GYY4137 ameliorates intestinal barrier injury in a mouse model of endotoxemia

Shanwen Chen a, Dingfang Bu b, Yuanyuan Ma c, Jing Zhu a, Lie Sun a, Shuai Zuo a, Ju Ma a, Tengyu Li a, Zeyang Chen a, Youwen Zheng a, Xin Wang a, Yisheng Pan a, Pengyuan Wang b,*, Yucun Liu a,*,

a Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing 100034, People’s Republic of China
b Central Laboratory, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing 100034, People’s Republic of China
c Animal Experiment Center, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing 100034, People’s Republic of China

A R T I C L E I N F O

Article history:
Received 11 May 2016
Accepted 15 August 2016
Available online 20 August 2016

Keywords:
GY4137
Hydrogen sulfide
LPS
Tight junction
NF-kB

A B S T R A C T

Intestinal barrier injury has been reported to play a vital role in the pathogenesis of endotoxemia. This study aimed to investigate the protective effect of GYY4137, a newly synthesized H2S donor, on the intestinal barrier function in the context of endotoxemia both in vitro and in vivo. Caco-2 (a widely used human colon cancer cell line in the study of intestinal epithelial barrier function) monolayers incubated with lipopolysaccharide (LPS) or TNF-α/IFN-γ and a mouse model of endotoxemia were used in this study.

The results suggested that GYY4137 significantly attenuated LPS or TNF-α/IFN-γ induced increased Caco-2 monolayer permeability. The decreased expression of TJ (tight junction) proteins induced by LPS and the altered localization of TJs induced by TNF-α/IFN-γ was significantly inhibited by GYY4137; similar results were obtained in vivo. Besides, GYY4137 promoted the clinical score and histological score of mice with endotoxemia. Increased level of TNF-α/IFN-γ in the plasma and increased apoptosis in colon epithelial cells was also attenuated by GYY4137 in mice with endotoxemia. This study indicates that GYY4137 preserves the intestinal barrier function in the context of endotoxemia via multipathways and throws light on the development of potential therapeutic approaches for endotoxemia.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Sepsis remains a leading cause of death in critically ill patients, the most common kind of which is caused by infection with Gram-negative bacteria, featured by increased level of lipopolysaccharide (LPS) in the blood, also known as endotoxemia [1]. Previous reports have revealed the vital role of intestinal barrier injury in the gut derived infection and the consequent septic multiple organ dysfunction in the pathogenesis of endotoxemia [2,3]. The intestinal barrier is mainly determined by tight junctions (TJs), which function as a physical barrier between the luminal content and the internal milieu [4]. Previous studies have reported that LPS was able to induce decreased expression of TJ proteins and altered localization of TJs via NF-KB mediated MLCK-P-MLC2 signaling, leading to the increased flux of noxious antigens in the lumen into the internal milieu, providing “fuel” for the unremitting inflammatory responses both locally and systematically [5–9].

Hydrogen sulfide (H2S) has been validated as the third “gaseotransmitter” after carbon monoxide and nitric oxide [10,11]. The physiological function of H2S can be complex, including vasodilation, anti-inflammation and protecting gastric mucosal integrity [12–14]. In the previous reports from our laboratory and others, sodium hydrosulfide (NaHS) has been widely used as a donor to release H2S [15–17]. However, recent studies suggested that NaHS released large amounts of H2S over a few seconds under physiological conditions, which mimicked the toxic instead of the physiologic effects of H2S [18]. As a new synthetic compound, GYY4137 in aqueous solution was found to be able to release lower concentrations of H2S over longer time periods and thus was used in multiple studies regarding the effects of H2S [19,20]. However, the effect of GYY4137 on the intestinal barrier function in endotoxemia and the underlying mechanisms have not been illustrated.

The current study indicates that GYY4137 preserves the intestinal barrier function in the context of endotoxemia via multipathways and throws light on the development of potential therapeutic approaches for endotoxemia.
2. Materials and methods

2.1. Reagents

LPS (Escherichia coli serotype 055:B7), GYY4137, FITC-Dextran (4000 Da, FD-4) was purchased from Sigma Aldrich (USA). TNF-α and IFN-γ was purchased from Pepro Tech (USA). Antibodies against ZO-1, Occludin, Alex flour 488 conjugated goat-anti rabbit antibodies and Alex flour 555 conjugated goat-anti mouse antibodies were purchased from Thermo Fisher (USA). Antibodies against Claudin-1, MLCK, MLC2, P-MLC2 and GAPDH were purchased from CST (USA).

2.2. Cell culture

Caco-2 cells were purchased from ATCC (American Type Culture Collection, USA) and maintained at 37°C in a culture medium as previously described [21,22]. Caco-2 cells were used between passages 28 and 34 in this study. For growth on filters, 10^5 cells were plated on transwell filters with 0.4 μm pore size (Corning Incorporated, USA). The medium involving 10 ng/ml LPS, 10 ng/ml TNF-α/IFN-γ or 50 μM GYY4137 was added to the basolateral compartments.

2.3. Transepithelial Electrical Resistance (TEER) measurements

Caco-2 cells were seeded in 12 well transwell systems and the changes of TEER were measured with an epithelial voltohmmeter ERS-2 (Merck Millipore, USA) as previously reported [23,24]. About 3 weeks after confluence when the filter-grown Caco-2 monolayers reached epithelial resistance of at least 500 Ω cm^2 [25], the cells were incubated with different reagents as indicated. Electrical resistance was measured until similar values were recorded on three consecutive measurements.

2.4. Fluorescein isothiocyanate–dextran 4000 Da (FD-4) Flux assays

Paracellular permeability was assessed following a previously reported method [26,27]. After treatment, Caco-2 monolayers were rinsed with PBS and incubated in the upper chamber with Hank's balanced salt solution containing 1 mg/mL FD-4 solution for 2 h. FD-4 flux was assessed by taking 100 μL from the basolateral chamber. Fluorescent signal was measured with Synergy H2 microplate reader (Biotek Instruments, USA) using 492 nm excitation and 520 nm emission filters. FD-4 concentrations were determined by a mouse model of endotoxemia was constructed by intraperitoneal injection of 10 mg/kg LPS. 72 mice were randomly divided into 4 groups: Control; GYY4137 alone; LPS; LPS + GYY4137. Mice in the control group were treated with PBS. Mice in the GYY4137 group were intraperitoneally injected with 50 mg/kg GYY4137. Mice in the LPS group were intraperitoneally injected with 10 mg/kg LPS. Mice in the LPS + GYY4137 group were intraperitoneally injected with 10 mg/kg LPS and 50 mg/kg GYY4137 at baseline. All mice were euthanized 12 h after treatment.

2.9. Clinical assessment

The clinical status of mice in different groups (18 per group) were evaluated utilizing an established clinical score system as

<table>
<thead>
<tr>
<th>Variable</th>
<th>Score</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjunctivitis</td>
<td>Eyes closed or bleared with serous discharge</td>
<td>Eyes opened with serous discharge</td>
<td>Normal, no conjunctivitis</td>
</tr>
<tr>
<td>Stool consistency</td>
<td>Diarrhea</td>
<td>Loose stool</td>
<td>Normal stool</td>
</tr>
<tr>
<td>Hair coat</td>
<td>Rough and dull fur, ungroomed</td>
<td>Reduced grooming, rough hair coat</td>
<td>Well groomed, shiny fur</td>
</tr>
<tr>
<td>Activity upon moderate stimulation</td>
<td>Lethargic, only lifting of the head after moderate stimulation</td>
<td>Inactive, <2 steps after moderate stimulation</td>
<td>Normal locomotion and reaction, >2 steps</td>
</tr>
</tbody>
</table>

Table 1

Clinical scoring system.
Table 1. Histological scoring system.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Histological characteristics(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal mucosal villi</td>
</tr>
<tr>
<td>1</td>
<td>Subepithelial Gruenhagen’s space (edema), usually at the apex of the villus</td>
</tr>
<tr>
<td>2</td>
<td>Extension of the subepithelial space with moderate lifting of epithelial layer from the lamina propria</td>
</tr>
<tr>
<td>3</td>
<td>Massive epithelial lifting down the sides of villi; a few tips may be denuded</td>
</tr>
<tr>
<td>4</td>
<td>Denuded villi with lamina propria and dilated capillaries exposed</td>
</tr>
<tr>
<td>5</td>
<td>Digestion and disintegration of lamina propria; hemorrhage and ulceration</td>
</tr>
</tbody>
</table>

described previously [28]. The scoring system is exhibited in Table 1. Grading was performed in a blinded fashion by 3 independent researchers.

2.10. Histological assessment

The proximal colons (3 per group) collected from mice in different groups were excised and embedded in paraffin. Sections (4 µm) were cut and stained with hematoxylin and eosin (H&E). Images were obtained using a Zeiss Image light microscope at 20× magnification. For each slide, at least 6 images were collected. The degree of histopathologic changes was evaluated by 3 pathologists blinded to the grouping and graded according to a scoring system as described previously [29] (Table 2).

2.11. Measurement of intestinal barrier function

The intestinal barrier function was measured as described previously. Briefly, 12 h after treatment, mice from each group (6 per group) were anesthetized with pentobarbital sodium. A midline laparotomy was performed and a 5 cm segment of distal ileum was isolated with silk ties. 25 mg FD-4 buffered with 0.1 ml PBS was injected into the isolated ileum. The ileum was then placed back into the abdominal cavity and the skin was closed. The abdomen was then covered with a warm wet gauze and the mice was placed on a heated panel and kept under general anesthesia for 30 min. Blood was collected via cardiac puncture and stored in EDTA-coated tubes and centrifuged at 3000 rpm for 15 min at 4 °C. The concentration of FD-4 in the plasma was determined using Synergy H2 microplate reader (Biotek Instruments, USA) and then post-fixed with 4% glutaraldehyde overnight at 4 °C and fixed in optimum cutting temperature compound (OCT) at –20 °C. Sections (4 µm) were cut and immunofluorescent staining was performed as described previously [30]. The fluorescence was visualized under Fluoview 1000 confocal microscope (Olympus, Japan).

2.12. Immunofluorescence of ZO-1 and Occludin in frozen proximal colon sections

Proximal colons (3 per group) collected from each group were frozen in optimum cutting temperature compound (OCT) at –20 °C. Sections (4 µm) were cut and immunofluorescent staining was performed as described previously [30]. The fluorescence was visualized under Fluoview 1000 confocal microscope (Olympus, Japan).

2.13. Transmission Electron Microscopy of TJ in colon epithelium

2 mm sections of colon were washed (3 per group) and fixed with 4% glutaraldehyde overnight at 4 °C and then post-fixed with 1% osmium tetroxide. Tissues were embedded in Embed 812 and thinly sectioned. Sections were then stained with uranyl acetate and lead citrate and examined with an H-450 (Hitachi, Japan) transmission electron microscope.

2.14. Measurement of plasma TNF-α and IFN-γ

The concentrations of TNF-α and IFN-γ in the plasma of mice in different groups (6 per group) were measured with the Quantikine® ELISA kit (R&D, USA) following the manufacturer’s recommendations.

2.15. TUNEL analysis

Proximal colons (2 cm) (3 per group) were collected and paraffin-embed and cut into 4 µm sections. TUNEL analysis was carried out utilizing the In Situ Cell Death Detection Kit (POD) following the manufacturer’s instructions (Roche, Germany). Images were collected with a Zeiss Image light microscope and the number of apoptotic cells and the total cell number per field in each slide were counted. A minimum of 500 cells and 4 high-powered fields were counted per slide.

The apoptosis index (AI) was calculated according to the following formula:

\[
AI = \frac{[\text{the number of apoptotic cells}] / [\text{AC}]}{[\text{the number of intact cells}] \times 100}
\]

2.16. Statistical analysis

The results were expressed as mean ± standard error of the mean (SEM) and analyzed using Student t tests for unpaired data and ANOVA to compare groups whenever required (GraphPad Prism version 5.0, CA). A P value < 0.05 was used to indicate statistical significance.

3. Results

3.1. GYY4137 preserved the Caco-2 monolayer barrier function from the injuries induced by LPS

LPS induced significantly decreased monolayer barrier function, featured by decreased TEER and increased FD-4 flux at day 7 after treatment (Fig. 1A). LPS failed to induce significant changes of Caco-2 monolayer barrier function until 3 days after treatment, which was in accordance with the reports from both ours and other laboratories [7,25]. Co-treatment with GYY4137, however, significantly ameliorated the monolayer barrier injuries induced by LPS (Fig. 1A).

3.2. GYY4137 preserved the Caco-2 monolayer barrier function from the injuries induced by TNF-α/IFN-γ

10 ng/ml TNF-α/IFN-γ induced significantly decreased TEER and increased FD-4 flux after treatment for 48 h. Co-treatment with 50 µM GYY4137 significantly attenuated the monolayer barrier injuries induced by TNF-α/IFN-γ (Fig. 1A).

3.3. GYY4137 inhibited LPS induced decreased expression of TJ proteins

GYY4137 significantly ameliorated the decreased expression of ZO-1, Occludin and Claudin-1 induced by LPS in Caco-2 monolayers (Fig. 1B). The results of immunofluorescence showed that GYY4137 inhibited the decreased staining intensity induced by LPS in the Caco-2 monolayers, which was also in accordance with the results of western-blotting (Fig. 2A).
3.4. GYY137 attenuated TNF-α/IFN-γ induced activation of MLCK-P-MLC2 signaling via NF-κB p65

GYY137 or TNF-α/IFN-γ had no significant effect on the expression level of TJ proteins (Fig. 1C). Immunofluorescence of Caco-2 monolayers revealed that TNF-α/IFN-γ induced altered localization of ZO-1 and Occludin, featured by discontinuous and irregular staining compared with control. Co-treatment with GYY137 remarkably reversed the changes induced by TNF-α/IFN-γ (Fig. 2B). It has been reported that the distribution of TJ proteins was mainly regulated by NF-κB p65 mediated MLCK-P-MLC2 signaling. The results of western blotting showed that the increased expression of MLCK and increased phosphorylation level of MLC2 induced by TNF-α/IFN-γ was significantly attenuated by co-treatment with GYY137 (Fig. 1D).

EMSA and immunofluorescence suggested that co-treatment with GYY137 attenuated the increased activation and nuclear localization of NF-kb p65 (Fig. 2C and D).

3.5. GYY137 improved the clinical and histological status in mice with endotoxemia

The clinical status of mice after injection with or without 10 mg/kg body weight LPS in the presence or absence of 50 mg/kg body weight GYY137 was evaluated as described previously (Table 1). GYY137 significantly increased the clinical score of mice with endotoxemia compared with control (Fig. 3A).

The histological status of colon epithelium collected from different groups was evaluated utilizing an established mucosal damage score system (Table 2). Co-treatment with GYY137 ameliorated the histological damage of colon epithelium in mice with endotoxemia (Fig. 3B and C).

3.6. GYY137 preserved the intestinal barrier function in mice with endotoxemia

The concentration of FD-4 in the plasma was significantly increased in mice with endotoxemia compared with control. Co-treatment with GYY137 significantly attenuated the increased level of FD-4 concentration induced by LPS (Fig. 3D). These results indicated that GYY137 preserved the intestinal barrier function from the injuries induced by LPS in mice with endotoxemia.

3.7. Effect of GYY137 on the status of TJ proteins and signaling of MLCK-P-MLC2 in mice with endotoxemia

GYY137 significantly attenuated the decreased expression level of TJ proteins in the proximal colon epithelium of mice with endotoxemia (Fig. 4A). The level of MLCK-P-MLC2 signaling was found to be significantly increased in the proximal colon epithelium of mice with endotoxemia, featured by increased expression level of MLCK and increased phosphorylation level of MLC2 (Fig. 4B). Co-treatment with GYY137 significantly inhibited the increased signaling of MLCK-P-MLC2 in mice with endotoxemia.

Immunofluorescence of Occludin in the proximal colon epithelium suggested that, in mice with endotoxemia, the staining intensity was markedly decreased compared with control. Co-treatment with GYY137 ameliorated the change induced by endotoxemia (Fig. 4C).
3.8. GYY4137 prevented ultrastructural changes of TJs in mice with endotoxemia

As shown in Fig. 4D, control and GYY4137 mice have an intact structure in the TJs in the colon epithelium. Opened TJs and the decreased electron-dense materials between epithelial cells were observed in the colon epithelium collected from mice with endotoxemia. GYY4137 attenuated the changes of TJs in mice with endotoxemia.

3.9. GYY4137 attenuated the increased plasma level of TNF-α and IFN-γ

GYY4137 significantly attenuated the increased level of TNF-α to around 58% and IFN-γ to around 67% compared with mice with endotoxemia (Fig. 5A and B).

3.10. GYY4137 attenuated the apoptosis of the proximal colon epithelial cells in mice with endotoxemia

As shown in Fig. 5C and D, GYY4137 significantly attenuated the increased TUNEL index in mice with endotoxemia to around 62%, indicating that the inhibition of apoptosis might be one of the mechanisms underlying the effect of GYY4137.

4. Discussion

The intact function of intestinal barrier is mainly determined by TJs, which function as a physical barrier between the lumen and the internal milieu. The “leaky gut”, resulting from the decreased intestinal barrier function, played a pivotal role in the pathogenesis of multiple kinds of diseases including endotoxemia by allowing increased flux of noxious antigens into the internal milieu, leading to unremitting inflammatory responses. The increased level of LPS
in the plasma, commonly seen in the context of endotoxemia, has been reported to induce intestinal barrier injury through multiple mechanisms, including decreasing expression of TJ proteins and altering localization of TJs via NF-kB signaling. Upon activation, NF-kB p65 binds to the MLCK promoter region and increases the expression of MLCK mRNA [31,32]. The increased phosphorylation of MLC2 mediated by MLCK leads to contraction of actin-myosin filaments, resulting in altered localization of TJ proteins and consequently, the functional opening of TJs [33,34]. These studies imply the existence of a vicious cycle in the intestinal epithelium consisting of the inflammatory response and the injured intestinal barrier function in the context of endotoxemia. Thus, it remains a promising method for seeking potential therapeutic reagents for endotoxemia by verifying novel regents that may have protective effect on the intestinal barrier function.

GYY4137, as a new kind of H2S donor, was able to release stable quantities of H2S in the physiological context in the longer term compared with the traditionally used H2S donor, NaHS, and thus has been increasingly used as a pharmacological "tool" to investigate the biological functions of H2S [35]. Li et al. reported that GYY 4137 (50 mg/kg, i.p.) was able to generate a stable plasma H2S level (around 55 μmol/L) in at least the following 3 h after treatment [36]. The results of following in vivo studies in mice and rats also suggested the stability of GYY 4137 as a novel H2S donor [37–40]. Recently, studies have revealed the anti-inflammatory and anti-apoptosis effect of GYY4137 in multiple kinds of tissues [40,41]. However, the effect of GYY4137 on the intestinal barrier function and the underlying mechanisms has not been illustrated.

In this study, the effect of GYY4137 on the intestinal barrier function was investigated in vitro utilizing Caco-2 monolayers. The studies from our laboratory and others have revealed that LPS could cause direct damage to the Caco-2 monolayer barrier function by decreasing the expression of TJ proteins. TNF-α/IFN-γ, however, induced the increased permeability of monolayers by inducing the altered localization of TJs via NF-kB p65 mediated MLCK-P-MLC2 signaling. The combination of these two models of injured intestinal barrier function provided the approach for the investigation of the effect of GYY4137 on both the expression and the distribution of TJ proteins in the context of endotoxemia. The concentrations of LPS (10 ng/ml) and TNF-α (10 ng/ml)/IFN-γ (10 ng/ml) used in this study were at clinically related concentrations in the context of endotoxemia according to the previous reports [17,25]. The results indicated that GYY4137 preserved the intestinal barrier function from the injuries caused by LPS or TNF-α/IFN-γ.

A mouse model of endotoxemia was subsequently constructed by injecting 10 mg/kg body weight LPS i.p. in this study. 50 mg/kg GYY4137 was injected i.p. in the baseline to investigate the effect of GYY4137 on the LPS induced intestinal barrier injury in vitro. Considering the pathogenesis of endotoxemia as a systemic disease, the clinical status of mice after different treatment was tested using a scoring system as described previously. GYY4137 significantly improved the overall status of mice with endotoxemia. FD-4 flux assay suggested that GYY4137 was able to attenuate the increased flux.
Colon epithelial permeability in the context of endotoxemia. Histological evaluation of the colon epithelium suggested that GYY4137 exerted protective effect on the structure of the colon epithelium at the histological level. The inhibitory effect of GYY4137 on the signaling pathway of MLCK-P-MLC2 and the decreased expression of TJ proteins was in accordance with the results collected in vitro in Caco-2 monolayers. The results of TEM validated the protective effect of GYY4137 on the function of TJs in mice with endotoxemia at the ultrastructural level.

Previous reports have implied the pivotal role of increased level of proinflammatory cytokines including TNF-α/IFN-γ in the pathogenesis of endotoxemia and the consequent multiple organ dysfunction [42,43]. In this study, the results of ELISA suggested that GYY4137 significantly attenuated the increased level of TNF-α.

Fig. 4. The effect of GYY4137 on the expression of TJ proteins, the status of MLCK-P-MLC2 signaling and the structure of TJs in mice with endotoxemia. Total protein was collected from the proximal 2 cm colon epithelium from mice in different groups 12 h after injection as described in the section of method. A, GYY4137 significantly inhibited the decreased expression of ZO-1, Occludin and Claudin-1 in the proximal colon epithelium of mice with endotoxemia. B, GYY4137 significantly attenuated the increased expression of MLCK and the increased phosphorylation level of MLC2 in the proximal colon epithelium of mice with endotoxemia. C, Occludin (red) was stained by immunofluorescence as a marker of the changes of TJ proteins in the colon epithelium. a: Control; b: Mice treated with GYY4137 without LPS; c: Mice treated with LPS; d: Mice treated with both LPS and GYY4137. GYY4137 ameliorated the decreased staining intensity of Occludin in mice with endotoxemia (Arrows were added to direct against distinct changes). D, Ultrastructure of TJs in colon was observed by TEM. a: Control; b: Mice treated with GYY4137 without LPS; c: Mice treated with LPS; d: Mice treated with both LPS and GYY4137. The TJs were not intact and the electron-dense materials were diminished in mice with endotoxemia. Wider intervals were observed between the epithelial cells in mice with endotoxemia. (Arrows were added to direct against distinct changes). All experiments were performed with 6 mice per experimental group and repeated at least three times. Results were expressed as mean ± SEM. (*P < 0.05, vs control. #P < 0.05 vs LPS).
and IFN-γ in the plasma of mice with endotoxemia, indicating the potential protective effect of GYY4137 on the systemic injuries in the pathogenesis of endotoxemia.

Increased level of apoptosis of intestinal epithelial cells has been considered as an important mechanism underlying the injured intestinal barrier function in the context of endotoxemia [44,45]. In this study, TUNEL analysis suggested that GYY4137 significantly attenuated the increased level of apoptosis in the colon epithelial cells in mice with endotoxemia.

The inhibitory effect of H2S on the activation of NF-kB observed in the present study was in accordance with the results of plethora of previous studies [16,46]. Sen et al. reported that H2S acted by sulfhydrating the p65 subunit of NF-kB at cysteine-38, leading to the deceased activation and nuclear translocation of NF-kB [47]. This directly inhibitory effect on the activation of NF-kB might be the pivotal mechanism underlying the anti-inflammatory effect of H2S in many tissues [48]. Recently, IL-6 and silent information regulator 2 (SIR2) family have also been reported to be involved in the effect of H2S, which requires further investigation [49,50].

In conclusion, this study illustrates the protective effect of GYY4137 on the intestinal barrier function in the context of endotoxemia both in vitro and in vivo. Inhibiting NF-kB mediated MLCK-P-MLC2 pathway and apoptosis might be the mechanism underlying the protective effect of GYY4137. The inhibitory effect of GYY4137 on the systemic inflammatory response requires further research and may provide potential therapeutic targets for endotoxemia.

Funding

This work is supported by the grant for the research about the potential therapeutic approaches for surgical infection and the underlying mechanisms from China Health & Medical Development Foundation.

Conflict of interest statement

There is no conflict of interest.

References
