Sequencing and characterization of mitochondrial DNA genome for *Brama japonica* (Perciformes: Bramidae) with phylogenetic consideration

Fenfang Chen, Hongyu Ma, Chunyan Ma, Heng Zhang, Mengdi Zhao, Yongyong Meng, Hongqing Wei, Lingbo Ma

East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China

Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China

Article info

Article history:
Received 29 March 2016
Received in revised form 13 June 2016
Accepted 26 June 2016
Available online 14 July 2016

Keywords:
Brama japonica
Mitochondrial genome
Gene arrangement
Light-strand replication origin
Phylogenetic relationship

Abstract

In this study, the complete mitochondrial genome sequence of *Brama japonica* is isolated and characterized by PCR and primer-walking sequencing techniques. The complete DNA is 17,009 bp in length and contained 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and a long putative control region. The gene organization and nucleotide composition are identical to those of other Bramidae fishes. In contrast, the 12S rRNA gene contains a big poly C structure which is larger than those from other Bramidae species. Of 37 genes, twenty-eight are encoded by heavy strand, while nine are encoded by light strand. Among the 13 protein-coding genes, twelve employ ATG as start codon, while only one (COI) utilizes GTG as start codon. The terminal associated sequence (TAS), the central and conserved sequence block (CSB-E and CSB-D) and a variable domain (CSB-1, CSB-2 and CSB-3) are identified in the control region, while the typical central conserved CSB-F is not detected. From the phylogenetic tree, we find that *B. japonica*, together with other five Bramidae species form a monophyletic group among 24 species. This work provides a set of useful data for studies on population genetic diversity and molecular evolution in Bramidae fish species.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The complete mitochondrial genome DNA of fish is a compact double-stranded and closed circular molecule that ranges approximately from 14 to 18 kbp and replicates and transcribes autonomously (Boore, 1999). Although gene rearrangements have been described in some organisms (Shao et al., 2001; Liu and Cui, 2009), the gene content and organization of mitochondrial genome in fish is quite conserved. With few exceptions, animal mitochondrial genomes generally encode 37 genes including 13 protein coding genes, 22 transfer RNA genes and two ribosomal RNA genes (Moritz and Brown, 2003). The mitochondrial genome does not only provide more information than single gene, but also show genome-level features

Corresponding author. Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China.

Corresponding author.

E-mail addresses: mahongyuhome@163.com (H. Ma), *malingbo@vip.sina.com* (L. Ma).
including gene content, gene arrangement, base composition, modes of replication and transcription that make it become a very powerful tool for inferring genome evolution and phylogenetic relationships (Anderson et al., 1981).

Up to now, researches on mitochondrial DNA have become increasingly prevalent, and the complete mitochondrial genome sequences have been reported for numerous vertebrates, such as sea lamprey (Lee and Kocher, 1995), rainbow trout (Zardoya et al., 1995), basal ray-finned fish (Noack et al., 1996), lungfish (Zardoya and Meyer, 1996), zebra fish (Broughton et al., 2001), hagfish (Delarbre et al., 2002), cutlass fish (Liu and Cui, 2009), and tille trevally (Ma et al., 2015a). Compared to nuclear DNA, mitochondrial genome is typically of limited recombination and includes genes with comparatively fast evolution rates, as well as maternal inheritance mode (Moritz and Brown, 2003). So far, mitochondrial DNA has been extensively applied in population genetics (Lee et al., 2010; Ma et al., 2011), species identification (Rubinoff et al., 2006; Gvozdik et al., 2010) and phylogenetic relationship (Miya and Nishida, 2000).

The Pacific pomfret, Brama japonica Hilgendorf (Percoformes: Bramidae) is widely distributed in the North Pacific Ocean (Bigelow et al., 2011; Neave and Hanavan, 2011). It migrates seasonally between feeding and spawning grounds. Since late spring and through the summer periods, this species carries out a northward feeding migration along the subarctic frontal zone. From autumn, it migrates rapidly to subtropical frontal zone for spawning and stays there during whole winter and early spring (Watanabe et al., 2006; Neave and Hanavan, 2011). B. japonica is known as an epipelagic fish, and it undergoes extensive daily vertical migrations, occurring in epipelagic surface waters of around 0–100 m at night and descending to mesopelagic depths of around 400 m in daytime. Pacific pomfret plays an important ecological role in oceanic food webs, because it mainly feeds on small sized squids, shrimp and fishes and itself is important prey item of larger fishes such as the sword fish and the blue shark (Hikaru et al., 2003; Watanabe, 2004; Lebrasseur, 2011). Although it is an abundant fish species, researches are still limited on biomass, early life history and morphological classification (Seki and Mundy, 1991; Pearcy et al., 1993). By now, little information is available for understanding the genetic characteristics of B. japonica. The lack of complete mitochondrial genome has limited the development of population genetic diversity and molecular evolution for this species.

The family Bramidae is a group of marine fishes, which is widespread and occurring in all tropical and temperate seas. Due to their characteristic body shapes, relatively large heads and high meristic counts of vertebrae and fin rays easy identifiably, scientists can separate 22 recent species into seven genera within two subfamilies (Nelson, 1994). The classification of these seven genera remains in doubt and question, together with that of the origin of the group, deserve further study.

In this study, the complete mitogenome sequence of B. japonica is described as well as the molecular phylogenetic relationship of B. japonica with other 23 species within Perciformes. This study provides insights into the identification, evolution, phylogeny and conservation genetics of B. japonica and related species.

2. Materials and methods

2.1. Sampling and genomic DNA extraction

Our project is approved by East China Sea Fisheries Research Institute. The specimens of B. japonica are collected from South China Sea (11°23’N, 114°33’E). Muscle tissues are sampled and stored in 95% ethanol at room temperature. Genomic DNA is extracted using Animal Genomic DNA Extraction Kit (TIANGEN) according to manufacturer’s protocol and visualized on 1% agarose gel.

2.2. Primers design, PCR amplification and DNA sequencing

A total of 17 pairs of primers are designed according to the multiple alignments of complete mitochondrial genome sequences of four closely related fish species including Taractes asper, Taractes rubescens, Taracichthys steindachneri and Eumegistus illustris. Besides, two pairs of universal PCR primers are used to amplify COI and 16S rRNA genes. The overlaps of two near amplicons are between 80 and 539 bp. The complete mitochondrial genome of B. japonica is obtained by assembling of all sequences produced by the 19 pairs of primers (Table 1).

Polymerase chain reaction (PCR) is performed on a Peltier Thermal Cycler in 25 μl total volume, which includes 0.75 μl each primer (10 μM), 2.0 μl dNTP (2.5 μM), 2.5 μl 10 × PCR buffer (Mg2+ plus), 2.5 U Taq polymerase, 17.5 μl sterilized distilled water and approximately 1 μl template DNA under the following conditions: one cycle of denaturation at 94 °C for 5 min; 35 cycles of 30 s at 94 °C, 45 s at a primer-specific annealing temperature, and 1.5 min at 72 °C. Finally, products are extended for 7 min at 72 °C. PCR products are separated on 1.5% agarose gels. After recovered and purified, PCR products are directly sequenced in both directions using ABI Prism 3730 automated DNA sequencer (PE Corporation). DNA sequences are edited and assembled by DNASTar software.

2.3. Gene identification and analysis

The mitochondrial genome map is constructed using the CG View server (Grant and Paul, 2008) (http://www.stothard.afns.ualberta.ca/cgvew_server/). Thirteen Protein-coding genes, two ribosomal RNA genes and non-coding regions are determined by sequence comparisons with the known mitochondrial genomes of the closely related species, including Taractes rubescens (Liu et al., 2016), Taracichthys steindachneri (Li et al., 2016) and Taractes asper. Protein coding genes are translated into amino acid sequences using the software MEGA 4.0 (Tamura et al., 2007) to confirm whether the amplified
Table 1
Primer sequences used for amplifying the complete mitochondrial genome of Brama japonica.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence</th>
<th>Tm (°C)</th>
<th>Amplification length</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFF</td>
<td>5’CRACYAYCAYAAGAYATGAGA3’</td>
<td>52</td>
<td>680</td>
</tr>
<tr>
<td>CFR</td>
<td>5’ACTTCWGGGTGRCACAGAACTCA3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16BF</td>
<td>5’GGCTTTTATCAAAAACAT3’</td>
<td>54</td>
<td>613</td>
</tr>
<tr>
<td>16BR</td>
<td>5’GGTGTTGCGTCGTAGATCGT3’</td>
<td>52</td>
<td>1335</td>
</tr>
<tr>
<td>18F</td>
<td>5’ATAAGTATCCGGGTTCAGG3’</td>
<td>50</td>
<td>811</td>
</tr>
<tr>
<td>18R</td>
<td>5’AGTGAATGATGCGAGG3’</td>
<td>47</td>
<td>1149</td>
</tr>
<tr>
<td>28F</td>
<td>5’ACGGCATACACATGTG3’</td>
<td>49</td>
<td>1270</td>
</tr>
<tr>
<td>28R</td>
<td>5’TGGCACTATTTAGGCTT3’</td>
<td>47</td>
<td>1307</td>
</tr>
<tr>
<td>68F</td>
<td>5’ATTCACCACTGAAACTGAT3’</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>68R</td>
<td>5’GCGAGAGTTGAGAGTTAA3’</td>
<td>52</td>
<td>1518</td>
</tr>
<tr>
<td>7BJ-F</td>
<td>5’CTGATAAGGACTCTGCA3’</td>
<td>51</td>
<td>641</td>
</tr>
<tr>
<td>7BJ-R</td>
<td>5’AAGGGAGGCAAGTCTGA3’</td>
<td>53</td>
<td>995</td>
</tr>
<tr>
<td>8BJ-F</td>
<td>5’GTTCCAATTTGACGGCTC3’</td>
<td>54</td>
<td>1450</td>
</tr>
<tr>
<td>8BJ-R</td>
<td>5’CTCGCCACATGCTGAA3’</td>
<td>52</td>
<td>1540</td>
</tr>
<tr>
<td>9BJ-F</td>
<td>5’CCGCTGTAAAGAATGTTG3’</td>
<td>48</td>
<td>950</td>
</tr>
<tr>
<td>9BJ-R</td>
<td>5’CTCCTGATCCCTTCTACT3’</td>
<td>53</td>
<td>1598</td>
</tr>
<tr>
<td>10BJ-F</td>
<td>5’CGTCCGCGCTTCACTT3’</td>
<td>50</td>
<td>1598</td>
</tr>
<tr>
<td>10BJ-R</td>
<td>5’TTCGCGAGTGGTTGTT3’</td>
<td>52</td>
<td>1941</td>
</tr>
<tr>
<td>11BJ-F</td>
<td>5’TGCTCACAGACAAACTCT3’</td>
<td>52</td>
<td>2032</td>
</tr>
<tr>
<td>11BJ-R</td>
<td>5’GGATTTACGGAGGCTGA3’</td>
<td>51</td>
<td>2032</td>
</tr>
<tr>
<td>12BJ-F</td>
<td>5’CAACTTCCTCATCCTAAT3’</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>12BJ-R</td>
<td>5’GCTGCTATTAGGCTTA3’</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>13BJ-F</td>
<td>5’TCAATGAAACACACCCGAC3’</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>13BJ-R</td>
<td>5’TGCCTTCCTCTTCTACTCT3’</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>14BJ-F</td>
<td>5’AGGGAGAAGTAGAGGAAGG3’</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>14BJ-R</td>
<td>5’ACTTCGCGCCATTGTCGA3’</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>15BJ-F</td>
<td>5’AAAACAAAGACACTATACG3’</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>15BJ-R</td>
<td>5’TACCGTACACCCTCAGAT3’</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>16BF</td>
<td>5’CCCCATTCCACTCTCTTT3’</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>16BR</td>
<td>5’GCGTTCAGGCTGATCTG3’</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>17BJ-F</td>
<td>5’CTCTCCCTAGGTCTAGG3’</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>17BJ-R</td>
<td>5’CTTAAACTTAGGTCTC3’</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

In order to evaluate the phylogenetic position of B. japonica among Perciformes, a total of 10,885 bp sequence data representing 12 concatenated protein-coding genes are used for phylogenetic analysis. Gene ND6 is not used for phylogenetic analysis due to its high heterogeneity and poor phylogenetic performance (Miya and Nishida, 2000). The complete mitochondrial genomes of other 23 fish species are downloaded from GenBank database, including Auxis rochei, Auxis thazard, Eumeistus illustris, Euthynnus a청inis, Euthynnus alletteratus, Gasterochisma melampus, Gymnosarda unicorpor, Katsuwonus pelamis, Pterallic asterolica, Ruvettus pretiosus, Scomberomorus cavalla, Scomberomorus niphonius, Taractes asper, Taractes rubescens, Taractichthyus steindachneri, Thunnus alalunga, Thunnus alletteratus, Thunnus atlanticus, Thunnus maccayyi, Thunnus obesus, Thunnus orientalis, Thunnus thynnus, and Thunnus tonggol. Cyprinus carpio is used as outgroup for analysis.

Twelve protein-coding genes are aligned by clustal W in MEGA 5.1 with default settings and saved to a single multiple alignment. Table 1 lists the amplified primer sequences of the mitochondrial genome of Brama japonica. The rate of the 12 protein-coding genes is used in phylogenetic analysis. Phylogenetic relationship analysis due to its high heterogeneity and poor phylogenetic performance (Miya and Nishida, 2000). The complete mitochondrial genome DNA sequence is deposited into the GenBank database using the software Sequin (http://www.ncbi.nlm.nih.gov/Sequin/).

2.4. Phylogenetic relationship analysis

In order to evaluate the phylogenetic position of B. japonica among Perciformes, a total of 10,885 bp sequence data representing 12 concatenated protein-coding genes are used for phylogenetic analysis. Gene ND6 is not used for phylogenetic analysis due to its high heterogeneity and poor phylogenetic performance (Miya and Nishida, 2000). The complete mitochondrial genomes of other 23 fish species are downloaded from GenBank database, including Auxis rochei, Auxis thazard, Eumeistus illustris, Euthynnus affinis, Euthynnus alletteratus, Gasterochisma melampus, Gymnosarda unicorpor, Katsuwonus pelamis, Pterallic asterolica, Ruvettus pretiosus, Scomberomorus cavalla, Scomberomorus niphonius, Taractes asper, Taractes rubescens, Taractichthyus steindachneri, Thunnus alalunga, Thunnus alletteratus, Thunnus atlanticus, Thunnus maccayyi, Thunnus obesus, Thunnus orientalis, Thunnus thynnus, and Thunnus tonggol. Cyprinus carpio is used as outgroup for analysis.

Twelve protein-coding genes are aligned by clustal W in MEGA 5.1 with default settings and saved to a single multiple sequence alignment. Then, the RAXML web-servers (http://embnet.vital-it.ch/raxml-bb/index.php) are employed to format and analyze these sequences alignments (Stamatakis et al., 2008). The model CAT is selected for estimating the evolutionary rate of the 12 protein-coding genes. Maximum likehood (ML) analysis is conducted after bootstraps. Finally, the phylogenetic tree is viewed and edited by the software FigTree v1.4.2.
3. Results and discussion

3.1. Mitochondrial DNA genome structure

The complete mitochondrial genome of *B. japonica* is 17,009 bp in size, including 13 protein-coding genes, two rRNA genes, and a putative control region. The gene order and GC content of mitochondrial genome are shown in Fig. 1. There is a large non-coding region spanning 1408 bp between genes tRNA^Phe^ and tRNA^Pro^ with a high A + T content that is identified as a putative control region (Table 2). The complete genome sequence is deposited in GenBank database under the accession number KT908039. The genome organization and gene order are similar to those of other fishes (Hurst et al., 1999; Miya et al., 2001; Cheng et al., 2010), but different from those of *Scylla paramamosain* (Ma et al., 2013) and *Eleginops maclovinus* (Papetti et al., 2007). Twenty-eight genes are encoded by heavy strand (H-strand), while the other ones are encoded by light strand (L-strand). Six overlaps are detected, of which five are on H-strand, and one is on L-strand. Meanwhile, ten intergenic spacers are found, with five on H-strand, five on L-strand, respectively. The total length of overlaps and intergenic spacers are 24 bp and 62 bp, ranging from 1 to 10 bp and from 1 to 35 bp, respectively. The longest overlap (10 bp) occurs between genes ATP8 and ATP6, while the biggest intergenic spacer (35 bp) locates between genes tRNA^Asn^ and tRNA^Cys^.

The overall A + T content of the mitochondrial genome is 51.93% (Table 3) that is similar to those determined in other fishes, such as *Channel catfish*, *Trachuru strachurus* and *Opsariichthys bidens* (Waldbieser et al., 2003; Takashima et al., 2006; Wang et al., 2007). The A + T content of control region and protein-coding genes are 61.22% and 47.13%. The overall base composition of the complete mitochondrial genome is 26.43% for A, 31.35% for C, 16.71% for G and 25.50% for T; while it is 24.79% for A, 33.70% for C, 15.58% for G and 25.93% for T in 13 protein-coding genes.

![Circular gene map of Brama japonica mitochondrion. Genes encoded on the heavy or light strands are shown inside or outside the circular gene map, respectively. The inner ring indicates the GC skew, the middle ring indicates the GC content. The figure was initially generated with GC viewer and modified manually. The abbreviations for the genes are as follows: COI, COII and COIII refer to the cytochrome oxidase subunits, Cytb refers to cytochrome b, and ND1-6 refers to NADH dehydrogenase components.](image-url)
3.2. Protein-coding gene features

B. japonica mitochondrial genome encodes 13 protein-coding genes with 11,407 bp in length that accounts for 67.06% of the complete mitogenome. The lengths of protein-coding genes ranges in size from 168 (ATP8) to 1839 bp (ND5) and encodes a total of 3806 amino acids. Among 13 protein-coding genes, four overlaps occur on the same strand, whereas one presents on the opposite strands.

Base composition of protein coding genes is shown in Table 3. Of the 13 protein-coding genes, twelve employ ATG as start codons, while COI utilizes GTG as start codon (Table 2). COI gene usually uses ATG as start codon in other animals, such as *Larimichthys crocea*, *Collichthys lucidus* and *Charybdis feriata* (Cui et al., 2009; Cheng et al., 2012; Ma et al., 2015b). With regards to stop codon, four genes (COI, ATP8, ND1, and ND4L) use TAA, two genes (ND5 and ND6) use TAG, and the remaining seven genes (ND2, ATP6, COIII, COII, ND3, ND4, and Cytb) end with incomplete codons. Termination codons seem to have a tendency to be variable in fish mitogenomes (Kim et al., 2004; Peng et al., 2006). This feature is common among vertebrate mitochondrial protein-coding genes, and these incomplete stop codons are presumably due to post-transcriptional modifications during the mRNA maturation process such as polyadenylation (Ojala et al., 1981).

3.3. Transfer and ribosomal RNA gene features

The complete mitochondrial genome contains 22 tRNA genes, which can fold into canonical clover-leaf secondary structures except tRNA^Ser^ (AGC) whose paired “DHU” arm is missing (File S1). This incomplete tRNA^Ser^ (68 bp) structure has also been found from mitogenomes of other animals such as *Scylla paramamosain* (Ma et al., 2013), *Pseudolabrus sieboldi* (Oh...
Fourteen tRNA genes are encoded by H-strand, while the remaining eight are encoded by L-strand. These 22 tRNA genes are totally 1555 bp in length and intersperse between the rRNA and the protein-coding genes with the ranges from 68 (tRNAHis) to 75 bp (tRNAVal). Both tRNALeu and tRNASer have two forms UUA/CUA and UCA/AGC, respectively. A total of 15 unmatched base pairs are found in stem regions, including A-C in tRNAArg, tRNACys, tRNALeu(UUA), tRNALys, tRNASer(AGC), tRNASer(UCA), tRNATrp, and tRNAVal; C-C in tRNALeu(CUA) and tRNAThr; U-U in tRNAMet and tRNAThr; U-C in tRNAIle; G-A in tRNAPhe; A-A in tRNASer(AGC). The overall A + T content of 22 tRNAs is 53.05%, with the biggest rate (65.21%) for tRNAMet and the lowest rate (41.79%) for tRNACys. Aberrant tRNA can work in a similar way as usual tRNA in the ribosome by adjusting its structural conformation (Ohtsuki et al., 2002).

The 16S and 12S ribosomal RNA genes are 1340 bp and 869 bp in length. They locate on H-strand between genes tRNALeu(UUR) and tRNAPhe, separated by gene tRNAVal. The 12S gene contains a remarkable Poly C (13 cytosine) structure, which is larger than the same structure from other Bramidae species. The A + T content is 53.05%, with the biggest rate (65.21%) for tRNAMet and the lowest rate (41.79%) for tRNACys. Aberrant tRNA can work in a similar way as usual tRNA in the ribosome by adjusting its structural conformation (Ohtsuki et al., 2002).

The overall A + T content of 22 tRNAs is 53.05%, with the biggest rate (65.21%) for tRNAMet and the lowest rate (41.79%) for tRNACys. Aberrant tRNA can work in a similar way as usual tRNA in the ribosome by adjusting its structural conformation (Ohtsuki et al., 2002).
3.4. Non-coding region

A total of 12 non-coding regions are identified in the mitochondrial genome of *B. japonica*, including two large non-coding regions: light strand origin (OL) and the control region. The other nine non-coding regions are all small, varying from 1 to 8 bp in length. As in most vertebrates, the putative origin of L-strand replication is located in a cluster of five tRNA genes (WANCY region) between tRNAAsn and tRNAcys. This region is 35 bp long and has the potential to fold into a stem-loop secondary structure, with a stem of 13 paired nucleotides and a loop of 12 bp nucleotides (Fig. 2). As described, the L-strand synthesis is likely initiated in a stretch of thymines in the OL loop (*Wong and Clayton, 1985*). This condition is typical in tetrapods, whereas in fish the OL loop contains a polypyrrimidine tract ([Hurst et al., 1999; Peng et al., 2003]). On the other hand, C-rich loop is detected in Sciaenidae species and other reported teleost fishes ([Johansen et al., 1990; Zardoya et al., 1995]). C-rich or T-rich

![Figure 2](image2.png)

Fig. 2. A conserved secondary structure (a) as a putative replication origin (OL) in a non-coding region located between tRNAAsn and tRNAcys of *Brama japonica*, and a comparison of nucleotide sequences of related species (b). The box represents the sequence of the loop of the OL secondary structure and the conserved motif 5′GCCGG3′ in the tRNAcys.

![Figure 3](image3.png)

Fig. 3. Phylogenetic tree of *Brama japonica* within Perciform based on 12 protein-coding genes using maximum likelihood (ML) analysis.
loop may indicate that primer synthesis is most probably initiated by a polypyrimidine tract (Taanman, 1999). Furthermore, the conserved motif (5′-GCCGG-3′) is exactly shown at the base of the stem in tRNA43, which is associated with the transition from RNA to DNA synthesis (Hixson et al., 1986). The Oi sequence in Bramidae mitogenomes has accordant stem region and complementary structure. However, slight variations are found in the loop sequences (Fig. 2). The conserved stem-loop structure indicates that it plays a key role in the replication origin of mitochondrial DNA (Desjardins and Morais, 1990).

The largest non-coding region is identified from B. japonica mitogenome based on nucleotide sequence comparison with control regions from other Bramidae fishes. It is located between genes 12S rRNA and tRNA43 with a length of 833 bp. The A + T content of the control region is 61.22% (Table 3), which is higher than the average value of the whole mitochondrial genome (51.93%). Further, the nucleotide composition of the control region is 28.20% for A, 25.00% for C, 13.78% for G, and 33.03% for T, respectively.

The control region, characterized by discrete and conserved sequence blocks, possesses the typical tripartition with a terminal associated sequence (TAS), a central and conserved sequence block (CSB) domains containing the conserved sequence blocks CSB-F, CSB-E and CSB-D (Sbisà et al., 1997), and a variable domain consists of three conserved sequence blocks (CSB-1, CSB-2, CSB-3) (Brown et al., 1986; Jondeung and Karinthanyakit, 2016)(File S2). A TAS motif (TACATATATGTA) is found at the 5′ end of the control region. The TAS may work as a recognizable site for terminating the synthesis of the heavy strand (Cheng et al., 2010). Meanwhile, two central conserved sequence blocks (CSB-F and CSB-D) are detected in the control region, while the typical central conserved CSB-E is not found in B. japonica. They might add to the knowledge for examining the structure-function relationships of the control region (Cui et al., 2009). In addition, three conserved sequence blocks (CSB-1, CSB-2 and CSB-3) are identified at the 3′ end of the control region, which are thought to be associated with positioning RNA polymerase for both priming replication and transcription (Clayton, 1991; Shadel and Clayton, 1997).

3.5. Phylogenetic relationship analysis

To uncover the phylogenetic position of B. japonica among closely related fishes, a phylogenetic tree is constructed using the 12 concatenated protein-coding genes. The molecular phylogenetic tree using maximum-likelihood (ML) analysis is shown in Fig. 3. As displayed from the tree topologies, we find that the 24 species from 14 genera are mainly divided into three well-defined clades which are boxed with color line. Six species from five genera under family Bramidae including B. japonica, P. aesticola, E. illustris, T. steindachneri, T. asper and T. rubescens form a monophyletic group. This result is identical to previous phylogeny studies by using the partial mitochondrial gene (Miya et al., 2013). Moreover, B. japonica is genetically closest to four Bramidae species (E. illustris, T. steindachneri, T. asper and T. rubescens) according to the phylogenetic tree.

Acknowledgements

This work was supported by the Top-Notch Young Talents Program of China, the National Science & Technology Support Plan (2013BAD13B04), and the Special Scientific Research Funds for Central Non-Pro fit Institutes (2015M07).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.bse.2016.06.012.

References

