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Classification with imbalanced class distributions is a major problem in machine learning. Researchers
have given considerable attention to the applications in many real-world scenarios. Although several
works have utilized the area under the receiver operating characteristic (ROC) curve to select potentially
optimal classifiers in imbalanced classifications, limited studies have been devoted to finding the
classification threshold for testing or unknown datasets. In general, the classification threshold is simply
set to 0.5, which is usually unsuitable for an imbalanced classification. In this study, we analyze the
drawbacks of using ROC as the sole measure of imbalance in data classification problems. In addition,
a novel framework for finding the best classification threshold is proposed. Experiments with SCOP v.1.53
data reveal that, with the default threshold set to 0.5, our proposed framework demonstrated a 20.63%
improvement in terms of F-score compared with that of more commonly used methods. The findings
suggest that the proposed framework is both effective and efficient. A web server and software tools are
available via http :/ /datamining .xmu .edu .cn /prht/ or http :/ /prht .sinaapp .com/.

© 2016 Elsevier Inc. All rights reserved.
1. Background

A dataset is imbalanced if it contains a small amount of sam-
ples in one class as compared with the rest of the classes. Without 
loss of generality, a minority class is regarded as a positive class, 
whereas a majority class is viewed as a negative class. Imbalanced 
classification is one of most popular topics in the field of machine 
learning [1–4]. This issue is represented in many real-world appli-
cations, such as bioinformatics [5–11], telecommunications man-
agement [12], text classification [13], face recognition [14], and 
ozone level forecasting [15]. Traditional classifications algorithms 
perform poorly on imbalanced datasets because the applied evalu-
ation metrics, such as the overall accuracy metric, force classifiers 
to minimize the error rate, i.e., the percentage of the incorrect pre-
diction of class labels. As a result, classifiers demonstrate good 
accuracy on the majority class but poor accuracy on the minor-
ity class. However, in most imbalanced classification problems, the 
misclassification error of the minority class is far costlier than that 
of the majority class. For example, in the medical diagnosis of a 
certain cancer, misclassifying a cancer patient as healthy is more 
serious than misclassifying a non-cancer patient as unhealthy, be-
cause, in the former, the patient might lose his/her life.
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Table 1
Confusion matrix for binary classification.

Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)
Negative class False positive (FP) True negative (TN)

TPrate = TP
TP+FN , the percentage of positive samples correctly classified.

TNrate = TN
FP+TN , the percentage of negative samples correctly classified.

FPrate = FP
FP+TN , the percentage of negative samples misclassified.

FNrate = FN
TP+FN , the percentage of positive samples misclassified.

As previously mentioned, in imbalanced domains, a specific 
metric is needed to evaluate the performance of the classifier. 
The receiver operating characteristic (ROC) graphic [16–19] is com-
monly used as an evaluation criterion. For a binary classification, 
we can obtain a confusion matrix, as shown in Table 1, and based 
on which, four metrics can be calculated.

The ROC graphic depicts the trade-off between benefits (TPrate) 
and costs (FPrate); in other words, one classifier cannot increase 
the number of true positives without increasing the false positives. 
In a ROC curve, the x-axis represents the FPrate and the y-axis 
represents the TPrate. The points in the curve are obtained by 
sweeping the classification threshold from the most positive classi-
fication value to the most negative. The area under the ROC curve 
(AUC) [20] is a useful metric for classifying performance because it 
gives the probability that a randomly selected pair of samples (one 
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positive and one negative) would have their predicted probabilities 
correctly ordered.

In imbalanced classification domains, ROCs are considered the 
“gold standard” of a classifier’s ability. However, using only the ROC 
to select a potentially optimal classifier is not enough. In fact, the 
ROC curve and the AUC values reflect only the ranking power of 
positive prediction probability. Furthermore, a high AUC does not 
insure a high prediction accuracy. For example, in a dataset con-
taining only 1% positive samples, the AUC value can reach more 
than 0.9 only if all the positive samples rank in the top 10% accord-
ing to prediction probability. Even if the probabilities of positive 
samples are predicted to be less than 0.5, as long as the positive 
probabilities exceed the negative ones, the ROC will exhibit good 
performance. This phenomenon is typical in imbalanced datasets. 
Therefore, finding an appropriate prediction probability threshold 
is as important as a perfect ROC curve for the accurate prediction 
of testing and unknown data. In most classifiers, the default pre-
diction probability threshold is 0.5. However, this threshold does 
not work well for imbalanced classification prediction.

Although researchers have attempted to raise the AUC value 
in previous works, these investigations disregarded the prediction 
probability thresholds for testing and unknown data. Consequently, 
classification performance, including recall, precision, and F-scores, 
remains imperfect even if the AUC value could become rather high. 
Few tools or Web servers are available for finding the classification 
threshold. In this paper, we propose a sampling-based threshold 
auto-tuning method to address this problem. This method can ob-
tain perfect performance on the AUC criteria in addition to very 
good precision, recall, and F-scores.

2. Methods

2.1. F-score should be another metric aside from the AUC

The AUC is often considered a reliable performance metric for 
imbalanced binary classification problems [21–24]. However, when 
the dataset is imbalanced and the AUC has reached a high score, 
the classification performance may not be as perfect as the AUC 
value reflects because plenty of “trash” negative samples exist in 
the imbalanced dataset. “Trash” negative samples raise the AUC 
value, but a few other negative samples remain mixed with the 
positive samples, which are difficult to distinguish. These few re-
maining negative samples diminish performance, including preci-
sion and recall, while very slightly influencing the AUC value. In 
the testing dataset, the values of precision and recall may be less 
than 0.5, whereas the AUC value can exceed 0.9. AUC50 was pro-
posed to address this problem and to measure the performance of 
protein remote homology detection [25] (Fig. 1). The AUC50 refers 
to the AUC up to the first 50 false positive samples. Although the 
AUC50 can avoid the influence of “trash” true negative samples, 50 
is overly arbitrary for various datasets. If less than 50 true negative 
samples exist in the dataset, then the AUC50 is equal to the AUC. 
Furthermore, if the training samples are massive, and 50 false pos-
itive samples account for only a very small portion of the training 
set, the AUC50 would be meaningless. Therefore, even though the 
AUC50 can often better describe classification performance than 
the AUC, it cannot alleviate the problem inherent to massive data. 
Thus, we need a different metric altogether along with the AUC to 
measure classification performance.

We attempt to employ the F-score together with the AUC as a 
classification measurement for protein remote homology detection. 
The F-score is a trade-off between precision (P ) and recall (R) and 
is described as follows:

P = TruePositive ; (1)

TruePositive + FalsePositive
Fig. 1. The ROC of an imbalanced dataset.

R = TruePositive

Truepositive + FalseNegative
; (2)

and

Fβ = (β2 + 1)PR

β2 P + R
, (3)

where β is a parameter used to adjust the weight between P
and R .

2.2. How to set the classification threshold for the testing set

Prediction results are ultimately determined according to pre-
diction probabilities. The threshold is typically set to 0.5. If the 
prediction probability exceeds 0.5, the sample is predicted to be 
positive; otherwise, negative. However, 0.5 is not ideal for some 
cases, particularly for imbalanced datasets.

The probability threshold for classification will not interfere 
with the AUC value. In other words, the AUC is influenced by the 
probability ranking result only, and it is not related to the setting 
of the classification threshold. Therefore, we only need to tune the 
threshold to obtain the best F-score.

The threshold for the best F-score can be easily obtained if the 
training set is not massive. We can test all of the probabilities for 
every positive sample with a brute-force attack. Then, the thresh-
old with the best F-score for the training set can be calculated 
by using cross-validation [26]. We then determine if the calculated 
threshold can be used for the test data.

We observed that Liao’s protein remote homology detection 
dataset was not massive enough. The prediction probabilities are 
distributed differently between the training and testing sets. More-
over, the probability ranges are considerably different, as shown in 
Fig. 2. We posit that the best threshold position in the training 
set should be mapped to the corresponding position in the testing 
set.

We denote the maximum prediction probability in the training 
set as Maxtrain. In this paper, prediction probability refers to the 
probability of positive predictions by the classifier. If the prediction 
probability is less than the threshold, the sample is predicted to 
be negative. Similarly, we also denote Mintrain, Maxtest, Mintest. 
Thresholdtrain, and Thresholdtest. Thus, the mapping rule should 
satisfy the following equation, from which we can compute the 
Thresholdtest:
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Fig. 2. Two ways to use the best threshold.

Fig. 3. A flow chart of our proposed method.

Thresholdtest =
(

Maxtrain − Thresholdtrain

Maxtrain − Mintrain

)

× (Maxtest − Mintest) (4)

We can compute the threshold for the training set by using cross-
validation and then obtain the threshold for the testing set by 
using Equation (4). The complete classification model is presented 
in Fig. 3.

2.3. How to set the classification threshold for a massive training set

A brute-force method can find the best threshold; however, it 
cannot deal with massive scale data. In this section, we propose a 
novel algorithm that can quickly compute the best threshold for a 
massive training set.

We denote xi as a sample, C p as the positive samples set, 
and Cn as the negative samples set. Let X = (χσ1, χσ2, . . . , χσn)

be the descending sorted samples set. If we restrict i < j, then 
Pχ∈C P (χσi ) > Pχ∈C P (χσ j ), and let Pi be the number of positive 
samples that have a probability that is not less than that of sam-
ple χσi . In other words, Pi = {|χσ j | | j ≤ i & χσ j ∈ C P }. ni is the 
number of samples that have a probability of not less than that 
of sample χσi . If χσi is selected to be the threshold sample, then 

Fβi = (β2+1)∗ pi
ni

∗ Pi|C p |
β2∗ pi + pi , which yields the following inferences:
ni |C p |
Inference 1. The best threshold can be provided by positive sam-
ples only.

Proof. Assume that the best threshold is generated by χσi and χσi

is a negative sample, then

FβBest =
(β2 + 1) ∗ pi

ni
∗ Pi|C p |

β2 ∗ pi
ni

+ pi|C p |
.

Then, select the least positive sample that has a probability that is 
higher than χσi . If we select the least positive sample as χσ j , then 
pi = p j , ni > n j , i.e.,

FβBest =
(β2 + 1) ∗ pi

ni
∗ Pi|C p |

β2 ∗ pi
ni

+ pi|C p |
=

(β2 + 1) ∗ pi ∗ pi|C p |
β2 ∗ pi + pi∗ni|C p |

<
(β2 + 1) ∗ p j ∗ p j

|C p |
β2 ∗ p j + p j∗n j

|C p |
=

(β2 + 1) ∗ p j
n j

∗ p j
|C p |

β2 ∗ p j
n j

+ p j
|C p |

= Fβi . (5)

The above equation contradicts χσi as the best threshold sample; 
therefore, the best threshold can only be generated by positive 
samples. �
Inference 2. If χσi and χσi+1 are both positive samples, then Fβi <

Fβi+1 .

Proof. pi+1 = pi + 1, ni+1 = ni + 1 because χσi and χσi+1 are both 
positive samples, i.e.,

Fβi+1 =
(β2 + 1) ∗ pi+1

ni+1
∗ pi+1

|C p |
β2 ∗ pi+1

ni+1
+ pi+1

|C p |
=

(β2 + 1) ∗ pi+1
|C p |

β2 + ni+1
|C p |

=
(β2 + 1) ∗ pi|C p | ∗ pi+1

pi

β2 + ni|C p | ∗ ni+1
ni

=
(β2 + 1) ∗ pi|C p |
ni

ni+1
∗ β2 + ni|C p |

∗
pi+1

pi
ni+1

ni

>
(β2 + 1) ∗ pi|C p |
ni

ni+1
∗ β2 + ni|C p |

∗ 1 + 1
pi

1 + 1
ni

≥
(β2 + 1) ∗ pi|C p |

β2 + ni|C p |

=
(β2 + 1) ∗ pi

ni
∗ pi|C p |

β2 ∗ pi
ni

+ pi|C p |
= Fβi . (6)

Denote χσp j
as the positive sample of j in X , and Fβp j

as the F

value of χσp j
. Then, from Inference 1, we obtain FβBest ∈ {Fβp j

| j =
1, 2, . . . , |C p |} and can derive Inference 3 as follows. �
Inference 3. If χσi = χσp j

is the positive samples of j, and the next 
κ samples are all negative samples, then the maximum Fβpt

(t > j)

is 
(β2+1)∗ |C p |

ni+k+|C p |−pi

β2∗ |C p |
ni+k+|C p |−pi

+1
.

Proof. Fβp j+1
receives its maximum value when the sample of (i +

k + 1) is positive. Suppose y negative samples exist between χσi+k

and χσp j+1
, then

Fβp j+1
=

(β2 + 1) ∗ pi+1
ni+k+y+1 ∗ pi+1

|C p |
β2 ∗ pi+1

ni+k+y+1 + pi+1
|C p |

=
(β2 + 1) ∗ pi+1

|C p |
β2 + ni+k+y+1

|C p |
, (7)

when y = 0, Fβp j+1
obtains the maximum value: 

(β2+1)∗ pi+1
|C p |

β2+ ni+k+1 .

|C p |
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In this manner, the maximum of Fβp j+2
is 

(β2+1)∗ pi+2
|C p |

β2+ ni+k+2
|C p |

and so 

on.

In the last equation, the maximum of Fβp|C p | is 
(β2+1)∗ |C p |

ni+k+|C p |−pi

β2∗ |C p |
ni+k+|C p |−pi

+1
.

Moreover, with reference to Inference 2, Fβp j+1
< Fβp j+2

< · · · <
Fβp|C p | ; thus, Inference 3 is proven. �
Inference 4. If Fβi is the maximum value so far, and next k samples 
are all negative samples, then χσi is the best threshold sample, 
where k = |C p |−pi

pi
(β2 ∗ |C p | + ni − pi).

Proof. Based on Inference 3, the maximum Fβ after Fβi is 

Fβp|C p | = (β2+1)∗ |C p |
ni+k+|C p |−pi

β2∗ |C p |
ni+k+|C p |−pi

+1
.

Let χ = k + |C p | − pi , and solve the inequality:

Fβi =
(β2 + 1) ∗ pi

ni
∗ Pi|C p |

β2 ∗ pi
ni

+ pi|C p |
> Fβp|C p |

=
(β2 + 1) ∗ |C p |

ni+k+|C p |−pi

β2 ∗ |C p |
ni+k+|C p |−pi

+ 1
=

(β2 + 1) ∗ |C p |
ni+χ

β2 ∗ |C p |
ni+χ + 1

. (8)

We can obtain χ = |C p |−pi
pi

(|C p | ∗ β2 + ni); therefore, by com-
bining this equation with χ = k + |C p | − pi , we obtain

k = |C p| − pi

pi

(
β2 ∗ |C p| + ni − pi

)
. (9)

Given a set of samples, and by applying the above inferences, 
we propose an efficient method for finding the best threshold of 
the set. We present a pseudocode for that method in Table 2. The 
time complexity of the proposed method is θ(n). �
3. Results and discussion

3.1. Dataset

A commonly used benchmark dataset [27] was used to evaluate 
the performance of the proposed method. This benchmark dataset 
has been used to evaluate the performance of various homology 
detection methods [28–34]. The dataset contains 4352 proteins de-
rived from the SCOP database version 1.53. These proteins were 
extracted from the Astral database [35], and the sequence sim-
ilarity of any pair is less than an E-value of 10−25. The 4352 
distinct protein sequences are classified into 54 families. In each 
family, positive testing samples are derived from proteins within 
that family. Proteins outside the same family but within the same 
superfamily are considered positive training samples. Protein se-
quences outside the same superfamily are selected as negative 
samples and are separated into training and testing sets. Basic in-
formation about the 54 families is provided in Table 3.

Table 3 shows that all of the families are imbalanced datasets. 
This imbalance is reflected by the fact that some families contain a 
negative-to-positive ratio of as high as 241:1, whereas some fami-
lies only have 10 positive samples in their training set.

Previous studies showed that the features extracted from pro-
tein, DNA, or RNA sequences are efficient for constructing a com-
putational predictor [36,37]. Therefore, in this study we used a 
188-feature model [38,39] to extract feature vectors from protein 
sequences in our experiment. A random forest method was em-
ployed as the classification algorithm. The ROC of each family is 
listed in Table 4.
Table 2
Pseudocodes for finding the best threshold.

Find best threshold

Input: a sorted set of samples X = (χσ1, χσ2, . . . , χσn), β value, the number of 
positive samples |C p |

Output: Best threshold T ∗
Procedure:
1. begin
2. Init pi ← 1,ni ← 1,k ← 0, i ← 1;
3. while χσi is negative do
4. i + +;
5. ni + +;
6. end while
7. T ∗ = P (χσi );

8. F ∗ = (β2+1)∗ pi
ni

∗ Pi|C p |
β2∗ pi

ni
+ pi|C p |

9. for i ← i + 1 to n do
10. if χσi is negative
11. K + +;
12. else

13. if k >= |C p |−pi
pi

(β2 ∗ |C p | + ni − pi)

14. break;
15. else
16. ni ← ni + k;
17. k ← 0;
18. pi + +;

19. FTemp = (β2+1)∗ pi
ni

∗ Pi|C p |
β2∗ pi

ni
+ pi|C p |

20. if FTemp > F ∗
21. F ∗ = FTemp;
22. T ∗ = P (χσi );
23. end if
24. end if
25. end if
26. end for
27. end

4. Experimental methodology

F1 was used as a measure metric to compare the performance 
of different thresholds. F1 is defined as follows:

F1 = 2 ∗ P ∗ R

P + R
(10)

where P and R are the precision and recall of positive samples, 
respectively.

Initially, a uniform threshold was directly set to divide the test-
ing set. The performance of these different thresholds is shown in 
Table 5.

As shown in Table 4, the ROC of most families is consider-
ably high; however, when the threshold is set to 0.5, which is 
the default threshold in most common classifiers, the performance 
is very poor in terms of precision and recall. In fact, only one 
family that has samples with probabilities exceeded 0.5 in our ex-
periment. Moreover, the different thresholds yielded different F1 
values, suggesting that an appropriate threshold should be set for 
the testing set.

To improve performance further, we propose a novel method 
for finding the best threshold specifically for each family. As pre-
viously mentioned, the best threshold for the training set with the 
testing set can be used in two ways: to use the value directly and 
to use positional information. The performance of these two meth-
ods is listed in Table 6 (β = 1).

When we used the value to divide the testing set, the perfor-
mance was poor. Although this approach is better than using the 
commonly employed method of always setting the threshold to 
0.5, it is worse compared to when the threshold is uniformly set 
to 0.1. However, when we used positional information, the perfor-
mance improved. The precision and recall can reach 0.2051 and 
0.3303, respectively. Thus, this method outperforms methods that 
use a uniform threshold.
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Table 3
Basic information regarding the dataset.

Index ID Train Test Index ID Train Test

1 7.3.5.2 12/2330 9/1746 28 7.3.10.1 11/423 95/3653
2 2.56.1.2 11/2509 8/1824 29 3.32.1.11 46/3880 5/421
3 3.1.8.1 19/3002 8/1263 30 3.32.1.13 43/3627 8/674
4 3.1.8.3 17/2686 10/1579 31 7.3.6.1 33/3203 9/873
5 1.27.1.1 12/2890 6/1444 32 7.3.6.2 16/1553 26/2523
6 1.27.1.2 10/2408 8/1926 33 7.3.6.4 37/3591 5/485
7 3.42.1.1 29/3208 10/1105 34 2.38.4.1 30/3682 5/613
8 1.45.1.2 33/3650 6/663 35 2.1.1.1 90/3102 31/1068
9 1.4.1.1 26/2256 23/1994 36 2.1.1.2 99/3412 22/758

10 2.9.1.2 17/2370 14/1951 37 3.32.1.1 42/3542 9/759
11 1.4.1.2 41/3557 8/693 38 2.38.4.3 24/2946 11/1349
12 2.9.1.3 26/3625 5/696 39 2.1.1.3 113/3895 8/275
13 1.4.1.3 40/3470 9/780 40 2.1.1.4 88/3033 33/1137
14 2.44.1.2 11/307 140/3894 41 2.38.4.5 26/3191 9/1104
15 2.9.1.4 21/2928 10/1393 42 2.1.1.5 94/3240 27/930
16 3.42.1.5 26/2876 13/1437 43 7.39.1.2 20/3204 7/1121
17 3.2.1.2 37/3002 16/1297 44 2.52.1.2 12/3060 5/1275
18 3.42.1.8 34/3761 5/552 45 7.39.1.3 13/2083 14/2242
19 3.2.1.3 44/3569 9/730 46 1.36.1.2 29/3477 7/839
20 3.2.1.4 46/3732 7/567 47 3.32.1.8 40/3374 11/927
21 3.2.1.5 46/3732 7/567 48 1.36.1.5 10/1199 26/3117
22 3.2.1.6 48/3894 5/405 49 7.41.5.1 10/2241 9/2016
23 2.28.1.1 18/1246 44/3044 50 7.41.5.2 10/2241 9/2016
24 3.3.1.2 22/3280 7/1043 51 1.41.1.2 36/3692 6/615
25 3.2.1.7 48/3894 5/405 52 2.5.1.1 13/2345 11/1983
26 2.28.1.3 56/3875 6/415 53 2.5.1.3 14/2525 10/1803
27 3.3.1.5 13/1938 16/2385 54 1.41.1.5 17/1744 25/2563
Table 4
The ROC of each family.

Index ROC Index ROC Index ROC Index ROC

1 0.973 15 0.982 29 0.717 43 0.823
2 0.809 16 0.690 30 0.883 44 0.766
3 0.983 17 0.871 31 0.972 45 0.848
4 0.963 18 0.768 32 0.971 46 0.820
5 0.785 19 0.860 33 0.998 47 0.925
6 0.964 20 0.948 34 0.587 48 0.901
7 0.791 21 0.982 35 0.936 49 0.833
8 0.894 22 0.986 36 0.983 50 0.981
9 0.949 23 0.666 37 0.933 51 0.913

10 0.950 24 0.667 38 0.569 52 0.847
11 0.961 25 0.895 39 0.908 53 0.819
12 0.986 26 0.644 40 0.952 54 0.943
13 0.998 27 0.683 41 0.757 average 0.861
14 0.517 28 0.981 42 0.790

Table 5
The performance of different uniform thresholds.

Threshold MeanPrecision MeanRecall MeanF1

0.5 0.01852 0.00013 0.00026
0.3 0.03063 0.00251 0.00463
0.2 0.17411 0.04963 0.07171
0.1 0.16850 0.22259 0.18001

In finding the best threshold for the training set, Fβ is used to 
measure how “well” a threshold is, and β is used to adjust the 
trade-off between precision and recall. We used different β values 
and listed the resulting performances in Table 7 (three-fold).

As shown in Table 6, when β increases, the mean recall also 
increases, whereas the mean precision decreases. Furthermore, the 
method achieves the best performance when β is set to 0.8, yield-
ing a mean precision of 0.2284 and a mean recall of 0.3091.

Nevertheless, these values for mean precision and mean recall 
do not seem sufficiently high. Therefore, we designed an experi-
ment that can estimate the best performance possible and explore 
the upper bound of performance. We directly applied the algo-
rithm to the testing set to discover the true optimal threshold for 
the testing set. Mean precision and mean recall reached 0.2841 and 
Fig. 4. Family by family comparison of a performance-bound method versus our 
proposed method.

0.4944, respectively, which yields a mean F1 of 0.2923. Compared 
with the best performing method, the proposed method worked 
well on mean precision and mean F1, even though the mean 
recall is 18.53% lower. For a more detailed comparison, a family-
by-family comparison of mean F1s between performance-bound 
methods and the proposed method is plotted in Fig. 4. Every point 
in the graph represents one of the 54 SCOP families. The single 
point above the diagonal indicates that performance of the pro-
posed method is worse than the best performing method for that 
particular family.

However, most of the points are located near the diagonal in 
Fig. 4, thereby indicating that the proposed method can achieve 
comparable performance as performance-bound methods. In par-
ticular, the seven points that lie directly on the diagonal reflect 
that the proposed method obtained the best performance for those 
seven families.

The ROC and F1 of each family are plotted in Fig. 5 to esti-
mate the relation between the ROC and F1 values. As shown in 
Fig. 5, the ROC and F1 curves have nearly the same fluctuation 
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Table 6
The performance of value and position.

Fold Value Position

MeanPrecision MeanRecall MeanF1 MeanPrecision MeanRecall MeanF1

2 0.1183 0.1556 0.1053 0.1650 0.2799 0.1593
3 0.1394 0.1272 0.1098 0.2051 0.3303 0.2044
5 0.1388 0.1473 0.1231 0.1600 0.3430 0.1871

10 0.1324 0.1461 0.1214 0.1557 0.3882 0.1896

Fig. 5. The distribution of ROC and F1.
Table 7
The performance of different βs.

β MeanPrecision MeanRecall MeanF1

0.5 0.2452 0.2633 0.1884
0.8 0.2284 0.3091 0.2066
1.0 0.2051 0.3303 0.2044
1.2 0.1948 0.3364 0.2036
1.5 0.1725 0.3729 0.1996

trends. The family that has a high ROC would more likely receive 
a high F1, and the families that have ROC higher than 0.9 all have 
F1 higher than 0.06, implying that our proposed method is more 
effective for the testing set that has a high ROC.

5. Conclusions

The disadvantage of using AUC for protein remote homology 
detection was explored in this study. A novel method was pro-
posed for finding the proper prediction probability threshold of a 
testing set. Experimental evaluation was performed by using an 
established benchmark, and the results showed that the proposed 
method can effectively improve prediction performance over more 
commonly employed methods. In the future, we intend to explore 
the efficiency of using a function to classify a testing set, as com-
pared with using a single threshold. We expect that a linear func-
tion will achieve better performance. Other approaches should also 
be employed for finding the proper prediction probability thresh-
old, e.g., neural-like computing models [40–43], Hadoop based 
methods [44,45], which have widely been used in pattern recog-
nition.
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