Full length article

Fabrication of a direct Z-scheme type WO3/Ag3PO4 composite photocatalyst with enhanced visible-light photocatalytic performances

Jinsuo Lua,*, Yujing Wangc, Fei Liua, Liang Zhangb, Shouning Chaib,*

a School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
b College of Sciences, Xi’an University of Architecture and Technology, Xi’an 710055, China
c School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an, Shaanxi 710032, China

\begin{abstract}
A direct Z-scheme type photocatalyst WO3/Ag3PO4 composite (molar ration 1:1, 1W/1Ag) was prepared by hydrothermal method. The 1W/1Ag was characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), UV–vis diffuse reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and photoluminescence emission spectroscopy (PL) etc. technologies. The photocatalytic performances were evaluated by degradation of methylene blue (MB) and methyl orange (MO), and their removal rates were up to 95% after 60 min and 90% after 180 min, respectively. The prepared 1W/1Ag exhibits a much higher photocatalytic activity than pure Ag3PO4 and pure WO3 under visible light irradiation. The apparent rate constants of MB and MO degradation on 1W/1Ag are about 2.4 and 2.5 times that of pure Ag3PO4, respectively. The enhanced performance of the 1W/1Ag is attributed to a synergistic effect including relatively high surface area, strong light absorption, matched energy band structure, and the improved separation of photogenerated charge carriers between the two components. A reasonable Z-scheme mechanism referring to directed migration of photoinduced carriers was proposed. Thus, it can be suggested that the 1W/1Ag can serve as a promising photocatalyst for environmental purification and clean energy utilization.
\end{abstract}

1. Introduction

As a promising technology, photocatalysis has been widely studied in various fields such as environmental purification, solar energy conversion, and water splitting, etc [1–3]. However, there are still several problems in photocatalysis, such as poor utilization of solar light, low photo-to-current efficiency, and weak stability [4,5]. To utilize sunlight efficiently, a great deal of visible light responsive photocatalysts were developed over the past decades, including binary semiconductors WO3, CdS, MoS2, g-C3N4, ternary compounds CuFe2O4, ZnIn2S4, BiOCl(X=Cl, Br, I), etc [6–13]. In recent, as a new-type photocatalyst, Ag-based photocatalysts have attracted considerable attention for organic pollutants removal. Particularly, Ag3PO4 is considered as a promising visible light responsive photocatalyst due to its narrow indirect and direct band gap of 2.36 eV and 2.43 eV, respectively [14–17]. Yi et al. reported that Ag3PO4 exhibits extremely high capability in the O2 evolution from photooxidation of water and decomposition of organic dye under visible light, and the quantum efficiencies achieved up to 90% at wavelengths greater than 420 nm, which prominent photocatalytic performances may be ascribed to the inductive effect of PO43− and the dispersive conduction band [18]. Zhu et al. revealed that the relatively low valence band level is favorable of its oxidizing ability, meanwhile, the \(\pi^*\) orbit in the conduction band improves the electrons migration rate and separation efficiency of photo-generated charge carriers [19]. To further improving Ag3PO4 photoelectric and photocatalytic activity, some efforts have been devoted to modulate its shape, morphology, and crystal facet [20–23], and others are interested in developing novel Ag3PO4-based bi/multi- component photocatalysts [16,24,25].

In recent years, Z-scheme photocatalysis process inspired by natural photosynthesis in green plants is considered as an efficient system for water splitting, in which two different photocatalysts with proper band energies are combined via a suitable shuttle redox mediator [26–28]. Comparing with conventional single component water splitting systems, each photocatalyst in the Z-scheme
system is only responsible for one half-reaction (H₂ evolution reaction or O₂ evolution reaction), and visible light could be utilized more efficiently in Z-scheme system because the energy required to drive each photocatalyst is reduced. Similar to the heterojunction-type photocatalyst composites, the Z-scheme system also features the spatial isolation of photogenerated carriers, which reduces the probability of bulk electron-hole recombination. Moreover, the shuttle redox mediator participates and optimizes the process of electron transfer in the complex redox reactions. Generally, some soluble redox ion pairs, including Fe³⁺/Fe²⁺, IO⁻⁻/I⁻⁻, (Co(bpy)₃)³⁺/²⁻, etc. were selected as suitable redox mediators and greatly enhance the activity for overall water splitting in the liquid-state Z-scheme systems [29–31].

In 2006, Tada et al. firstly prepared all-solid-state Z-scheme photocatalyst of CsSd/Al₂O₃, where anchored solid Au nanoparticles between CsSd and TiO₂ acted as electron transfer mediator [32]. This three-component system shows excellent activity, far exceeding those of the single/two-component systems, because the photogenerated electrons in the conduction band of TiO₂ could be transferred through the Au medium and recombine with the photogenerated holes left in valance band of CsSd. Thus, the photogenerated electrons and holes are accumulated in the conduction band of CsSd and the valence band of TiO₂, respectively. Besides the noble metals, some nonmetals also were used for transferring Z-scheme electron. Amal et al. found that the reduced graphene oxide could serve as electron transfer when it was embedded between BiVO₄ and Ru/SrTiO₃/Rh [33]. It is clear that either liquid-state or solid-state redox mediators play important roles in shuttling the photogenerated carriers in Z-scheme systems [34–36]. However, the presence of a shuttle redox mediator would also cause some drawbacks, such as light-shielding effect, competitive oxidation of redox couples, and high cost of noble metal etc. So it is an advisable choice to construct mediator-free direct Z-scheme systems only consisting of two components, which would draw more and more attention. More recently, it was demonstrated that many Ag₃PO₄ based photocatalytic systems, such as g-C₃N₄-Ag₃PO₄, graphene-Ag₃PO₄ hybrid photocatalysts show a direct Z-scheme mechanism without an electron mediator [37,38]. These composite can not only effectively avoid the Ag₃PO₄ dissolution, but also improve their photocatalytic activity due to the quick separation of photogenerated charge carriers. Thus, it is a promising alternative to fabricate a novel direct Z-scheme Ag₃PO₄ based photocatalyst for promoting its overall catalytic performance.

In this work, tungsten oxide (WO₃), an environment-friendly semiconductor material with narrow band gap (2.4–2.8 eV) and good stability in aqueous media was employed to combine with the Ag₃PO₄ to obtain WO₃/Ag₃PO₄ hybrid photocatalyst [39,40]. Firstly, a facile double-step hydrothermal method was applied to prepare WO₃/Ag₃PO₄, following by SEM, XRD, UV–vis DRS, IR, PL, and XPS characterizations. Secondly, the photocatalytic activities of the WO₃/Ag₃PO₄ composite were evaluated by the degradation of methylene blue (MB) and methyl orange (MO) under visible light. Finally, the relevant photocatalytic mechanism was investigated and the stability of the WO₃/Ag₃PO₄ composite was also examined.

2. Experimental section

2.1. Reagents and materials

All reagents used in this work were analytical grade. Sodium tungstate dehydrate, sodium chloride, silver nitrate, disodium hydrogen orthophosphate, and hydrochloric acid were purchased from Sigma-Aldrich Chemical Co., Ltd. MB and MO were purchased from Sinopharm (Shanghai, China). Double distilled Millipore water was used for all the experiments.

2.2. Synthesis of catalysts

2.2.1. Synthesis of Ag₃PO₄

20 mL of 0.1 mol L⁻¹ Na₂HPO₄ solution was added dropwise in a beaker containing 60 mL of 0.1 mol L⁻¹ AgNO₃ solution at 25 ºC within 10 min. The mixture was magnetically stirred till yellow precipitate formed. Then, the suspension was transferred into a 100 mL Teflon-lined stainless steel autoclave, and kept at 120 ºC for 6 h. Finally, the sample was washed with deionized water three times and then was dried under vacuum at 80 ºC for 6 h.

2.2.2. Synthesis of WO₃/Ag₃PO₄ composite

The first step is to prepare WO₃ by a simple hydrothermal process. In brief, 10 mL of 2.0 mol L⁻¹ HCl solution was dropped in 30 mL of 0.1 mol L⁻¹ Na₂WO₄·2H₂O with magnetically stirred at 25 ºC. Then, the obtained suspension was transferred into a 50 mL Teflon-lined stainless steel autoclave and kept at 180 ºC for 48 h. After that, the precipitate was treated by filtration, washed several times with distilled water, and dried at 80 ºC for 6 h. The sample was sintered at 450 ºC for 2 h and WO₃ was obtained.

The second step is to fabricate WO₃/Ag₃PO₄ composite. Typically, an appropriate amount of previous prepared WO₃ powder (0.46 g) was dispersed in 60 mL of 0.1 mol L⁻¹ AgNO₃ solution by sonication for 10 min and subsequently agitation for 20 min, followed by dropwise addition of 20 mL of 0.1 mol L⁻¹ Na₂HPO₄ solution under stirring at 25 ºC. The suspension was also transferred into a 100 mL Teflon-lined stainless steel autoclave and kept at 120 ºC for 6 h. And then the sample was washed with deionized water and vacuum-dried at 80 ºC for 6 h. Finally, the WO₃/Ag₃PO₄ composite with 1:1 molar ratio of WO₃ against Ag₃PO₄ was obtained, which was labeled as 1W/1Ag. For comparison, other two WO₃/Ag₃PO₄ samples with two different molar ratio of WO₃ against Ag₃PO₄ (2:1 and 1:2) were prepared in a similar procedure, which were labeled as 2W/1Ag and 1W/2Ag.

2.3. Characterization of the as-prepared photocatalysts

The morphology of samples was characterized by a scanning electron microscopy (EFEG-SEM, Model Quanta 200 FEG, FEI). X-ray diffraction (XRD, Model D/max2550VB³+PC, Rigaku) analysis was performed using a diffractometer with Cu Kα radiation, operated at accelerating voltage of 40 kV and current of 30 mA. UV–vis diffuse reflectance spectra (DRS) were determined using a JASCO V-550 UV–vis spectrometer. Fourier transform infrared spectra (FT-IR) was recorded on a Bruker VERTEM 70 spectrophotometer, using KBr powder containing ca. 1 wt% of the sample. The XPS spectra of 1W/1Ag composite were determined on a X-ray photoelectron spectrometer (AXIS-ULTRA DLD, Shimadzu, Japan) using monochromatized Al Kα radiation (1486.6 eV). The binding energy (BE) measurements were corrected for charging effects with reference to the C 1s peak of the adventitious carbon (284.6 eV). The specific surface area of the samples was estimated by the BET adsorption–desorption isotherms of nitrogen at 77 K using a BET analyzer (TRISTAR 3000 Micromeritics, U.S.), and the samples were out gassed at 180 ºC in vacuum for 6 h. The photoluminescence emission spectra (PL) were collected on an F-7000 Fluorescence spectrophotometer (Hitachi, Japan) at room temperature, using a Xe lamp as light source. Photocurrent measurement was carried out in a three-electrode cell system of CHI 660E (CHI Co., USA) electrochemical workstation. A saturated calomel electrode (SCE) served as the reference and Pt foil as the counter electrode. The working electrodes were prepared refers to the literature reported [8]. Firstly, a F-doped SnO₂ (FTO) glass pieces with a size of 1.5 × 6 cm was sonicated in acetone for 10 min, and then rinsed with deionized water and dried. Secondly, 0.1 g of photocatalyst mixed with 0.05 g of polyethylene glycol (PEG 2000) in a small mortar, and...
ground to form slurry with adding 1.0 mL ethanol. The slurry was coated onto FTO using a doctor blade method. The electrode was dried at 80 °C in a drying oven and calcined at 300 °C for 60 min in air atmosphere. The electrochemical impedance spectroscopy (EIS) were recorded by applying an AC voltage of 10 mV amplitude in the frequency range of 10^5 Hz – 10^2 Hz with the initial potential (0 V). The working area of working electrode is 4 cm², and the electrolyte is 0.1 mol L⁻¹ Na₂SO₄ solution.

2.4. Evaluation of photocatalytic activity

The performance of the photocatalysts was evaluated through the photocatalytic degradation of MB/MO under visible light. The photocatalytic degradation was carried out in a photochemical reactor equipped with a magnetic stirrer and a jacketed cooler to maintain a constant temperature (25 ± 2 °C). A 300 W Xenon lamp (Ceaulight, CEL-HXF300) equipped with an ultraviolet cutoff filter provided visible light with λ > 420 nm. In a typical photocatalytic measurement, 0.1 g of the as-prepared photocatalysts was dispersed into 100 mL of MB or MO solution with an initial concentration of 10 g mL⁻¹ via ultrasonication for 2 min. To reach an adsorption–desorption equilibrium, the suspension was stirred in the dark for 30 min before light irradiation. Then, 2 mL of suspensions was taken out at given time intervals and separated by centrifugation. The concentrations of MB and MO during degradation were measured by a UV–vis spectrophotometer (UV-2550, Shimadzu, Japan) at the wavelength of 664 nm and 463 nm, respectively. The photocatalytic degradation efficiency of MB/MO over the photocatalyst was calculated from the following equation:

\[
\text{Degradation efficiency} = \left(1 - \frac{C}{C_0}\right) \times 100\% \tag{1}
\]

where \(C_0\) and \(C\) are the concentration in the initial time and after illumination time \(t\) of MB/MO.

To test the stability of the 1W/1Ag photocatalyst, it was recycled and reused three times in the decomposition of MB/MO under the same conditions. After each degradation experiment, the residual suspensions was centrifuged to recycle the photocatalyst powders, all of used photocatalysts were collected then dried at 100 °C for next test.

3. Results and discussion

3.1. Characterization

The microscopic morphologies of pure Ag₃PO₄, WO₃ and 1W/1Ag were determined by SEM. Fig. 1(a,b), a typical SEM image of Ag₃PO₄ at different magnification, shows the sample is composed of large quantities of polyhedral particles with size of 10 to 15 μm. The large size would be due to the relatively high hydrothermal temperature in the hydrothermal process. The edges and angles of the crystalline grains are regular and distinct, while some defects can be found on crystal surfaces. It had been demonstrated that all of these would act as active sites for degradation reaction. From Fig. 1(c,d), it is also found that the diameter of WO₃ nanoparticle
is about 200–300 nm, and the particle size is relatively uniform, which endows its higher specific surface area and larger surface energy than micro-sized Ag₃PO₄ grain. For the 1W/1Ag (Fig. 1(e,f)), the spherical-like WO₃ particles covers almost all the crystal surface of Ag₃PO₄, however, the morphology and particle size is not obviously change after composition. Although a portion of WO₃ agglomerates, the combination between WO₃ and Ag₃PO₄ interfaces are firm and compact. Obviously, such contact is favorable to mediate charge transfer during photocatalytic oxidation.

To identify the phase composition and crystal structure of the samples, XRD analysis was conducted. Fig. 2 shows the XRD patterns of Ag₃PO₄, WO₃, and WO₃/Ag₃PO₄ composites with different molar ration of WO₃ to Ag₃PO₄ (i.e. 1W/1Ag, 1W/1Ag and 2W/1Ag).

For pure Ag₃PO₄, the characteristic diffraction peaks at 2θ value 21.7°, 29.7°, 33.3°, 36.5°, 47.8°, 52.6°, 54.9°, 57.2°, and 71.8° corresponding to (110), (200), (210), (211), (310), (222), (320), (321), and (421) facets, which could be indexed to the body-centered cubic structure (JCPDS No.06-0505) [39,40]. While for spherical WO₃, the peaks at 23.1°, 23.7°, 24.1°, 28.8°, 33.6°, 34°, 50° and 55.4° are respectively corresponded to the (001), (020), (200), (111), (201), (220), (140), (420) crystal planes, confirming the existence of the orthorhombic structure of WO₃ (JCPDS No. 20-1324). These results are in good accordance with previous studies [6,37,41].

As shown in Fig. 2(b,c,d), both of the characteristic diffraction peaks of Ag₃PO₄ and WO₃ can be observed in the XRD patterns of WO₃/Ag₃PO₄ composites, indicating that WO₃ nanoparticles successfully combined with polyhedral Ag₃PO₄. Meanwhile, no XRD additional diffraction peaks can be observed except for those of Ag₃PO₄ and WO₃. In terms of WO₃/Ag₃PO₄ composites, the peak corresponding to the (111) crystal plane of WO₃ gradually becomes stronger with increasing of WO₃ loading content on Ag₃PO₄. Compared to WO₃, the intensity of the diffraction peaks of Ag₃PO₄ is relatively strong, which should be attributed to its larger micron-sized crystalline grain. Moreover, the addition of WO₃ did not obviously change the diffraction peak positions of Ag₃PO₄, implying that WO₃ was not incorporated into the Ag₃PO₄ lattice.

As is known to all, the optical absorption property is an important prerequisite for photocatalysis, hence UV–vis DRS is employed to detect the optical absorption of five catalysts. Fig. 3(a) shows the DRS of Ag₃PO₄, WO₃, 1W/1Ag, 1W/1Ag, and 2W/1Ag. The bare Ag₃PO₄ shows a strong absorption peak at ~265 nm and have an absorption edge at ~520 nm whereas pure WO₃ shows absorption at around 460 nm [42]. The optical spectra show that the total absorption strength of WO₃/Ag₃PO₄ composite is enhanced when an appropriate amount of WO₃ coupled with Ag₃PO₄ (1W/2Ag and 1W/1Ag) and a slight red shift of absorption edge. It indicates that WO₃/Ag₃PO₄ composite absorbs visible light more effective than either of bare samples. In addition, with an appropriate loading content of WO₃, the WO₃/Ag₃PO₄ composites (1W/2Ag and 1W/1Ag) show enhanced absorption intensity nearly in whole light region. The probable reason is innumerable pores and lacunas with different size were formed in the WO₃/Ag₃PO₄ composites due to the mismatching of particle size during WO₃ nanoparticle combined with Ag₃PO₄ micro-grain. These cavities could obviously increase the photon-matter interaction length via refraction and reflection and produce slow photon effect, resulting in the enhanced absorption ability in the range of 200–700 nm. Obviously, the absorption intensity of 2W/1Ag is decrease with the WO₃ content excesses optimal amounts, attributing to those effects weaken when excessive compact packing of WO₃.

The band gap energy (Eg) of the semiconductors could be determined using the following equation:

$$\alpha h\nu = A(h\nu-E_g)^n$$

where \(\alpha\) is absorption coefficient, \(h\) is Planck’s constant, \(\nu\) is the frequency of light, \(A\) represents a constant number, and \(n\) equals 2 for Ag₃PO₄ and WO₃ (indirect transition) [43–46]. Fig. 3(b) plots the absorption spectra as \((\alpha h\nu)^{1/2}\) vs. \(h\nu\). We deduced the values of

![Fig. 2](image-url)
Fig. 2. XRD patterns of Ag₃PO₄ (a), 1W/2Ag (b), 1W/1Ag (c), 2W/1Ag (d), and WO₃ (e).

![Fig. 3](image-url)
Fig. 3. UV–vis DRS and band gap energies of Ag₃PO₄ (a), 1W/2Ag (b), 1W/1Ag (c), 2W/1Ag (d), and WO₃ (e).
The electronic band structure of typical 1W/1Ag can be estimated according to the following empirical equations [43,48]:

\[
E_{VB} = \chi - E^* + 0.5E_g \\
E_{CB} = E_{VB} - E_g
\]

where \(E_{VB}\) and \(E_{CB}\) are the valence and conduction band potentials, respectively; \(\chi\) is the electronegativity of the semiconductor, the values for \(Ag_3PO_4\) and \(WO_3\) are 5.96 and 6.49 eV, respectively; \(E^*\) is the energy of free electrons on the hydrogen scale (about 4.5 eV vs. NHE). It can be calculated that \(E_{VB}\) of \(Ag_3PO_4\) and \(WO_3\) are about 2.65 and 3.35 eV vs. NHE, and the corresponding \(E_{CB}\) are 0.27 and 0.63 eV vs. NHE, respectively, as depicted in Fig. 4.

A comparison of 1W/1Ag to pure \(Ag_3PO_4\) and \(WO_3\) in functional groups of the chemical structure was conducted by FT-IR spectroscopy, as depicted in Fig. 5. In the spectra of all the three samples, the strong and broad absorption around 3300 cm\(^{-1}\) is ascribed to the stretching vibration of O–H. Both sharp bands at 1400 and 1655 cm\(^{-1}\) are attributed to the bending vibration of H–O–H of adsorbed water molecules [49]. In the crystalline structure of \(WO_3\), tungsten atoms are located in the center of \(WO_6\) octahedra with oxygen at the vertices forming W–O–W connections. The IR active bands include fundamental vibrations of W=O, W–O and W–O–W respectively [51]. For the pure \(WO_3\), the characteristic peaks at \(\approx 840\) and \(1404\) cm\(^{-1}\) are associated with stretching vibrations of W=O–W and W–OH respectively [51]. For the pure \(Ag_3PO_4\) and 1W/1Ag, the peak at \(\approx 550\) cm\(^{-1}\) is related to the O–P–O bending vibration, while the peaks at \(\approx 850\) and \(1010\) cm\(^{-1}\) are respectively assigned to the symmetric and asymmetric stretching vibration modes of P–O–P [52]. All the characteristic peaks of \(Ag_3PO_4\) and \(WO_3\) can be observed in the spectra of 1W/1Ag.

XPS with high sensitivity is used to study the surface chemical state of the 1W/1Ag. As shown in Fig. 6(a), the XPS survey spectrum suggested that Ag, W, O, and P elements existed in this material, being coincident with the constituent of the composites. In addition, detailed speciation information is investigated from high resolution XPS scans in the different binding energy regions. The Ag 3d spectrum (Fig. 6b) display a doublet characteristic centered at 374.1 and 368 eV, which could be assigned to \(Ag^{3d_{3/2}}\) and \(Ag^{3d_{5/2}}\) of typical Ag\(^+\), respectively [40,53,54]. For the W 4f XPS spectra depicted in Fig. 6(c), the observed W 4f consisted of a single doublet at binding energies of 35.8 eV for W 4f\(_{7/2}\) and 37.9 eV for W 4f\(_{5/2}\). It can be reasoned that tungsten is present in the W\(^6+\) oxidation state of the \(WO_3\) [49,55]. The O 1s spectrum in Fig. 6(d) can be deconvoluted into two peaks, the binding energy of ca. 530.6 eV was ascribed to the lattice oxygen in the \(Ag_3PO_4\) and \(WO_3\), while the peak at ca. 531.9 eV probably corresponded to the hydroxyl group [52]. The XPS results of the surface composite photocatalyst characters are coincident well with the XRD and IR results aforementioned.

3.2. Photocatalytic performances

MB and MO were selected as probe molecules of organic pollutants to evaluate the photocatalytic activity of 1W/1Ag, which are two kind of common contaminants in industrial wastewater. Prior to each photocatalysis test, the mixture of catalysts and pollutants was stirred in the dark for 30 min, the timing for photocatalysis test started. Fig. 7 shows the photocatalytic performance of the pure \(WO_3\), \(Ag_3PO_4\) and 1W/1Ag under visible light illumination. Two blank tests without using any photocatalyst confirmed that the self-photolysis of MB and MO are negligible. The 1W/1Ag exhibits notably higher photocatalytic activity than pure \(WO_3\) and \(Ag_3PO_4\) for both pollutants. After 60 min irradiation, above 95% of MB decomposed in the presence of 1W/1Ag photocatalyst, while only 70% and 55% are removed within the same time using pure \(Ag_3PO_4\) and \(WO_3\), respectively. During MO photocatalytic degradation, MO exhibits higher stability than MB in the water environment. About 90% of MO is removed with 1W/1Ag after 180 min. However, 61% and 27% of MO are eliminated from the solution with pure \(Ag_3PO_4\) and \(WO_3\), respectively. The lowest catalytic activity of \(WO_3\) is mainly attributed to the more positive conduction band potential of \(WO_3\), which does not favor the production of oxidizing species derived from electrons, such as \(H_2O_2\) and *OH etc. In addition, wide band gap of \(WO_3\) results in less absorption of visible light (\(\lambda > 460\) nm). While for 1W/1Ag catalyst, the outstanding photocatalytic activity can be ascribed to highly effective separation of photogenerated electron–hole pairs and synergic effect between them.

To further understand the enhanced performance of 1W/1Ag, the kinetics for MB and MO decay is analyzed in detail. The photo-
catalytic degradation of MB and MO follow the pseudo-first-order kinetic model \(\ln(C/C_0) = -kt \), where \(C_0 \) and \(C \) is the initial concentration and instant concentration at time \(t \), respectively, \(t \) is the reaction time, and \(k \) is the rate constant [39]. The linear relationship is shown in Fig. 8. For MB decomposing, the apparent rate constant of 1W/1Ag is 0.048 \(\text{min}^{-1} \), which is 2.4 and 4.0 times that of pure \(\text{Ag}_3\text{PO}_4 \) and \(\text{WO}_3 \), respectively. The same tendency could be observed in MO degradation, the apparent rate constant of 1W/1Ag (0.012 \(\text{min}^{-1} \)) is the highest among three samples. These results demonstrated that the synergistic effect between \(\text{Ag}_3\text{PO}_4 \) and \(\text{WO}_3 \) played an important role in enhancing the photocatalytic activity under visible light irradiation. In conclusion, the enhanced performance of 1W/1Ag is mainly attributed to high surface area, strong light absorption and improved separation of photogenerated charge carriers.

The textural properties of the \(\text{Ag}_3\text{PO}_4 \) and 1W/1Ag were investigated by nitrogen sorption analysis. The nitrogen adsorption–desorption isotherms and the pore size distribution (inset) are exhibited in Fig. 9. It can be seen that the pure \(\text{Ag}_3\text{PO}_4 \) and 1W/1Ag have isotherms of type IV and type H3 hysteresis loop, with the hysteresis shaping more like that for the slit-like pores and covering a broad relative pressure range of 0.7–0.95, indicating their large porosity. The pore distributions of the two samples are very broad, illustrating the existence of mesopores and macropores. The BET surface area of the \(\text{Ag}_3\text{PO}_4 \) and 1W/1Ag are 8 \(\text{m}^2\text{g}^{-1} \) and 35 \(\text{m}^2\text{g}^{-1} \), respectively. The enhancement of BET surface area of 1W/1Ag is ascribed to the loading \(\text{WO}_3 \) nanoparticle. The higher surface area not only can provide more photocatalytic active site, but also accelerates mass transfer of the organic dyes during photocatalysis.

The effect of the 1W/1Ag direct Z-scheme construction on the charge separation was investigated via electrochemical impedance spectroscopy (EIS) and photocurrent (i-t) experiments [56]. Fig. 10 (a) shows the EIS response of \(\text{Ag}_3\text{PO}_4 \), 1W/1Ag, and \(\text{WO}_3 \). Generally, the size of arc radius on the Nyquist plot is related to the resistance of electron transfer and the separation efficiency of photogenerated electrons and holes on the electrode surface. It also shows the energy barrier of electrode reaction. The electron transfer resistance (\(R_{ct} \)) obtained on the 1W/1Ag is about 80 \(\Omega \), which indicates that it has the highest efficiency in charge separation and electron transfer. Furthermore, the photoexcited charge carriers are detected by transient photocurrent responses under visible-light illumination with an on-and-off cycle mode. The higher photocurrent intensity often illustrates the stronger light absorption (in Fig. 3) and higher separation efficiency of holes and electrons. It is obviously found that 1W/1Ag shows much higher photocurrent density than that of pure \(\text{Ag}_3\text{PO}_4 \) and \(\text{WO}_3 \), and the photocurrent on the 1W/1Ag electrode reaches 2.0 \(\mu\text{A} \), which is 1.7 times and 2.2 times that of \(\text{Ag}_3\text{PO}_4 \) and \(\text{WO}_3 \), respectively. It means that Z-scheme type is preferable for charge separation and transfer, thus rendering the improvement of the photocatalytic degradation chance to organic dyes.

In general, photoluminescence (PL) emission spectra are also an effective means to explore the mitigation, transfer and recombination process of photo-generated carries for photocatalyst [47,57]. PL spectra were examined for \(\text{Ag}_3\text{PO}_4 \), 1W/1Ag, and \(\text{WO}_3 \) with...
an excitation wavelength of 210 nm. As shown in Fig. 11, pure Ag₃PO₄ display two apparent characteristic emission peak centered at about 510 nm and 545, respectively, which was ascribed to the band gap recombination of electron-hole pairs. Comparing with that of pure Ag₃PO₄, the PL intensity of 1W/1Ag was sharply weakened, which indicates the recombination of electron-hole pairs is effectively inhibited. The results are highly in coincident with the results of the EIS and i-t experiments. In order to further understand the photocatalytic mechanism and explore the active species involved in the photocatalytic process, hydroxyl radicals (·OH) were detected on the surface of 1W/1Ag by the PL method using terephthalic acid (TA) as a probe molecule [56,58,59]. According to the reported literatures, the brief experimental procedures were as follows: 0.1 g of the 1W/1Ag powder was dispersed in a mixed aqueous solution of 5 × 10⁻⁴ M TA and 2 × 10⁻³ M NaOH at 25°C. The visible light was irradiated and solution samples dealing with filter was analyzed every 10 min on a Hitachi F-7000 fluorescence spectrophotometer. The excited wavelength was selected 315 nm. For the 1W/1Ag, it is observed that PL intensity at about 425 nm gradually enhance with increasing irradiation time as shown in Fig. 11, which indicates the production of ·OH radical. The results demonstrate that the ·OH radical is the main active oxygen species in the photocatalytic degradation.

Essentially, the photocatalytic oxidation and reduction abilities of a semiconductor are related with the potentials of the valence and conduction bands, respectively. The photoexcited electrons generated from Ag₃PO₄ and WO₃ cannot reduce O₂ to ·O₂⁻ or ·HO₂, because the standard redox potentials of \(E^0 (O_2/\cdotO_2^-) \) (−0.33 eV vs. NHE) and \(E^0 (O_2/\cdotHO_2^-) \) (−0.05 eV vs. NHE) are more negative than their conduction band edge potential \(E_{CB}(Ag_3PO_4) = 0.27 \text{ eV}, \ E_{CB}(WO_3) = 0.63 \text{ eV vs. NHE} \) [60–62]. Nevertheless, the photoexcited holes generated from Ag₃PO₄ and WO₃ can oxidize OH⁻ to ·OH by reason of their valence band potentials are more positive than the standard redox potential of OH⁻/·OH \(\cdotOH^+/\cdotOH = 2.4 \text{ eV} \) [43]. On the basis of above experimental facts and analysis, it can be speculated that a possible direct Z-scheme system photocatalyst may be formed when WO₃ is combined with Ag₃PO₄, stemming from the relative short distance between the valence band of Ag₃PO₄ and the conduction band of WO₃, as depicted in Fig. 1 [63]. Under visible light illumination, both Ag₃PO₄ and WO₃ could be excited to produce amounts of electrons and holes simultaneously, whereas those photo-generated charge carriers of Ag₃PO₄ are likely to recombine quickly without introduction of WO₃, leading to the relatively low photocatalytic activity. According to the schematic diagram, the mechanism of the Z-scheme 1W/1Ag for photocatalytic degradation is proposed [59,64,65]. After forming a heterojunction, the electrons in the conduction band of WO₃ timely transfer to the valence band of Ag₃PO₄ and combine with holes there. The holes retaining in the
The valence band of WO3 could directly oxidize the adsorbed organic dyes to intermediates and even CO2 and H2O or indirectly oxidize OH− to •OH, triggering a series of degradation reactions. The electrons existing in the conduction band could be consumed through a multi-electron reaction with oxygen and finally produce *OH (E° (O2/H2O2) = 0.68 eV vs. NHE, O2 + 2H2O + 2e− → H2O2; H2O2 + e− → OH− + *OH), which could accelerate the organic dye degradation [53,66,67]. Obviously, the directional migration of photogenerated electrons and holes in the 1W/1Ag could prevent the recombination of charge carries in own bulk phase, leading to the improvement of photocatalytic activity due to the location potential change of electrons/holes.

With the exception of photocatalytic activity, it is another important issue to evaluate the stability of photocatalyst from the view of practical application. In order to evaluate the improvement of reusability, the 1W/1Ag and pure Ag3PO4 were used to repeatedly degrade the MB and MO solution for three times, respectively. The catalysts should be washed and heated at 80 °C after every cycle until completely dried. The previous investigations showed that pure Ag3PO4 would be photochemically decomposed if no sacrificial reagent was involved in photocatalysis. As shown in Fig. 12, the decolourization ratio for MB and MO over pure Ag3PO4 greatly decreased after three successive cycling runs and the values reduce to 42% and 53%.

The decline of catalytic activity may be mainly ascribed to two factors. One is the formation of Ag layer on the surface of Ag3PO4 due to inevitably reduction of partial Ag+. The Ag layer can shield light absorption, inhibit the transfer of holes from the valance band of Ag3PO4 to the photocatalyst interface, and hinder the contact of Ag3PO4 with pollutant molecules [36,53]. The other one is that some secondary inactive substances deposit on the surface of Ag3PO4 and blocks the active sites during the photocatalytic degradation process. However, no obvious decrease in photocatalytic activity was observed after three runs during MB and MO photocatalytic degradation, demonstrating the 1W/1Ag composite has excellent recyclability under visible light irradiation. After the third run, the removal rate of MB and MO are still as high as 93% and 87% over 1W/1Ag at the same degradation time. These results obviously investigate that the stability of 1W/1Ag is obviously enhanced compared with pure Ag3PO4 catalyst.

4. Conclusions

In this work, a novel 1W/1Ag composite was successfully synthesized using hydrothermal method with two steps and employed in degrading two kinds of organic dye contaminant under visible light. Compared with pure Ag3PO4 and WO3, 1W/1Ag exhibited notably enhanced photocatalytic efficiency. The degradation of MB.
and MO obeyed the pseudo-first-order kinetics. The enhanced photocatalytic performance and stability were attributed to the direct Z-scheme heterojunction structure and synergic effect of Ag3PO4 and WO3, which could benefit to efficient electron–hole separation and enhanced light energy conversion efficiency. Under visible light illumination, the photoexcited electrons in the conduction band of WO3 and retained holes in the valence band of Ag3PO4 are quickly combined. Meanwhile, the photogenerated holes in the valence band of WO3 played a major role in oxidation reactions. Undoubtedly, the developing of 1W/1Ag not only improves the reaction activity, but also effectively reduces the cost of the Ag3PO4 based photocatalyst, which would be a desired alternative as a simple, efficient, and promising photocatalyst material for wastewater remediation.

Acknowledgments

This work was supported jointly by the National Natural Science Foundation of China (Grant Nos. 21507103, 51508435), the Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 15JK1383), and the Youth Science and Technology Foundation of Xi'an University of Architecture & Technology (No. QN1405).

References

Fig. 11. (a) PL spectral changes observed during illumination for the 1W/1Ag sample in 2 × 10−3 M NaOH solution in the presence of 5 × 10−4 M terephthalic acid, (b) PL spectra of the Ag3PO4, 1W/1Ag, and WO3.

Fig. 12. Photostability and reusability of pure Ag3PO4 and 1W/1Ag for degradation of MB (a) and MO (b) under visible light irradiation.

