
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 95

Data Streaming Algorithms for the Kolmogorov-Smirnov Test

Ashwin Lall

Department of Mathematics and Computer Science

Denison University

Granville, OH, USA

lalla @ denison.edu

Abstract—We propose space-efficient algorithms for per-
forming the Kolmogorov-Smirnov test on streaming data.
The Kolmogorov-Smirnov test is a non-parametric test for
measuring the strength of a hypothesis that some data is drawn
from a fixed distribution (one-sample test), or that two sets of
data are drawn from the same distribution (two-sample test).
Unlike some other tests, Kolmogorov-Smirnov does not assume
that the distribution has a known form (e.g., it is normal), and
in the two-sample case it need not know anything about the
distribution, other than that it is continuous. Motivated by the
challenges of big data, we present algorithms for both the one-
sample and the two-sample tests for data processed in a stream.
We demonstrate the accuracy of our algorithms via extensive
experimentation on both real and synthetic datasets. We show
that our algorithms are superior to sampling and that they
accurately perform the test with several orders of magnitude
reduction in data.

I. INTRODUCTION

One of the characteristic challenges of Big Data is the

lack of capacity to store all of it. It is currently infeasible to

collect data at the core of the Internet or on many scientific

measurement devices without massive downsampling. Even

simple tasks such as detecting significant changes in the data

have become challenging because sampling tends to discard

much of the information. This paper addresses the need to

identify the source distribution of a stream of data, or to

compare the distributions of different streams. For instance,

we may study packet inter-arrival in a high-speed network

and want to know whether the distribution of these times is

identical on different days or on different routers, or sensor

motes may need to maintain months of data in their limited

storage. Unfortunately, in many of these applications, to

maintain a complete record would very quickly overwhelm

local storage capacity—in the abovementioned examples,

the data rate is orders of magnitude greater than available

memory. To overcome this problem, it is necessary to

perform comparative distributional tests on summaries of

the data. In this paper, we show how one such statistic for

comparing distributions, the Kolmogorov-Smirnov statistic,

can be estimated succinctly yet accurately in a stream.

The Kolmogorov-Smirnov test (henceforth referred to as

the KS test) is a means for measuring whether given data

are drawn from a specific distribution. The power of this test

comes from the fact that it is non-parametric, i.e., it does not

assume some fixed type of distribution (such as the normal

distribution in the case of the Student t-test) and can be

applied to any distribution with a continuous distribution

function. This lack of restriction makes it invaluable for

inferring whether data fits a given distribution when it is

preferable to not assume a fixed parametric distribution, or

when the distribution does not have well-established tests

of its own. It is also superior to χ2 tests in that there is

no need to determine how to bin the data or ensure that

there is sufficient density in each bin. The test computes a

statistic of the distribution function of the data which is used

to reject the hypothesis that the distributions are identical up

to a given significance level (e.g., α = 0.05).

The KS test has both a one-sample and a two-sample

variant. In the one-sample variant, empirical data (e.g.,

packet inter-arrival times or luminosity) can be tested against

a fixed, known distribution to see whether the data are

drawn from this distribution. This test is useful for verifying

whether the data is from a known distribution that does not

have its own parametric test. The two-sample version of the

test allows for the comparison of two (not necessarily equal-

size) datasets without any foreknowledge of the underlying

distributions. This test can be used to check whether the

two sources are different. We provide the first streaming

algorithms for both these tests in this paper.

Much of the literature on statistical testing of streams has

focused on statistics of the frequencies of the items in the

stream (see, e.g., [16], [17]). This is due, in part, to the

fact that frequency-based problems are challenging in the

streaming model. In contrast, problems that have to do with

measuring statistics on the stream values themselves (e.g.,

mean, standard deviation, etc.) are usually easy to compute

in a stream. The KS-test is a notable exception to this rule

and hence makes for an interesting problem to study.

A significant advantage of using the KS test for tasks

such as change and anomaly detection is that it can be

applied to wide range of very heterogeneous types of data.

For instance, the same algorithm can be used for detecting

changes in quantities as diverse as round-trip-time (RTT),

latency, throughput, jitter, and loss in the networking do-

main. Moreover, there is barely any parametrization required

to deploy the test on a real system. Simply by using the

two-sample test to compare against data pre-collected during

96

some periods in which “normal” behavior is observed, one

can detect significant deviations in the distribution. This

makes the KS test very easy for system engineers to deploy.

We believe that it has not found more widespread use

because of the obstacle of prohibitive cost, which can be

removed by the techniques in this paper.

A. Applications

We outline below a few of the applications for which

streaming algorithms for the KS test would be useful.

Astronomy: The KS test is commonly used in the field

of astronomy to measure the distance between distributions

of astronomical measurements [25]. The recent increase in

the amount of data available to astronomers will soon make

storing these measurements very challenging. For instance,

the Chandra space telescope [22] is capable of recording data

at the rate of 1.8 gbps, but it has a downlink capacity of only

1 mbps to Earth. Another telescope under development, the

Square Kilometre Array [23], will generate data at the rate

of several times the traffic of the entire Internet!

Wireless Sensor Networks: One of the most common

uses of wireless sensor networks is to perform scientific

measurements at remote or wide-spread locations. These

sensor networks consist of sensor motes that have limited

resources such as battery-life, memory, processing power,

etc. [18]. Being able to perform statistical tests to detect

changes in or to measure properties of the distributions of

the measurements necessitates the ability to retain the sensed

data in the mote’s limited storage. The techniques in this

paper could be used to perform light-weight tests on the

data to detect significant changes in measurement.

Internet Measurement: The inter-arrival time between

packets is a common metric for network measurements [4],

[13]. An algorithm for measuring the KS-statistic would give

network operators the ability to detect when the packet ar-

rival rate changes significantly or to match an arrival pattern

with known distributions of previously-identified behavior.

Since this data is generated at the rate of many gigabytes per

second across a large ISP, it is infeasible to keep a long-term

record of this data. The algorithms proposed in this paper

would allow for succinct storage of these measurements.

Other quantities that could be compared in this way are

round-trip-time (RTT), packet size, delay, loss, and latency.

B. Contributions

The contributions of this paper are as follows:

• We propose an algorithm for the one-sample KS test

to test whether a source of data is drawn from a

fixed (known) distribution. The algorithm can compress

n items of information into Θ(
√
n logn) space (e.g.,

terabytes into megabytes). It does not need to know

the distribution being tested against a priori.

• We design an algorithm for the two-sample KS test to

test whether two sources of data are from the same

(unknown) distribution, once again using Θ(
√
n logn)

memory. In this case, nothing needs to be known about

either underlying source, other than the fact that they

have continuous distributions.

• We performed extensive experiments on both real and

synthetic data to demonstrate that the proposed algo-

rithms do perform well in practice, and give consider-

able benefit over simple strategies such as sampling the

data.

Organization: In Section II the work most directly related

to this problem is discussed. We define the problem and

introduce quantile sketches in Section III. The algorithms

for the one-sample and two-sample KS test are given in

Sections IV and V, respectively. In Section VI we show

how to pick the error parameters in our algorithms so as to

guarantee a reliable answer to the KS test. The algorithms

are evaluated on both real and synthetic data in Section VII.

Lastly, we discussion our conclusions and future work in

Section VIII.

II. RELATED WORK

The Kolmogorov-Smirnov test is a commonly used means

to distinguish distributions. Its strength lies in that it does

not assume that the data are from a fixed distribution (e.g.,

Gaussian) and can be applied for arbitrary continuous distri-

butions. For this reason it has commonly been suggested as

a way to distinguish change in data. In one such work [14],

perhaps most closely related with this paper, the authors

use the KS test (among several others) to detect significant

changes in a stream. However, their sliding window algo-

rithm assumes that the entire window is stored and instead

focuses on how to re-compute the KS-statistic quickly. The

purpose of our work is to estimate the same quantity using

considerably less space than holding the entire stream in

memory. Another significant difference between our method-

ologies is that, while [14] focuses on detecting change in a

single stream, the goal of this paper is to compute a succinct

summary, called a sketch, that can be used to differentiate

streams processed at different times or locations. Another

recent work [9] defines a different version of the KS test

for high-dimensional data. The variations they introduce for

more dimensions make their results incomparable with ours.

Computing distances in streams has been done for a long

time. For instance, [12] examines how to compute a general

class of information distances in a stream. This model is

dissimilar from ours, though, in that they study the item

frequency distribution, rather than the raw values the appear

in the stream. Batu et al. [1] studied the estimation of the

L1-distance in a stream and proposed a near-tight algorithm

to match the Ω(n2/3) lower bound that they show for the L1

case. One major difference between much previous work and

ours is that we study a distance that has easy-to-understand,

statistical significance—it is possible to reject a hypothesis

upto arbitrary levels of significance using the KS test. The

97

algorithms in this paper can hence be deployed with minimal

fine-tuning or parametrization.

This paper uses previous work on computation of quan-

tiles in a stream, one of the longest-studied problems in

streaming algorithms. (See [2] for a survey.) This line of

inquiry was initiated by Munro and Paterson [21], and their

results were subsequently improved by Manku et al. [19]

and Greenwald and Khanna [10]. The Greenwald-Khanna

algorithm needs only O(1ε log (εn)) space, where n is the

length of the stream and εn is a bound on the rank error,

and is considered the state of the art algorithm for computing

quantiles in streams. By way of contrast, there is a folklore

result that random sampling needs θ(1/ε2) samples [2],

which is much worse for small ε. There have also been

several other developments in quantile computation, such

as the q-digest sketch [24] that uses O(1ε logU) memory,

where U is the size of the input domain. The q-digest sketch

also has the property that it can be efficiently aggregated in

distributed environments, e.g., sensor networks. Also, in [6]

Cormode and Muthukrishnan discuss how their count-min

sketch can be used to extend the work in [8] to get a more

space-efficient streaming algorithm for quantiles. Zhang and

Wei [27] gave a fast-update algorithm for quantiles, but this

comes at the cost of a O(log (εn)) increase in the storage

requirement over the Greenwald-Khanna algorithm. There

has been some recent work that focuses on randomly ordered

streams [3], [11] that takes advantage of this randomness to

reduce the space complexity for measurement. Very recently,

there has been an extensive experimental study to determine

which quantile algorithms perform best in practice [26].

There has been a revived interest in the benefits of

sampling of late [5], [7], [20]. One of the major contributions

of this paper is to demonstrate that our streaming algorithm

can outperform sampling-based techniques, indicating that

sampling is not a good solution for this technique. We

demonstrate this both theoretically as well as experimentally.

III. PRELIMINARIES

A. Problem Definition

In this paper, we will denote the length of the stream

by n; since it is possible to maintain the length of a stream

using only �logn� bits, we assume that this value is available

after processing the stream. The streams are of real-valued

numbers that can be stored with unit cost (with some fixed

precision), but cannot have any computation other than the

standard comparison operations performed on them. We

denote the items by the values {X1, X2, X3, . . . , Xn}. In

order to simplify notation later, we assume that X1 ≤
X2 ≤ X3 ≤ . . . ≤ Xn and that the stream is presented

in some order [Xπ(1), . . . , Xπ(n)], where π is an arbitrary

permutation of the values {1, . . . , n}, i.e., the stream is not

sorted in any particular order.

Now, in order to define the problem addressed in this

paper, we remind the reader about the definition of several

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

values

KS-statistic

Figure 1. KS-statistic: greatest difference between distribution functions

terms from probability theory. The distribution function

(sometimes referred to as the cumulative distribution func-

tion or c.d.f.) of a distribution is defined as the function

F (x) = Pr(X ≤ x), where X is a random variable

drawn from the distribution. The empirical distribution func-

tion of a series of observations of some random quantity

X1, . . . , Xn is defined as Fn(x) = |{i | Xi≤x}|
n . Both

the distribution and the empirical distribution functions are

defined over all of R and take values within the range [0, 1].

The one-sample KS test compares a set of discrete data

with a fixed, continuous distribution function to see if the

data are drawn from this distribution. Specifically, if the em-

pirical distribution function of a stream of length n is given

by Fn, then the KS-statistic indicating the distance between

this empirical distribution and some fixed distribution F is

given by

Dn = sup
x

|Fn(x)− F (x)|.

The KS test simply computes the largest absolute differ-

ence between the empirical distribution and the distribution

it is being tested against. This is illustrated in Figure 1. The

value of this statistic can be shown to be independent of the

distribution in question (i.e., it is called distribution free) and

there are tables of values available for the critical region of

the test. That is, for 0 < α < 1, there is some fixed value Kα

such that the null hypothesis (the data {Xi} is drawn from

the distribution F) is rejected at level α if
√
nDn > Kα.

Note that it is not necessary to compute the above supre-

mum over infinitely many values of x since the empirical

distribution function only changes at n discrete values.

Specifically, if the set of points are X1 ≤ . . . ≤ Xn and the

distribution is defined by the c.d.f. F , then the KS-statistic

can alternatively be defined as (see, e.g., Knuth [15])

Dn = max
1≤i≤n

max

(
i

n
− F (Xi), F (Xi)− i− 1

n

)
.

The two-sample KS test allows one to compare two sets

of samples and test the likelihood that they came from the

same underlying distribution. More formally, assume that we

have two collections of points with cardinality n and m, and

98

empirical distribution functions Fn and Gm, respectively.

Then, the two-sample KS statistic for these points is

Dn,m = max
x

|Fn(x) −Gm(x)|.

In practice, the two sample test is even more useful be-

cause it can be used to compare two streams with no

knowledge about their underlying distributions. For the two-

sample test, the null hypothesis is rejected at level α when√
nm
n+mDn,m > Kα.

B. Quantile Sketches

The algorithms in this paper will make use of streaming

data structures, known as sketches, for computing the quan-

tiles of the values in a stream. We define such a sketch as

follows:

Definition 1: A quantile ε-sketch is a data structure that,

given an input stream X1, . . . , Xn (X1 ≤ X2 ≤ X3 ≤ . . . ≤
Xn) in arbitrary order, can then be queried to return, for any

1 ≤ i ≤ n, a value Xj such that j ∈ [i− εn, i+ εn].
These sketches are assumed to need less memory than

storing all the values exactly (i.e., o(n) bits), and can

typically be updated very quickly.

The quantile values are in some sense the “inverse” of

what we would like to have to compute the KS statistic.

The main challenge in this paper is to extract this inverse

and to bound the error of the KS statistic.

IV. ONE-SAMPLE TEST

In this section we describe a streaming algorithm for

the one-sample variant of the test. The algorithm must

create a succinct summary, or sketch, of the stream so

that its distribution can be compared with any distribution

afterwards. This version of the test is useful when we do

not know the type of distribution (e.g., normal, Pareto) we

are going to compare against or its parameters (e.g., mean,

variance) a priori. In other words, the sketch must be able

to guarantee bounded error for any possible distribution

function.

Our algorithm uses a quantile sketch (e.g., [10]) to

maintain the quantiles in a stream (in a single pass) with

the following guarantee (for any fixed ε > 0): For any

given rank r, the quantile sketch will return an element

whose rank is within the range [r − εn, r + εn]. Note that

computation of the KS-statistic requires not the quantiles

themselves but the “inverse” of the quantiles, and so the

main technical challenge of the algorithm and analysis is to

carefully computes these values at all the necessary points.

In order to do this, we prove the following observations

(needed in the analysis of our algorithms):

Observation 1: It is possible to extract from a quantile

ε-sketch a subset {Xi1 , . . . Xik} ⊆ {X1, . . . , Xn} (where

X1 ≤ X2 ≤ X3 ≤ . . . ≤ Xn) such that i1 < i2 < i3 <
. . . < ik and, for all 1 ≤ j < k, ij+1 − ij < 2εn.

Algorithm 1 OneSample(Q, n, F)

Input: Quantile ε-sketch Q of a stream of size n, and a

distribution function F
Output: D̂, an estimate of the KS-statistic D

1: Let Xi1 ≤ . . . ≤ . . . ≤ Xik be the values in Q, as

described in Observation 1.

2: D̂ = 0
3: for each x ∈ {Xi1 , . . . , Xik} do

4: Let j = max {p | Xip ≤ x}.

5: Let îj be the approximate index of Xij , computed as

described in Observation 2.

6: Êx = |̂ij/n− F (x)|
7: D̂ = max (D̂, Êx)
8: return D̂

Proof: Since a quantile sketch is guaranteed to return

only values from the original data stream, any values that

the sketch contains can be extracted via querying for the

ith largest element (for 1 ≤ i ≤ n) from the sketch. Let

Xi1 ≤ . . . ≤ Xik be the values that result from these queries.

Now, fix any j ∈ {1, . . . , k − 1}. If it is the case that

ij+1− ij > 2εn, then there must be some i′, ij < i′ < ij+1,

such that querying the sketch for the i′th largest element

will give a value with rank error at least εn, a contradiction.

Hence, it must be that ij+1 − ij ≤ 2εn.

Observation 2: Given some value Xi returned by a quan-

tile ε-sketch (where Xi is the ith largest element in the

input), it is possible to estimate i to within εn additive error.

Proof: Performing a binary search among the indices

1, . . . , n for the value Xi will give the desired approximation

to the index.

Recall that our goal is to compute the KS-statistic of

the empirical distribution of a set of points X1, . . . , Xn

(where X1 ≤ X2 ≤ X3 ≤ . . . ≤ Xn), denoted by

Fn, from some arbitrary distribution F via the formula

Dn = supx |F (x)−Fn(x)|. We achieve an approximation D̂
to this value Dn by using a quantile ε-sketch to summarize

the data being streamed and then comparing the result to the

fixed distribution F . The pseudocode for the comparison

is given in Algorithm 1. Note that the streaming part of

the algorithm (the quantile sketch) is independent of the

distribution F .

Theorem 1: Algorithm 1 returns an estimate of the KS-

statistic with at most 3ε additive error.

Proof: For any x, let Ex = |F (x)−Fn(x)|. Recall that

our goal is to compute Dn = maxx Ex. Now, let X1 ≤
. . . ≤ Xn be the data in the stream (in ascending order)

and let Xi1 ≤ . . . ≤ Xik be the values in the sketch, as

computed in line 1 of Algorithm 1. We first show how to

estimate Fn(x) approximately using the sketch Q.

For any x, let i be such that Xi ≤ x < Xi+1, i.e., the

largest index of the data that is at most x. Then, by definition,

Fn(x) = i/n. Let j be the largest index such that Xij ≤ x <

99

Xij+1
. Note that this corresponds with the value j computed

on line 4 of Algorithm 1. We now use the fact that i was

chosen to be the largest index such that Xi ≤ x < Xi+1,

and the fact that {Xi1 , . . . , Xik} ⊆ {X1, . . . , Xn} to get

that Xij ≤ Xi ≤ x < Xi+1 ≤ Xij+1
. This follows since

i was chosen to be the maximal such value and the sketch

has a subset of the {Xi}’s.

We use the fact that Observation 1 tells us that ij+1−ij ≤
2εn. Combining this with the above inequalities, and the fact

that the sequences {Xi} and {Xij} are monotonic, we get

that i− ij ≤ 2εn.

Now, line 4 of Algorithm 1 gives the value of Xij , but

not the value of the index ij . To compute this, we make

use of Observation 2 to compute an estimate îj in line 5.

This estimate is guaranteed to have at most εn additive error.

Putting this together with i−ij ≤ 2εn and using the triangle

inequality, we get that |i − îj| ≤ 3εn.

We now have, for any given x, an estimate of Fn(x)
computed as îj/n with at most 3ε additive error from the

actual value i/n.

Lastly, instead of computing Êx (the estimate of Ex)

for every x, we restrict the computation to just the values

extracted from the sketch since these are the critical values

at which the empirical distribution function changes.

A. Computational Analysis

The streaming part of the algorithm is identical to that of

whichever quantile ε-sketch is employed by the algorithm.

For instance, in the case of the Greenwald-Khanna sketch,

summarizing n data points with up to ε error can be done

using at most O(1ε log (εn)) space and time per update. Since

the bound given by the algorithm with ε′ = 3ε is off by a

constant from this guarantee, it is easy to see that the same

asymptotic guarantee is possible (replacing ε with ε′).
The computational complexity of measuring the KS-

distance is less important since this can be done offline,

well after the stream is processed, but we analyze it here

anyway. The running time of Algorithm 1 is dominated

by the time needed to extract the the values Xij from the

quantile sketch. This takes O(n) query operations to the

sketch. In contrast, the rest of the algorithm is relatively

fast since, if there are s = o(n) unique values stored in the

sketch (e.g., s = O(1ε log (εn)) for the Greenwald-Khanna

sketch), then the algorithm iterates s times and performs

O(log s) computations for the binary search on line 5 of

Algorithm 1, giving a running time of O(s log s), which is

much less than the initial query operations.

V. TWO-SAMPLE TEST

The two-sample KS test is used in situations in which

two datasets need to be compared to see if they come from

the same distribution. A significant advantage it has over the

one-sample test is that there is no need to assume anything

Algorithm 2 TwoSample(Q1, n, Q2, m)

Input: Quantile ε-sketches Q1 and Q2 of streams with sizes

n and m, respectively

Output: D̂, an estimate of the KS-statistic D

1: Let Xi1 ≤ . . . ≤ Xik be the values in Q1, as described

in Observation 1.

2: Let Yj1 ≤ . . . ≤ Yjl be the values in Q2, as described

in Observation 1.

3: D̂ = 0
4: for each x ∈ {Xi1 , . . . , Xik} ∪ {Yj1 , . . . , Yjl} do

5: Let a = max {j | Xij ≤ x}.

6: Let îa be the approximate index of Xia , computed as

described in Observation 2.

7: Let b = max {i | Yji ≤ x}.

8: Let ĵb be the approximate index of Yjb , computed as

described in Observation 2.

9: Êx = |̂ia/n− ĵb/m|
10: D̂ = max (D̂, Êx)
11: return D̂

about the distribution that both samples are drawn from. As

a result, it is more commonly used in practice.

Just as for the one-sample test algorithm, we use quantile

ε-sketches to solve this problem. The major difference here

is that we assume that the sketches from the two streams

(samples) are shipped to a common location for the compu-

tation to be performed. Note that this algorithm allows for

pairwise comparison of any number of streams, as long as

the sketches are all in the same location. Moreover, transmit-

ting these sketches is much more bandwidth-efficient than

sending the entire stream in distributed settings.

A. Two-sample algorithm

To compute the KS-statistic, we need to be able to

find the maximum of |Fn(v) − Gm(v)| over all values

v. Fortunately, rather than having to check all (possibly

infinite) such values, we can take advantage of the fact

that the empirical distribution is discrete and only check

at the values v such that Fn(v) or Gm(v) is in the set

{i/n | 0 ≤ i ≤ n} ∪ {i/m | 0 ≤ i ≤ m}, where n and

m are the lengths of the two streams.

Theorem 2: Algorithm 2 returns an estimate of the KS-

statistic with at most 6ε additive error.

Proof: Our goal is to compute Dn,m = supx |Fn(x)−
Gm(x)|. For any x, let Ex = |Fn(x) − Gm(x)|. Let i =
max {i | Xi ≤ x}. Similarly, define j = max {j | Yj ≤ x}.

We know that Fn(x) must be i/n and Gm(x) must be

j/m, by definition, so we have that Ex = |i/n − j/m|.
We compare this value with that of Êx computed in line 9

of Algorithm 2 below.

Let Xi1 ≤ . . . ≤ . . . Xik and Yj1 ≤ . . . ≤ . . . Yjl

be the values stored in the sketches, defined as in lines

1-2 of Algorithm 2. Let a = max {j | Xij ≤ x} and

100

b = max {i | Yji ≤ x}. Since i is defined such that Xi ≤
x < Xi+1, we have that Xia ≤ Xi ≤ x ≤ Xi+1 ≤ Xia+1

,

where the first inequality follows from the fact that Xi was

chosen as the largest value among X1, . . . , Xn that is at most

x and because {Xi1 , . . . , Xik} ⊆ {X1, . . . , Xn}. Similarly,

the last inequality follows from the fact that Xi+1 is the

smallest value among X1, . . . , Xn that is greater than x.

We know from Observation 1 that the indexes ia and ia+1

are such that ia+1 − ia ≤ 2εn. Combining with the result

above, this implies that i− ia ≤ 2εn.

Now, keep in mind that even though the sketch returns the

value Xia , it does not have the exact value of ia available to

it. However, we can approximate this value as îa (line 6 of

Algorithm 2) by performing a binary search of the quantile

sketch, as described in Observation 2. We have that this

approximation îa of ia is such that |̂ia − ia| ≤ εn.

Putting together the above two inequalities and using the

triangle inequality we get that |i− îa| ≤ |i− ia|+ |̂ia− ia| ≤
2εn+ εn = 3εn.

In exactly the same way we can show that the estimate

ĵb computed in line 8 of Algorithm 2 is such that |j− ĵb| ≤
3εm.

Putting all this together, we get that since the error of

estimating i/n by îa/n is at most 3ε and the error of

estimating j/m by ĵb/m is at most 3ε, the error of estimating

Ex = |i/n− j/m| by Êx = |̂ia/n− ĵb/m| is at most 6ε.
Finally, note that we do not have to repeat the process

above for every value of x, just the ones that give a different

answer. Since the approximation only changes for values

of x among {Xi1 , . . . , Xik} ∪ {Yj1 , . . . , Yjl}, it suffices to

approximate Ex for these values.

B. Computational Analysis

The analysis of the online computation for the two-sample

case is identical to that of the one-sample case. Hence, we

focus on just the offline computation cost here. Once again,

this cost is dominated by the n + m queries performed in

lines 1-2 of Algorithm 2. The running time of the following

iterations is o(n+m), once again depending on the number

of samples that the quantile ε-sketches end up storing.

VI. PICKING ε

So far, we have discussed how to bound the error on

the KS-statistic in comparison with the error (ε) of the

quantile ε-sketch. The obvious question that arises (and that

we address in this section) is:

What types of error bounds are necessary for

computing the KS-statistic in practice?

Recall that the form of the one-sample KS test is to

compute the KS-statistic D and then find the significance

level α at which
√
nD > Kα. For instance, if the desired

significance level is α = 0.05, then we reject the hypothesis

that the data is drawn from the distribution being tested

against exactly when
√
nD > K0.05 ≈ 1.358. On the other

hand, if this value were to exceed K0.01 ≈ 1.628, then we

could reject the hypothesis at the 0.01 significance level.

Clearly, our goal should be to select the absolute error of the

quantile ε-sketch to be sufficiently low so as not to adversely

affect this comparison—to (not) reject the null hypothesis

erroneously.

Suppose that the KS test is being applied to reject the null

hypothesis at the α = 0.05 significance level. Then, the test

simply needs to check if
√
nD > K0.05 ≈ 1.358. The error

introduced by using our sketch, rather than all of the data

in the stream, should be small enough to not degrade the

quality of the test. The form of approximation this would

take is that we should always reject the hypothesis at the

α = 0.04 (or lower) significance level, but never reject it at

the α = 0.06 (or higher) significance level. Since K0.04 =
1.399 and K0.06 = 1.324, it is clear that in this example an

error in
√
nD of up to 0.03 can be tolerated.

Let us say that our goal is to compute the quantity
√
nDn

to within δ precision. To achieve this level of accuracy,

we have to determine how many samples are necessary

in the quantile ε-sketch. For the purposes of this analysis

we will use the Greenwald-Khanna sketch as an example

since it is considered the state-of-the-art for computing

quantiles on a stream. The Greenwald-Khanna sketch needs

O(1ε log (εn)) samples to guarantee an error of ε. Now, recall

from Section IV that an error of ε for a sketch translates to

an error of 3ε for our estimate of Dn. Hence, we need to pick

ε such that 3ε
√
n ≤ δ. Choosing ε = δ/(3

√
n) suffices, so

we substitute this into the memory requirement of the sketch

to get that O(
√
n
δ log (δ

√
n)) space is required, which turns

out to be O(
√
n logn) for constant δ (e.g., 0.03 in the above

example). Thus, the overall space needed by the one-sample

test is O(
√
n logn). For example, a terabyte of data would

get compressed down to the order of megabytes.

The result for the two-sample test is similar. Recall that

the two-sample test allows one to reject the hypothesis at

the α significance level when
√

nm
n+mD > Kα, where n

and m are the lengths of the two streams. Let us say,

without loss of generality, that n ≥ m. We then have that√
nm
n+m ≤

√
n2

n =
√
n and an analysis similar to that above

shows that O(
√
n logn) space is needed by the quantile

sketches to reliably perform this test. Unfortunately, this

space requirement is needed for both the n and the m ≤ n
length stream, which means that in the case that m � n
the space requirement of the smaller stream may become

unreasonable. Hence, the two-sample test is only feasible

when n and m are not too far apart in magnitude. This is

demonstrated in the experimental section.

We next compare our O(
√
n logn) result with that for

random sampling. There is a folklore result that random

sampling needs θ(1/ε2) samples to ε-approximate the quan-

tiles [2]. Substituting the ε ≤ δ/(3
√
n) requirement from

101

above into this formula gives us that this amounts to Ω(n)
samples. Hence, we expect that sampling should need many

more samples than using the Greenwald-Khanna sketch to

attain the same level of accuracy.

VII. EXPERIMENTAL EVALUATION

We experimentally evaluated our algorithms on both real

and synthetic datasets to test their accuracy. We measured the

absolute error in the KS-statistic for both the one-sample and

the two-sample KS tests using different quantile ε-sketches

to evaluate which ones are most effective in practice. All

our code was written in Java. The experiments were all run

on a 3.0 GHz Intel Core i3 Mac with 4GB memory running

Mac OS X 10.6.8.

We used synthetic data drawn from uniform, Gaussian,

and power-law (Pareto) distributions, as these commonly

appear in real data. We averaged the results over 10 in-

dependently generated datasets in each case. Unless oth-

erwise stated, our experiments used ten thousand points

(n = 10000) and used 1% of the space needed to store

the entire stream.

For our experiments on real data we used the following

three traces:

• Astronomy data: We collected magnitude data for stars

and galaxies from the Sloan Digital Sky Survey1. We

queried for data on all objects within 60 arcminutes of

the location (180, 0) and got 35697 stars and 62091

galaxies. The KS-statistic was computed for the mag-

nitudinal distribution of the stars versus the galaxies in

the green part of the spectrum.

• Light data: We also used irradiance measurements (in

units W/cm2) taken from photometric sensors as part of

Columbia University’s EnHANTs (Energy Harvesting

Active Networked Tags) project2. We compared the

irradiance levels between Traces A and B of this

dataset.

• Inter-arrival time data: For our third dataset we used

inter-arrival times collected from wireless networks

in the Portland area3. We compared the inter-arrival

times (measured in nanoseconds) of five minutes of

data collected at the Portland State University CS

department (260325 values) against those collected at

Pioneer Square (517631 values).

We tested our algorithms using the following quantile ε-
sketches:

• The Greenwald-Khanna [10] (GK) algorithm has one

of the best space usage guarantees of O(1ε log (εn))
and has been demonstrated to be very competitive in

practice [26].

1http://cas.sdss.org/astro/en/tools/search/radial.asp
2http://crawdad.org/columbia/enhants/
3http://crawdad.org/pdx/vwave/

 0.0001

 0.001

 0.01

 0.1

 1

 1000 10000 100000

ab
so

lu
te

 e
rr

or

n

Greenwald-Khanna
Q-Digest
Sampling

Figure 3. Varying one-sample data size (n), for data drawn from N(0, 1)
compared with N(0.1, 1), using 1% memory

• The q-digest [24] (QD) sketch uses space O(1ε logU)
memory, where U is the size of the universe. In the

case of real-valued data, we quantized the data into

bins of size 1e-5 and executed the algorithm on this

quantized stream. Since the KS-statistic is a function

of the relative size of data, rather than the absolute

values, we did not expect this to affect the result.

We also compared the above algorithms with the naive

methodology of sampling the data. This was included to

give a comparison with the obvious solution for this prob-

lem. Note that there are no other existing algorithms for

this problem. In every experiment, all the algorithms were

allocated identical amounts of memory.

A. One Sample

In our experiments, we focused on computing the KS-

statistic between distributions that are so close that we

require accurate estimates to be able to distinguish them with

high confidence. The case in which distributions are far apart

is relatively easy to handle because more coarse-grained

estimates suffice to distinguish them. The summarization

of the data causes an absolute error that increases with the

degree to which the data are compressed. This is illustrated

using normal, uniform, and Pareto-distributed data in Fig-

ure 2. We found that comparing data from N(0.1, 1) with the

distribution N(0, 1) gave a KS-statistic close to the threshold

for distinguishing distributions using n = 10000 points,

where N(μ, σ2) represents the Gaussian distribution with

mean μ and variance σ2. The uniform distributions U(0, 1)
and U(0.1, 1), where U(a, b) is the uniform distribution on

the range [a, b], and the Pareto distributions P(1, 1) and

P(1.1, 1), where P(xm, α) is the Pareto distribution with

scale xm and shape α, were picked for similar reasons. In

all these cases, the Greenwald-Khanna sketch out-performed

the sampling algorithm which in turn out-performed the q-

digest sketch. The Greenwald-Khanna sketch also gave low

enough error at 1% memory to be able to distinguish the

distributions. For the rest of our experiments we focus on

the normal distribution as it appears to have the highest error.

In Figure 3 we fixed the algorithms to all use 1% of the

memory it would take to store all the data and compared

102

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001 0.01 0.1

ab
so

lu
te

 e
rr

or

fraction of memory

Greenwald-Khanna
Q-Digest
Sampling

(a) N(0, 1) vs. N(0.1, 1)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001 0.01 0.1

ab
so

lu
te

 e
rr

or

fraction of memory

Greenwald-Khanna
Q-Digest
Sampling

(b) U(0, 1) vs. U(0.1, 1)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.001 0.01 0.1

ab
so

lu
te

 e
rr

or

fraction of memory

Greenwald-Khanna
Q-Digest
Sampling

(c) P(1, 1) vs. P(1.1, 1)

Figure 2. Varying memory (n = 10000) for one-sample data drawn from various distributions

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

va
lu

e

distribution mean

Greenwald-Khanna
Q-Digest
Sampling

Real

Figure 4. Varying mean of one-sample distribution (N(x, 1)) compared
with N(0, 1), using n = 10000 and 1% memory

how the algorithms performed when the data size increased.

Note that both the axes have logarithmic scales. We see

that as the data size grows, the absolute error drops rapidly

in all cases. For smaller data sizes the sampling algorithm

out-performs the q-digest sketch, but the Greenwald-Khanna

sketch is clearly the best at all sizes. This drop in error is

to be expected since the increase in data size corresponds

with an increase in the number of samples stored since the

memory size is fixed to 1%.

Next, we studied how the accuracy of the estimate

changed as the actual KS-statistic between the data and

comparative distribution varied. In Figure 4 we varied the

mean of the normally-distributed data and compared with the

distribution N(0, 1), comparing the estimate of each sketch

to the exact value. Once again, the Greenwald-Khanna

sketch is the clear winner, almost indistinguishable from

the real value in the figure. In contrast, for this distribution

and these parameter values, the q-digest sketch and the

sampling solution were equally bad, tending to over-estimate

the actual distance.

We omit experiments for the real data in the one-sample

case as there are no known analytical distributions for these

datasets.

B. Two Sample

Similarly to the one-sample case, we compared our two-

sample algorithm using both sketches against the sampling

technique on normal, uniform, and Pareto-distributed data.

This can be seen in Figure 5. In all these cases, the q-digest

sketch does slightly better than sampling, but the Greenwald-

Khanna sketch gives the best performance at almost all levels

of summarization. Once again, it can be seen that using a

sketch with as little as 1% of the original data can shrink

the error in the KS-statistic small enough to reliably apply

this test.

Figure 6 shows a sharp drop in the error as the data size

increases, just as in the one-sample case. The reason for this

drop is the same as in the one-sample case. We were also

curious about what the effect of changing one of the data

sizes while keeping the other one fixed would be. Since the

KS test can be applied to two samples of differing sizes, we

were interested to see what varying the relative sample sizes

would do to the error. Figure 7 shows this result when one

dataset was fixed to n = 10000 points while the other’s size

(m) varied. We can see in this figure that there is a drop in

error, but that it seems to level out after m becomes larger

than n. This seems to indicate that the accuracy of the test

is dependent on the size of the smaller of the two samples,

as predicted in the previous section.

Next, we studied the accuracy of the algorithms as the

actual distance between the datasets was varied. Figure 8

shows how each of the algorithms performs by plotting the

estimated value against the real value. For reference, the

y = x line that indicates the ideal answer is given as well.

It is again clear from this figure that the Greenwald-Khanna

sketch gives the best performance.

Finally, we tested the two-sample algorithm on our real

datasets. The results are shown in Figure 9. In the case of the

astronomy dataset, the Greenwald-Khanna sketch peformed

excellently, needing less than 0.1% memory to give a very

accurate estimate of the KS-statistic. In contrast, for the light

dataset, the Greenwald-Khanna sketch performed poorest at

very small fractions of memory, but by the 1% mark had

started to best the other algorithms. For the inter-arrival time

data, the Q-Digest sketch performs very poorly at high com-

pression, but then soon gets better than sampling; as always,

the Greenwald-Khanna version has the best performance.

103

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.001 0.01 0.1

ab
so

lu
te

 e
rr

or

fraction of memory

Greenwald-Khanna
Q-Digest
Sampling

(a) N(0, 1) vs. N(0.1, 1)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.001 0.01 0.1

ab
so

lu
te

 e
rr

or

fraction of memory

Greenwald-Khanna
Q-Digest
Sampling

(b) U(0, 1) vs. U(0.1, 1)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.001 0.01 0.1

ab
so

lu
te

 e
rr

or

fraction of memory

Greenwald-Khanna
Q-Digest
Sampling

(c) P(1, 1) vs. P(1.1, 1)

Figure 5. Varying memory (n = m = 10000) for two-sample data drawn from various distributions

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.001 0.01 0.1

ab
so

lu
te

 e
rr

or

fraction of memory

Greenwald-Khanna
Q-Digest
Sampling

(a) Astronomy data

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.001 0.01

ab
so

lu
te

 e
rr

or

fraction of memory

Greenwald-Khanna
Q-Digest
Sampling

(b) Light data

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.001 0.01 0.1

ab
so

lu
te

 e
rr

or

fraction of memory

Greenwald-Khanna
Q-Digest
Sampling

(c) Inter-arrival data

Figure 9. Varying memory for real two-sample data

 0.001

 0.01

 0.1

 1

 1000 10000 100000

ab
so

lu
te

 e
rr

or

n = m

Greenwald-Khanna
Q-Digest
Sampling

Figure 6. Varying two-sample data size (n = m), for data drawn from
N(0, 1) and N(0.1, 1), using 1% memory

 0.01

 0.1

 1

 1000 10000 100000

ab
so

lu
te

 e
rr

or

m

Greenwald-Khanna
Q-Digest
Sampling

Figure 7. Varying data size of one sample (m) keeping other sample
fixed (n = 10000) for data drawn from N(0, 1) and N(0.1, 1), using 1%
memory

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

es
tim

at
e

K
S

-s
ta

tis
tic

real KS-statistic

Greenwald-Khanna
Q-Digest
Sampling

Figure 8. Scatter plot of estimated vs. real values of KS-statistic (n =
m = 10000) between two-sample data drawn from N(0, 1) and various
distributions of the form N(x, 1), using 1% memory. The y = x line is
also shown for reference.

VIII. CONCLUSIONS

In this paper, we considered the problem of performing

the Kolmogorov-Smirnov test on streaming data. We gave

algorithms for both the one-sample and the two-sample ver-

sions of the test, along with guarantees of their performance.

Our algorithms make use of the techniques for computing

quantiles on a stream and hence may have improved results

when further progress is made on this problem. Moreover,

we show via experiments on real and synthetic data that the

proposed algorithms are capable of performing the test with

a two order magnitude reduction in the size of the data. Our

experiments also showed that the Greenwald-Khanna sketch

is best suited for our algorithm, and that it is considerably

104

superior to other simple techniques such as sampling.

There are several open problems that still remain. The al-

gorithms proposed in this paper need O(
√
n logn) samples,

and it remains open whether this can be further reduced.

While the algorithm proposed in this paper makes use of

quantile sketches, and hence has the same space usage as

them, it is unclear whether a testing algorithm exists that

uses asymptotically less space than any quantile sketch. It

would be interesting to find such an algorithm, or alterna-

tively to prove that any quantile sketch must use as much

space as any testing algorithm. From the experimental side,

it would be interesting to design other quantile algorithms

that are targeted towards improving the accuracy of the result

of the KS test algorithm in this paper.

There are also many other statistical tests, both parametric

and non-parametric, that do not have known streaming

algorithms. Identifying which ones have sublinear space al-

gorithms and developing these algorithms is another avenue

for future work.

Acknowledgement: We thank the anonymous reviewers for

their helpful comments on the paper. We would also like

to thank Erin Lall for her help in proofreading an earlier

version of this paper and Ryan Johnson for his help with

the astronomy data set. This project was funded in part by

NSF award CNS 1217758.

REFERENCES

[1] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White.
Testing that distributions are close. In FOCS, pages 259–269,
2000.

[2] C. Buragohain and S. Suri. Quantiles on streams. In
Encyclopedia of Database Systems, pages 2235–2240. 2009.

[3] A. Chakrabarti, T. S. Jayram, and M. Pǎtraşcu. Tight lower
bounds for selection in randomly ordered streams. In Pro-
ceedings of the nineteenth annual ACM-SIAM symposium on
Discrete algorithms, SODA ’08, pages 720–729, Philadelphia,
PA, USA, 2008.

[4] K. C. Claffy, G. C. Polyzos, and H.-W. Braun. Application of
sampling methodologies to network traffic characterization.
SIGCOMM Comput. Commun. Rev., 23(4):194–203, Oct.
1993.

[5] E. Cohen, G. Cormode, and N. G. Duffield. Don’t let the
negatives bring you down: sampling from streams of signed
updates. In SIGMETRICS, pages 343–354, 2012.

[6] G. Cormode and S. Muthukrishnan. An improved data stream
summary: The count-min sketch and its applications. J.
Algorithms, 55:29–38, 2004.

[7] N. Duffield. Fair sampling across network flow measure-
ments. SIGMETRICS Perform. Eval. Rev., 40(1):367–378,
June 2012.

[8] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss.
How to summarize the universe: dynamic maintenance of
quantiles. In Proceedings of the 28th international conference
on Very Large Data Bases, VLDB ’02, pages 454–465. VLDB
Endowment, 2002.

[9] A. Glazer, M. Lindenbaum, and S. Markovitch. Learning
high-density regions for a generalized kolmogorov-smirnov
test in high-dimensional data. In NIPS, pages 737–745, 2012.

[10] M. Greenwald and S. Khanna. Space-efficient online com-
putation of quantile summaries. In SIGMOD, pages 58–66,
2001.

[11] S. Guha and A. McGregor. Stream order and order statis-
tics: Quantile estimation in random-order streams. SIAM J.
Comput., 38(5):2044–2059, 2009.

[12] S. Guha, A. Mcgregor, and S. Venkatasubramanian. Stream-
ing and sublinear approximation of entropy and information
distances. In ACM-SIAM Symposium on Discrete Algorithms,
pages 733–742, 2006.

[13] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido. A
nonstationary poisson view of internet traffic. In Proceedings
of IEEE INFOCOM, 2004.

[14] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change
in data streams. In Proceedings of the Thirtieth international
conference on Very large data bases - Volume 30, VLDB ’04,
pages 180–191. VLDB Endowment, 2004.

[15] D. E. Knuth. The Art of Computer Programming, Volume
II: Seminumerical Algorithms, 2nd Edition. Addison-Wesley,
1981.

[16] A. Kumar, M. Sung, J. Xu, and E. W. Zegura. A data
streaming algorithm for estimating subpopulation flow size
distribution. In Proc. of ACM SIGMETRICS, June 2005.

[17] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang. Data
streaming algorithms for estimating entropy of network traf-
fic. SIGMETRICS Perform. Eval. Rev., 34(1):145–156, June
2006.

[18] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tinydb: an acquisitional query processing system for sensor
networks. ACM Trans. Database Syst., 30(1):122–173, Mar.
2005.

[19] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Random
sampling techniques for space efficient online computation of
order statistics of large datasets. In SIGMOD, pages 251–262,
1999.

[20] A. McGregor, A. Pavan, S. Tirthapura, and D. Woodruff.
Space-efficient estimation of statistics over sub-sampled
streams. In Proceedings of the 31st Symposium on Principles
of Database Systems, PODS ’12, pages 273–282, New York,
NY, USA, 2012. ACM.

[21] J. I. Munro and M. S. Paterson. Selection and sorting with
limited storage. In Proceedings of the 19th Annual Symposium
on Foundations of Computer Science, SFCS ’78, pages 253–
258, Washington, DC, USA, 1978. IEEE Computer Society.

[22] NASA. Chandra X-ray Observatory Quick Facts. http://www.
nasa.gov/centers/marshall/news/background/facts/cxoquick.
html.

[23] S. K. A. Organization. The Square Kilometre Array. http://
www.skatelescope.org/the-technology/signal-processing/.

[24] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.
Medians and beyond: new aggregation techniques for sensor
networks. In Proceedings of the 2nd international conference
on Embedded networked sensor systems, SenSys ’04, pages
239–249, New York, NY, USA, 2004. ACM.

[25] J. V. Wall and C. R. Jenkins. Practical Statistics for
Astronomers. Cambridge University Press, 2003.

[26] L. Wang, G. Luo, K. Yi, and G. Cormode. Quantiles over data
streams: An experimental study. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of
Data, SIGMOD ’13, pages 737–748, New York, NY, USA,
2013. ACM.

[27] Q. Zhang and W. Wang. A fast algorithm for approximate
quantiles in high speed data streams. In Proceedings of the
19th International Conference on Scientific and Statistical
Database Management, SSDBM ’07, pages 29–, Washington,
DC, USA, 2007. IEEE Computer Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

