
Agent-Based Fault-Tolerance Mechanism for
Distributed Key-Value Database

Wu Hui-jun, Lu Kai, Li Gen, Jiang Jin-fei, Wang Shuang-xi
Science and Technology on Parallel and Distributed Processing Laboratory

National University of Defense Technology
Changsha, PR China

(whj_nudt@foxmail.com)

Abstract—Distributed key-value database is widely used in
Web 2.0 applications and cloud computing environments. It
overcomes the weak performance and bad scalability of
traditional relational database. But fault in distributed system
will lead to errors, then the high performance is useless. So we
should build a fault tolerance mechanism. On the other hand,
in many application scenarios, transactional operations are
inevitable. Some existing key-value databases utilize two-phase
commit protocol or optimistic concurrency control in
transaction processing. But the problems are sing-node failure
and high overhead in protocol processing. Meanwhile, users’
programming becomes more error-prone. This paper designs a
fault tolerance and recovery mechanism on DStageDB, which
is a distributed key-value database. We design an agent-based
transaction processing mechanism. The transaction processing
speed is improved and less user intervention is needed.

Keywords—fault-tolerance, key-value database, agent,
transaction

I. INTRODUCTION
With the development of Web2.0 applications and cloud
computing, the limitations of traditional rational databases
appear. Many NoSQL databases are designed to solve the
problems of performance, scalability in rational databases.
Key-Value database[1] is the most popular one. Due to CAP
theory[2], existing key-value databases like Amazon
Dynamo[3], Cassandra, etc. sacrifice the strong consistency
to get a high performance. But most systems haven’t
support transaction. Some systems like Google Cloud
Storage have support for single-item consistency, but not for
multi-items. Many databases throw this problem to users. It
is very error-prone.

Existing methods to support transaction can be classified
into two main ways. They are supporting transaction
processing at server end and using client libraries to support
transactions. The typical system for the former type is
Spanner, while much more systems belong to the later type.

Spanner’s strong transaction mechanism and consistency
is based on its precise GPS/atomic clock. FoundationDB [4]
is a key-value database which supports transaction
mechanism in client-side. It need not to lock the resources
before transaction processing. The conflicts among
transactions are detected by a cluster before the transactions

are sanded to the database servers. When conflicts are
detected, the failure will be returned to clients.

In conclusion, there are two major deficiencies in existing
systems. First, single-node failures are existed in protocols
like 2-phase commit. The offline of both coordinator and
participants will lead to a wait. Handling this problem
properly and assuring the consistency are very complicated.
Secondly, sending transaction failures to users is error-prone.
Although systems like foundationDB doesn’t need lock
support, the behavior that clients continuously try to send
transaction is similar to lock too.

On the other hand, every node in the databases could be
offline at every moment. It is a critical point to backup the
data. The recovery of a physical node needs a relatively long
time. Before new nodes can provide service, it is unwise to
refuse every request from clients.

This paper designs a fault-tolerance mechanism for
DStageDB, which is a distributed key-value database. We
design an agent-based transaction processing. An agent is a
combination of a sequence of operations, lock mechanism
and conflicts processing mechanism. Once the users send an
agent to the DStageDB server, it need not to wait for its
completeness. All the operations will be completed in the
background. Agents negotiate by messages to assure that all
transactions are processed in right order.

The contributions in this paper are the following:
� We propose a fault-tolerance mechanism in distributed

key-value database.
� We present the virtual node-based data recovery in

DStageDB which improves the usability of data during
the recovery time.

� We design an agent-based transaction processing
mechanism. It reduces the influence of sing-node
failure and avoids complex protocol processing.
Transaction processing speed has been accelerated.

II. BACKGROUND
This section introduces the framework of DStageDB. Then
we formulate the possible errors and the fault-tolerance
requirement. We define the focused error type in this paper.
At the end of this section, we’ll talk about the problems in

2014 International Conference on Digital Home

978-1-4799-4284-8/14 $31.00 © 2014 IEEE

DOI 10.1109/ICDH.2014.58

267

2014 International Conference on Digital Home

978-1-4799-4284-8/14 $31.00 © 2014 IEEE

DOI 10.1109/ICDH.2014.58

267

fault-tolerance and transaction processing in existing key-
value databases.

A. DStageDB

Key-Value
Database

Server

Metadata
Mangemen Servers

Clients
Distribued

Node
Manager

Consistent Hashing Ring

Fig. 1. DStageDB’s Framework

Considering that the implementation of DStageDB[5]
isn’t the focus of this paper, readers interested in that can
find details in our pre-work. DStageDB includes four parts.
They are key-value database clusters, clients, metadata
management clusters and distributed node manager. Key-
value database servers are organized by the structure of
consistent hashing ring. Metadata management clusters are
implemented on the basis of zookeeper[6], which is an open
source distributed service framework. The system manager
can manage the whole system. Clients ask the information
of servers from metadata management clusters and send the
requests to a certain server. Each DStageDB server
processes users’ requests by a pipeline, so it has a relatively
high throughput. On Xeon E5 platform, the single-node
performance can reach about 60K operations per second.
Interfaces like get, set, delete and append are provided both
in synchronous and asynchronous way.

B. Errors and Falut-Tolerance in DStageDB
The first step to design a fault-tolerance mechanism is to
define the faults and errors. There are four kinds of faults
and errors in distributed systems. First, every node can be
offline and reboot at any time. Meanwhile, the time needed
for recovery is also random. Second, errors in network
devices may divide the network into several isolated parts.
Third, network packages might be lost. Each package could
be lost during the transmission. But this fault can be
removed by avoiding using UDP protocol. Fourth, the
messages may be delayed due to the complicated network
status and congestion.

In DStageDB, data is distributed to different server nodes.
Because of this point, different nodes are responsible for
different service. The second fault type won’t be avoided
due to the design. Package loss can be avoided by using
TCP protocol. And in high-speed LAN, message loss isn’t
that serious. So the focus of this paper is the offline and
reboot of server nodes.

Considering that each server node’s data size is over
several GBs, it is time-consuming to recover. If all users’
requests cannot get response during the recovery time, the
service delay is too long. As we introduce backup in
DStageDB servers, it is critical to assure the consistency
among different data copy.

C. Existing Methods for Transaction Processing
There are two main methods in distributed transaction. One
is two-phase commit protocol[7] . There are coordinators
and participants in the protocol. The coordinator asks each
participant if it could commit. Only when all the
participants’ response is ok, the coordinator asks all nodes
to commit. Or the transaction will be aborted. The other
method is concurrency control. A frontier checks all
transaction request from each node. If conflicts exists, the
transaction related to the conflicts will be declined.
Meanwhile, a message of failure will be sended to the
correspond client. It is obvious that these methods are
complex. Overhead is a critical criteria. Leaving the failures
to clients makes user-side programming error-prone.

III. METHODOLOGY
This section presents the design of fault-tolerance and
transaction processing mechanism in DStageDB. Firstly, we
introduces how to build a global total-ordering relationship.
Then we discuss the backup and recovery mechanism.
Finally, we present the design of agent-based transaction
processing mechanism.

A. Global Total Ordering Relationship
In order to assure the correctness of program execution, it is
important to build a global total ordering relationship in
distributed database. In this paper, we utilize zookeeper to
do that. We set a znode at the root catalog of zookeeper. A
timestamp is stored in the znode. Onces event like read,
write, transaction or node offline happen, the timestamp
increases. In this way, every event in the whole system has a
unique timestamp. The order of the events is determined.
All this is supported by ZAB (Zookeeper Atomic Broadcast)
protocol [5]. ZAB protocol assures the atomic operation for
znodes, so a certain timestamp won’t be assigned to two
events.

B. Backup and Recovery in DStageDB
DStageDB uses two-node backup for each data. We
calculate the probability of liveness for different system (see
TABLE 1).

TABLE I. PROBABILITY OF LIVENESS FOR DIFFERENT SYSTEM

Total Nodes Required Nodes Probability of liveness

1 1 95.00%

3 2 99.27%

5 3 99.88%

268268

If we assume the failure rate is 5%, the probability of
liveness for 2-node backup will be 99.27%. The recovery of
a server node is around several minutes. So the MTBF will
be over 10K hours.

DStageDB utilizes pipeline to process users’ request. Its
persistence uses SStable[8] to accelerate the performance.
So the write overhead is not that high. We propose (3,3,1)
backup mechanism. Each data has two backups. A read
operation only needs to read the master node. Meanwhile, a
write operation can only be completed when all the three
nodes have been written successfully. In the second section,
we mentioned that the main fault we cared in this paper was
nodes’ offline and reboot. We classify the fault into two
types. The running time fault and recovering time fault.

The running time fault occurs when the server node is
running. The node which becomes offline can be a master or
a slave. If the master is offline (see Fig.2 (a)), there are also
different conditions. If the last request has already been
completed and no new request comes when the node is
offline, the offline can be sensed by zookeeper. The
consistency between master and slaves isn’t damaged. Then
the following read operations need to be responded by
slaves while write operations will return failure.

(a) (b)

Fig. 2. Running time fault

What’s more, if last read request is still flying, the user
will discover the offline by zookeeper. Then the user turns
to slaves to read. But if the request flying is write and it has
already done on master node, the backup-writes on slaves
have not finished. To solve this problem, the write request’s
completeness is iterative(see Fig.3). The backup write is
sended to B from A and then it is sended to C from B. When
C is finished, the return will be sended reversely. So if A is
offline, the write request won’t be finished.

Fig. 3. Iterative completeness of write request

If one of the slaves is offline (see Fig.2 (b)), the read
request can still be finished on master. But for write request,
the return-link will be broken, so the write won’t be finished.

The system could discover the offline by the message from
zookeeper and it allocates a new node to be a slave.

Another type of fault is recovering time fault. No matter
master or slave is offline, the system will allocate a new
node to execute the recovery. As the master and slaves are
always in consistency, every node can be used to recover the
data to new-allocated node. But fault may be occurred. If
the new allocated node is offline, although it isn’t likely to
happen.(see Fig 4(a)). The only way is to allocate another
one. If the node that is responsible for copying is offline
(see Fig 4(b)), because of the consistency, arbitrary node
can be used to copy.

ZooKeeper

A

B

C

 (a) (b)

Fig. 4. Recovering time fault

We have mentioned that zookeeper maintains the status
of nodes. There are five status for each node. They are
preparing, prepared, service, recovering and offline. The
status switching is shown in Fig.5.

Fig.5. Node status switching model

In preparing status, the node do some initializations like
create database. After that, it switches into prepared status.
When the node that is responsible for copying data
discovers this status, it begins to copy data to the new-
allocated node. During the copy, the node status is
recovering. Once the copy is finished, the node can run into
service status. When a node in service status is allocated to
receive copy, it switches into preparing status. No matter
what status a node is in, if it is offline, it switches into
offline status.

C. Virtual Node Based Recovering
In DStageDB, each physical node’s data size is around
several hundred GBs. If we execute recovering on the
granularity of physical node, the recovering time will be
several minutes. The most serious thing is that during this
period, the database could not provide service. In order to

269269

solve this problem, we propose virtual node-based
recovering mechanism. That means the mechanism we
introduces in section B will be executed on the granularity
of virtual node. Once a virtual node is completely recovered,
it can provide service.

For instance, let’s assume that the data size of a physical
node is 500GB. DStageDB utilizes levelDB as the
underlying database engine. If we divide the physical node
into 500 virtual nodes, each node contains 1GB data. Each
virtual node is a logically independent database. When the
virtual node is in on_service status, it can provide services
to clients.

But when we are deploying a large-scale system, it is not
realistic to have so many homogeneous machines. If
machines with different performance share the same portion
of key space, there will be imbalance. In order to overcome
this problem, we introduce benchmarks to evaluate the
performance of a certain node. The score of a node decides
its workload. That is to say, before a node is added into
servers, it has already been evaluated. The key space of a
virtual node is fixed, but high performance machine will be
divided into more virtual nodes. On the other hand, the
benchmark per se isn’t unique, it relies on the application
type. For different applications, the users’ behavior pattern
is different either.

D. Agent-Based Transaction Mechanism
Agent-based transaction mechanism is to achieve a no-
center and light transaction. A transaction agent includes
three parts.

They are the sequence of operations, lock mechanism and
conflicts processing mechanism. Once a user send an agent
to servers, agent itself assure the completeness of
transaction. Zookeeper maintains the global total ordering.
Though clock on different nodes are not synchronous,
transactions are processed by timestamps provided by
zookeeper. If conflicts occur, agents negotiate to guarantee
the transactions are processed in the right order.

Fig.6 Agents’ lock mechanism

In Fig. 5, k1, k2, k3, k4 and k5 are (key,value) pairs.
Agent A and agent B are two transactions issued by two
client A and client B. And agent A:0 is the main agent from
client A, agent A:i(i 0) are derived from agent A:0. Each
agent is a single thread. Transaction A needs to lock k1, k2,
k3 and k4. Meanwhile, transaction B needs to lock k4, k5

and k1. So agent A: 0 tries to lock k1 at first. An item is
added to (key, value) pairs to show the information whether
a certain pair has already been locked. If k1 is ready to be
locked, then the thread agent A: 1 will be derived from
POSIX [9] thread pool to detect k2. When k2 is locked,
agent A: 0 could get this information from agent A: 1 by a
message. Going on like this, if all the pairs are locked, the
transaction can be executed. But sometimes there may be a
deadlock. Let’s suppose a condition like this. When agent A:
3 is detecting k4, it discovers that this pair has already been
locked. At the same time, agent B: 2 is trying to lock k1. As
k1 is locked by agent A: 0, agent B: 2 could not get the lock
either.

To deal with deadlock, agents are able to avoid and
handle the deadlocks by related algorithm. An advisable
method is HRRF [10] algorithm, in which the transactions
locked for a long time has a higher priority. So the fairness
can be guaranteed. The most important thing is that the
algorithm is implemented by the negotiation of agents.

This method is aimed at transactions that can be executed
concurrently. For the transactions with data dependencies,
they should be executed serially. To be specific, agents of
these transactions will be put in order in transaction queues.
Transactions from different queues can be concurrently
processed while the transactions from a same queue should
be executed serially.

IV. EVALUATIONS
In this section, we test the performance of our design.
Firstly, we test the overhead of different backup strategies.
The result prove the effectiveness of the strategy we choose.
Then we test the performance and usability improvement of
virtual node based recovery mechanism.

A. Backup Stategies
We test (3,3,1),(3,1,2) and (3,2,1) strategies respectively.
Strategy (3,3,1) emphasizes the strong consistency among
master and slaves. Each read request only needs to read one
node while the write request has to write all the three nodes.
Strategy (3,1,2) aims at fast write. Only one node is needed
to finish writing. As for read, the first two results are
ordered to ruturn. Strategy (3,2,1) is a compromise. To
make the experiment result more reliable, we utilize the
key-value request model concluded by Berk Atikoglu [11],
etc. from Facebook. Here are the results (see Fig.7).

270270

Fig.7 The performance of different backup strategies

It is obvious that strategy (3,1,2) has a bad performance.
The main reason is the speed of read requests is determined
by the slower one in the two results returned. Strategy (3,3,1)
and strategy (3,2,1)’s performance are close. But there is a
serious problem of consistency. Because the nodes we write
may not be the nodes we read.

B. Virtual Node Based Recovery
We want to test the improvement of data usability and
recovery performance in this subsection. Each node has a
256GB SSD. We divide the data size into 512 virtual nodes.
The network here is Infiniband, the recovery time for a
physical node is around 270 seconds. If we execute recovery
at virtual node-grained, the time cost is about 280 seconds.
A virtual node can provide service to users after itself is
completely recovered.

That is to say, one virtual node can be recovered in 0.55
second. The data usability can be calculated. If we
suppose the recovery time of a physical node is , the
recovery time of a virtual node is the number of virtual
node is .

50.3%
By introducing virtual node based recovery, the data

usability during the recovery has been improved from 0 to
50.3%.

C. Agent-based Transaction
We test the performance of agent-based transaction in this
subsection. We build a 12-node system and two kinds of
transaction. The first type is a transaction with 5 read
requests and 5 write requests, the second one is 10 read
requests.

We use two types of transactions as workload
respectively. Not all requests are transactions. In fact, there
are only small part of requests need to be finished
atomically. The percentage in our test is 10%. In the all-read
transaction test, the performance of database is 21.9K
operations per second. While in the hybrid transaction test,
the performance is 20.2K operations per second. The
overhead introduced by agent-based transaction is about
8.3%.

ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for the
insightful comments to improve this manuscript. This
material is based upon work partially supported by National
High-tech R&D Program of China(863 Program) under
Grants 2012AA01A301 and 2012AA010901, program for
New Century Excellent Talents in University and National
Science Foundation(NSF) China 61272142, 61103082,
 61170261 and 61103193.

CONCLUSION

In this paper we have proposed a new approach for
distributed key-value databases’ fault tolerance. Compared
with previous work, it has better performance.

The whole mechanism is based on agents, which are a
combination of data and program binaries. The program can
be executed at servers. So users need not care about the
transaction after send it to the servers. On the other hand,
although virtual node based recovery does not seem to be a
complex technique, it improves the usability of servers a lot.

We have tested system performance. Our results show
that we add fault tolerance support to key-value database
which often focus on performance only.

REFERENCES
[1] M. Seeger, and S. Ultra-Large-Sites, “Key-Value stores: a practical

overview,” Computer Science and Media, Stuttgart, 2009.
[2] E. Brewer, “Pushing the CAP: Strategies for consistency and

availability,” Computer, vol. 45, no. 2, pp. 23-29, 2012.
[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
"Dynamo: amazon's highly available key-value store." pp. 205-220.

[4] " FounndationDB," https://foundationdb.com/key-value-store/white-
papers.

[5] L. K. Wu Hui-jun, Li Gen. , " Design and Implementation of
Distributed StageDB: A High Performance Key-Value Database."

[6] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, "ZooKeeper: Wait-
free Coordination for Internet-scale Systems." p. 9.

[7] R. L. Brockmeyer, R. Dievendorff, D. E. House, E. H. Jenner, M. K.
LaBelle, M. G. Mall, and S. L. Silen, "Extension of two phase
commit protocol to distributed participants," Google Patents, 1996.

[8] R. P. Spillane, P. J. Shetty, E. Zadok, S. Dixit, and S. Archak, "An
efficient multi-tier tablet server storage architecture." p. 1.

[9] D. R. Butenhof, Programming with POSIX threads: Addison-Wesley
Professional, 1997.

[10] L. I. Hai-cheng, “Research on HRRF Scheduling Strategy Based on
TinyOS,” Computer Science vol. 4, no. 20, 2010.

[11] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
"Workload analysis of a large-scale key-value store." pp. 53-64.

271271

