750, 1000 and s¼0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 0.99. Each parameter combination is run five
times on each of the sparse & bursty streams.

Fig. 16 shows the relative difference in the average
running times of the algorithm with and without the lazy
handling checkscheduler. If the minimal frequency
threshold is not too high, say below 0.3, a speed-up of
at least 10% is achieved. In the most extreme case, i.e.,
mwl¼ 1 and s¼ 0, a speed-up of about 50% is achieved.
However, with higher frequency thresholds, the speed-up
becomes a slow-down. Also, longer minimal windows
incur lesser speed-ups. This comes as no surprise, because
scheduling a check for an itemset implies assessing the
frequency of that itemset in the minimal window. The
cost of computing the frequency in the minimal window
grows linearly with the minimal window length.
0
250 500 750 1000

0.2
0.4

0.6

mwl
sigma

Bursty 20 streams

Fig. 17. The relative difference in running time of the mining algorithms

with and without lazy handling checkscheduler on the bursty 10 and

bursty 20 streams. Negative numbers imply that the algorithm with

checkscheduler is faster, whereas positive numbers imply the algorithm

without checkscheduler is faster.
7.4.2. Bursty streams

The sparseness is favorable for the lazy handling
checkscheduler. If no check is scheduled, nothing hap-
pens. Therefore we test in this experiment whether the
performance gain is preserved when sparseness is left out
of the equation.

Each algorithm is run five times with the lazy handling
checkscheduler and five times without the lazy handling
checkscheduler on the bursty 10 and bursty 20 streams.
The parameter values are mwl¼1, 20, 100, 250, 500, 750,
1000 and s¼0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 0.99.

Fig. 17 shows the relative difference in running time
between the mining algorithm with and without a lazy
handling checkscheduler. The speed-up effect on small
minimal window length and minimal frequency threshold
values is more pronounced on the bursty 20 streams.
0 250
500

750
1000

0.2
0.4

0.6
0.8-0.5

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Relative Difference

mwl

sigma

Fig. 16. The relative difference in average running time of the mining

algorithms with and without the lazy handling checkscheduler on the

sparse & bursty streams. Negative numbers imply that the algorithm

with checkscheduler is faster, whereas positive numbers imply the

algorithm without checkscheduler is faster.
Nonetheless, the speed-up is far less pronounced than
what we have seen on the sparse & bursty streams.

7.4.3. Short streams

Thirdly, the ‘‘burstiness’’ is also eliminated from the
streams. The possible parameter values are unaltered
with respect to the previous experiments, but this time
the short streams are mined.

Fig. 18 shows the relative difference in the average
running time of the algorithms with and without lazy
handling checkscheduler. In this case, the lazy handling
checkscheduler is only a slow-down for all combinations
of mwl and s.

7.4.4. Alarms

We also investigated the effect of the checkscheduler
on the time required to mine the four alarms streams.
Fig. 19 shows the run times of Max-Freq-Miner-Allmwl

s for
various s- and mwl-values when mining the blocks-10
alarms stream. Again, we see that the difference in run
time is in favor of the miner without checkscheduler.
Although the stream is sparse, large itemsets become very
frequent (up to 25% frequency) at the end of the stream.
The checkscheduler requires counting the number of
itemsets in the minimal window. This becomes expensive
if many (larger) itemsets are frequent.



250
500

750
1000

0.4
0.6

0.8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Relative Difference

mwl
sigma

Fig. 19. The relative difference in running times of Max-Freq-

Miner-Allmwl
s on the blocks-10 stream of alarms, with and without lazy

handling checkscheduler. Positive number implies that the algorithm

without checkscheduler is faster.

0

0.5

1

1.5

2

0 2000 4000 6000 8000 10000

a
P(a)

P = 0
P = 1

Fig. 20. Position of the borders in the summary of item a, relative to the

length of the stream. Parameters of the algorithm: mwl¼ 1 and s¼ 0.

0

0.5

1

1.5

2

0 2000 4000 6000 8000 10000

b
P(b)

Fig. 21. Position of the borders in the summary of item b, relative to the

length of the stream. Parameters of the algorithm: mwl¼ 1 and s¼ 0.

0

0.5

1

1.5

2

2.5

0 2000 4000 6000 8000 10000

c
P(c)

Fig. 22. Position of the borders in the summary of item c, relative to the

length of the stream. Parameters of the algorithm: mwl¼ 1 and s¼ 0.

0
250

500
750

1000
0.2

0.4
0.6

0.8
0.1

0.3

Relative Difference

mwl
sigma

Fig. 18. Relative difference in running time of the mining algorithms

with and without lazy handling checkscheduler on the short streams.

Negative numbers imply that the algorithm with checkscheduler is

faster, whereas positive numbers imply the algorithm without

checkscheduler is faster.

T. Calders et al. / Information Systems 39 (2014) 233–255254
7.4.5. Conclusion

On the synthetic datastreams, four factors have an
effect on the speed-up achieved by a lazy handling
checkscheduler: (i) the minimal window length, (ii) the
minimal frequency threshold, (iii) the sparseness of the
stream and (iv) the length of the bursts. On the real-world
datastreams, the lazy handling checkscheduler always
underperformed. We have yet to figure out the specific
reason for this behavior.

Surprisingly enough, lazy handling on its own and the
checkscheduler on its own are not able to achieve sub-
stantial speed-ups. The combination is more efficient than
the sum of the parts.

7.5. Border positions

In theory a border can occur at any position in the stream,
but where are the borders positioned in practice? To find out
how the borders are distributed over the stream in practice,
we let the algorithm output the positions of all the borders in
the active summaries, (mwl¼ 1 and s¼ 0), while mining on
one of the short streams. A plot was generated from this data.
On the x-axis we have the length of the stream thus far. The
y-axis shows the positions of the border relative to the length

of the stream, i.e., the range of the y-axis is [0, 1]. The plots
for items a, b and c are shown in Figs. 20–22. From the plots
of a and b (i.e., items which occur throughout the stream) we
can deduce that there are three kinds of borders. First of all
we see a lot of borders at the end (the most recent itemsets)
of the streams. Because the windows are short and the
itemsets potentially plentiful in this part of the stream, a
lot of borders is needed to capture all potential maximal
windows. This illustrates that our algorithm can effectively

find sudden bursts of an itemset. The second kind of border
can be found between the relative positions0.8 and 0.2. These
borders mark the starting of a period with a relatively high
occurrence of the target itemset. Thirdly, we have the borders
under relative position 0.2. These are the borders that are at

the start (the oldest itemsets) of the stream. These borders



T. Calders et al. / Information Systems 39 (2014) 233–255 255
capture the average frequency of the target itemset in the
whole stream. If the minimal window length is set to a
higher value we get largely the same plot, except that the
relative border positions start somewhat lower. If the mini-
mal frequency threshold is set, we will see the same three
regions, where the third kind of border will now be at more
recent positions.

In Fig. 22 we see that there is only a single ‘‘fang’’. A lot
of borders are created at the moment that the frequency
of item c is rising rapidly. Once the peak-frequency is
attained few new borders are created and the oldest
borders start absorbing the younger ones. Eventually only
a single border remains.

8. Conclusion

The max-frequency measure is apt for mining frequent
itemsets in a datastream. It truthfully captures the fre-
quency of itemsets, as is shown by Fig. 10. Frequent item-
sets can be mined efficiently, both in terms of time and
space. The efficiency of the algorithm can be derived
theoretically by linking the number of borders to the
concept of Farey streams, from number theory. From this
connection we can deduce that, even in the worst case, the
number of borders increases slower than the length of the
stream. Experiments on datasets, in which itemsets occur in
varying patterns, show that the number of borders in a
summary, in practice, remains relatively stable over time.

We showed that no edge can be gained from exploiting
the subset relation between itemsets. Simply storing item-
summaries results in space issues. Sharing borders among
summaries linked by the subset relation on itemsets is
impossible because at any given point a position might be
a border for itemsets A1 and A3 but not for itemset A2, where
we have that A1 � A2 � A3. As a result, further optimizations
of the algorithm will need to be based on non-trivial insights.

From the experiments with our software prototype on
both synthetic and real-world datasets, we draw three
conclusions. Firstly, on average very few borders are
needed to derive the max-frequency of all itemsets in a
stream. Secondly, streams that are sparse & bursty over
the whole course of the stream benefit from the lazy
handling checkscheduler. Thirdly, even stream with large
transactions can be mined efficiently if suitable values for
the minimal window length and minimal frequency
threshold have been set.

References

[1] A. Bifet, G. Holmes, B. Pfahringer, R. Gavald �a, Mining frequent
closed graphs on evolving data streams, in: Proceedings of
the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2011, pp. 591–599.
[2] T. Calders, N. Dexters, B. Goethals, Mining frequent items in a
stream using flexible windows, in: ECML/PKDD-2006 International
Workshop on Knowledge Discovery from Data Streams (IWKDDS),
Springer, 2006, p. 12.

[3] T. Calders, N. Dexters, B. Goethals, Mining frequent itemsets in a
stream, in: ICDM, 2007.

[4] T. Calders, N. Dexters, B. Goethals, Mining frequent items in a
stream using flexible windows, Intelligent Data Analysis 12 (2008).

[5] J. Cheng, Y. Ke, W. Ng, Maintaining frequent closed itemsets over a
sliding window, Journal of Intelligent Information Systems 31
(2008) 191–215.

[6] J. Cheng, Y. Ke, Q. Ng, A survey on algorithms for mining frequent
itemsets over data streams, Knowledge and Information Systems
16 (2008) 1–27.

[7] Y. Chi, H. Wang, P.S. Yu, R.R. Muntz, Catch the moment: maintain-
ing closed frequent itemsets over a data stream sliding window,
Knowledge and Information Systems 10 (2006) 265–294.

[8] J.H. Conway, R.K. Guy, Farey Fractions and Ford Circles, Springer-
Verlag, 1996 (In The Book of Numbers (New York)), pp. 152–154,
156.

[9] G. Cormode, M. Hadjieleftheriou, Methods for finding frequent
items in data streams, The VLDB Journal 19 (2010) 3–20.

[10] X.H. Dang, W.K. Ng, K.L. Ong, Online mining of frequent sets in data
streams with error guarantee, Knowledge and Information Systems
16 (2008) 245–258.

[11] E.D. Demaine, A. López-Ortiz, J.I. Munro, Frequency estimation of
internet packet streams with limited space, in: ESA, 2002,
pp. 348–360.

[12] L. Golab, D. DeHaan, E.D. Demaine, A. López-Ortiz, J.I. Munro,
Identifying frequent items in sliding windows over on-line packet
streams, in: Internet Measurement Conference, 2003, pp. 173–178.

[13] R. Jin, G. Agrawal, An algorithm for in-core frequent itemset mining
on streaming data, in: ICDM, 2005, pp. 210–217.

[14] R.M. Karp, S. Shenker, C.H. Papadimitriou, A simple algorithm for
finding frequent elements in streams and bags, ACM Transactions
on Database Systems 28 (2003) 51–55.

[15] Y. Kim, J. Ryu, U. Kim, Fia: frequent itemsets mining based on
approximate counting in data streams, in: Neural Information
Processing, Springer, 2009, pp. 312–322.

[16] D. Lee, W. Lee, Finding maximal frequent itemsets over online data
streams adaptively, in: ICDM, 2005, pp. 266–273.

[17] H. Li, S. Lee, Mining frequent itemsets over data streams using
efficient window sliding techniques, Expert Systems with Applica-
tions 36 (2009) 1466–1477.

[18] C.H. Lin, D.Y. Chiu, Y.H. Wu, A.L.P. Chen, Mining frequent itemsets
from data streams with a time-sensitive sliding window, in: SDM,
2005.

[19] B. Mozafari, H. Thakkar, C. Zaniolo, Verifying and mining frequent
patterns from large windows over data streams, in: Proceedings of
the 24th International Conference on Data Engineering, ICDE 2008,
Cancún, México, April 7–12, 2008, pp. 179–188.

[20] A.A. Veloso, W. Meira, Jr., M.B. de Carvalho, B. Pôssas, S. Parthasarathy,
M.J. Zaki, Mining frequent itemsets in evolving databases, in: SDM,
2002.

[21] E. Wang, A. Chen, A novel hash-based approach for mining frequent
itemsets over data streams requiring less memory space, Data
Mining and Knowledge Discovery 19 (2009) 132–172.

[22] E. Wang, A. Chen, Mining frequent itemsets over distributed data
streams by continuously maintaining a global synopsis, Data
Mining and Knowledge Discovery (2011) 1–48.

[23] J.X. Yu, Z. Chong, H. Lu, A. Zhou, False positive or false negative:
mining frequent itemsets from high speed transactional data
streams, in: VLDB, 2004, pp. 204–215.

[24] M. Zaki, Scalable algorithms for association mining, IEEE Transac-
tions on Knowledge and Data Engineering 12 (2000) 372–390.

[25] M. Zaki, K. Gouda, Fast Vertical Mining Using Diffsets, 2003.


	Mining frequent itemsets in a stream
	Introduction
	Max-frequency revisited
	Counts, frequencies and max-frequency
	Minimal window length
	The max-frequent itemset mining problem

	Mining a single itemset
	Maximal windows, borders, and summaries
	Minimal window length
	Pruning
	MaxhyphenFreqhyphenMinermwl
	Example

	Minimal frequency threshold
	Pruning
	MaxhyphenFreqhyphenMinersigma
	Example

	Minimal window length and minimal frequency threshold
	Pruning
	MaxhyphenFreqhyphenMinersigmamwl
	Example


	Mining all itemsets
	Algorithm
	Complexity
	Optimizations

	Greater border efficiency
	Item borders only
	Border closure

	Worst case analysis
	Farey streams
	Bounds

	Experiments
	Implementation details
	Incremental Eclat
	Position summaries

	Datasets
	Synthetic datastreams
	Real-world datastreams: alarms

	Memory efficiency
	Conclusion

	Checkscheduler and lazy handling
	Sparse & bursty streams
	Bursty streams
	Short streams
	Alarms
	Conclusion

	Border positions

	Conclusion
	References




