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Abstract: Output of a three-phase photovoltaic generator (PVG) is a function of sunlight irradiance, temperature, and three-phase
terminal voltage phasors. Three-phase PVGs are largely connected to rural distribution systems feeders that are predominantly
unbalanced. Models of PVGs that are only a function of sunlight irradiance and temperature disregarding unbalanced three-phase
terminal voltages phasors are simple to use with three-phase power flow analysis but yield inaccurate solutions. Detailed three-phase
PVG models are complex and non-linear, hence unsuitable for power flow analysis applications. This study proposes an artificial
neural network (ANN) model to represent a PVG comprising photovoltaic panels, a boost chopper and a three-phase inverter. Main
advantages of the ANN model are that it can be readily used to model a PVG of any size and type, mathematical simplicity, high
accuracy with unbalanced systems and computational speed. The model was tested with the unbalanced distribution system feeder
from a Canadian utility. The results show that the ANN model of a PVG is computationally fast and more accurate than simple
model that ignores unbalanced three-phase terminal voltage phasors. In addition, simplicity of the proposed ANN model of PVG
allows easy integration into commercial software packages such as PSS®SINCAL as reported in this study.
1 Introduction

Photovoltaic generator (PVG) is one of the most rapidly
developing renewable sources after wind energy [1]. Ontario
(Canada) has a PVG capacity of about 500 MW online and
has more than 1600 MW of additional PVG capacity
contracted by June of 2012 [2]. Like other types of
distributed generations, PVGs are normally connected to
distribution systems (DSs) instead of transmission systems [3].
DSs are unbalanced because of the following reasons: (a) a

large number of unevenly distributed single-phase loads, and,
(b) conductor spacing of three-phase line segments are
asymmetrical and they are seldom transposed [4]. DS
automation needs fast, efficient and accurate power flow
solutions that requires fast, efficient and accurate
component model of PVGs. Therefore DS power flow
studies considering single phase equivalent assuming
balanced conditions yields inaccurate solutions. The state of
a DS can be accurately determined only by solving
complex bus power balance equations considering
unbalanced three-phase system [5] and accurate models of
PVGs. A variety of three-phase power flow analysis
algorithms have been developed for analysing unbalanced
distribution systems such as Newton–Raphson technique
developed considering three-wire/four-wire distribution
systems [5–21], power flow studies with rooftop PV panels
[20] and ladder iterative technique [6].
Simple PQmodels of PVGs as a function of solar irradiance

and cell temperature but assuming nominal and balanced PCC
(point of common coupling) voltage have been proposed in the
past [8–10]. These models lead to erroneous DS Power Flow
Solutions in an unbalanced DS because actual power output
PVG is not equal among three phases. Details about the
unbalanced power outputs are given in Section 2. An
accurate three-phase model of PVGs is a function of
three-phase terminal voltage phasors, solar irradiance and
cell temperature and comprises a set of non-linear equations.
Given above, PVG models that consider PCC three-phase
voltage phasors and unequal power outputs are not available
in publicly reported literature [5–21].
Power flow analysis algorithm solves bus-wise power

balance equations and it is iterative as shown in Fig. 1. In
each iterative step, PVG generation is recomputed using the
most recent estimate of voltage solution. With several PVGs
in a single DS, a complex model for PVG will significantly
slow down any power flow algorithm. To overcome the
challenge of higher computational effort, accuracy and
difficulty to incorporate PVG models readily into commercial
software, the use of artificial neural network (ANN) to model
PVG is proposed in this paper. The use of ANN in PVG
modelling is not new and in most cases ANN is used for solar
irradiance forecasting [14], sizing of stand-alone PVG [15,
16], performance prediction [17], MPPT algorithms [19] etc.
An ANN model of a three-phase PVG with inverter is

proposed in this paper that can be used for fast and accurate
power flow analysis. The proposed ANN model for
three-phase PVG is the function of irradiation, temperature,
and three-phase PCC voltage phasors. The ANN model of
PVG developed in this paper is independent of the power
flow analysis technique or network topology. Unlike other
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Fig. 1 Block diagram showing the Ladder Iterative Technique
power flow algorithm with PVG model [7]
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models, building an ANN model for three-phase PVG does
not need to analyse the equivalent circuits or transfer
functions of PVG. Instead, ANN models develop an
empirical mapping of the input–output relationship using a
given input–output data (pattern) set. If the data set is from
measurements on the PVG, an accurate ANN model of this
PVG can be developed as long as the measured date set
covers input/output domain space. The process of
generating patterns and building ANN model of PVGs are
explained in detail in the following sections of this paper.
The proposed ANN models can be extended to model solar
farms of any area and capacity, which means that the ANN
approach provides a universal PVG modelling technique for
Fig. 2 Common structure of PVG interface

Fig. 3 Block diagram of inverter control system
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any type or size. In addition, as shall be seen later, the
proposed ANN PVG model can be easily implemented in
commercial software such as PSS®SINCAL.
Steps of this research work can be summarised as follows:

(a) PVG model is built in Matlab/Simulink platform that
relates input and output vector domains.
(b) For various values of input vector, PVG model built in
Matlab/Simulink platform is used to generate corresponding
output vectors.
(c) This input–output training data set is used to train the
ANN model of PVG. This training is completed in Matlab
and it yields relational matrices of ANN model.
(d) These relational matrices of ANN model of PVG are
incorporated into PSS®SINCAL. This allows the use of
accurate ANN models of PVG for power flow analysis
without a significant impact on execution time.

2 Accurate model of PVGs and effect of
three-phase voltage imbalance

PVGs are always companied with single-phase or three-phase
inverters. For the single-phase inverter, all the power
generated by the PVG is injected through the inverter to
one phase [20, 21]. However, when a PVG is connected
through a three-phase inverter, power outputs in the three
phases are equal only when the terminal voltages are
balanced. PCC voltages in DS are seldom balanced and
hence power outputs through three phases are unequal.
With three-phase PVGs on a DS feeder, the problem of
imbalance is compounded. DS power flow solutions with
PVG models that ignore PCC voltage phasors tend to be
erroneous.
To further explore effects of PCC voltage imbalance, a

common structure of PVG interface is studied as shown in
Fig. 2 where Irra and Temp are solar irradiance and
ambient temperature, respectively. The purpose of the
DC–DC converter is to boost the output voltage of PV
panel. Normally a maximum power point track (MPPT)
technique is used control the DC–DC converter to achieve
the maximum output power from PV panel in all situations.
The MPPT technique is implemented in DC–DC converter
by adjusting VPV against the current of PV panel [11, 12].
In most cases, voltage source inverters are used in PVG

implementation and the pulse-width modulation (PWM)
technique is used for inverter control. The inverter control
objectives include keeping VC constant and unity power
factor control. The block diagram of the inverter control
system is shown in Fig. 3, in which C is the capacitor
between inverter and DC–DC converter, and jV_PCC is the
phase angle of PCC voltage. The proportional–integral
controller is commonly used in PWM control. The variables
with superscript ‘*’ indicate the command of controller.
The unity power factor control is achieved by forcing Iac
1347
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Fig. 4 Factors affecting output power of PVG
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having the same phase angle with Vpcc, assuming that three
phases are balanced.
The model was implemented in Matlab/Simulink

environment. Details of the controller are provided in the
[13]. An example of the extent of imbalance in phase
power with voltage magnitude and angle imbalance is
shown in Table 1 considering a 1 MW PVG connected to a
three-phase 600 V distribution system. The data comes from
Matlab/Simulink simulation in which power base and
voltage base are set to 1/3 MVA and 600 V, respectively.
The solar irradiance and temperature are fixed at 1000 w/
m−2 and 0°C during the two simulations.
The total real power flowing out of the panel is same in the

two cases and the difference between the total powers
reaching PCC arises due to different losses within PVG. If
the three-phase voltage at PCC is balanced, the per phase
power outputs are equal and equal to the one-thirds of
maximum power that PVG could produces from the
sunlight. However, if the PCC voltage is unbalanced, the
per phase power outputs are unequal.
Reviewing the balanced case in Table 1, the difference

between three-phase powers in Case 2 is 6.7% while the
phase powers are equal to one-thirds of PVG power in the
balanced Case 1. It is obvious that representing PVGs using
balanced PQ values as a function of sunlight irradiation and
temperature without accounting voltage unbalances at the
point of connection with DS is inaccurate.

2.1 Model of PVG

According to the above analysis, the output active and
reactive power of each phase is affected by the solar
irradiance, temperature and voltage phasors of each phase
as shown in Fig. 4, which can be written as follows

Pa,Qa,Pb,Qb,Pc,Qc

( )= f Irra, Temp, Va,wc,Vb,wb,Vc,wc

( )
(1)

where Pa, Qa, Pb, Qb, Pc and Qc are the output active power
and reactive power of three phases, respectively. Irra is the
solar irradiance. Temp is the cell temperature. Va, ja, Vb,
jb, Vc and jc are the voltage magnitude and phase angle of
three phases, respectively.
The simulation model for PVG with a three-phase inverter

can be built in MATLAB/SIMULINK environment, but it is
Table 1 Power output variations for different PCC voltages
(results from Matlab Simulink)

Case 1: balanced PCC voltage

Phase a Phase b Phase c

phase voltage at
PCC

0.94∠0° pu 0.94∠−120° pu 0.94∠120° pu

phase active
powers

0.9851 pu 0.9812 pu 0.9835 pu

total active power 2.9498 pu
phase reactive
powers

0.0013 pu 0.0009 pu −0.0023 pu

case 2: unbalanced PCC voltage

phase voltage at
PCC

0.99∠3° pu 1.06∠−122° pu 0.94∠115° pu

phase real powers 0.9480 pu 1.0120 pu 0.9966 pu
total real power 2.9566 pu
phase reactive
powers

0.1335 pu −0.0731 pu −0.0701 pu
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time consuming to run. It is difficult, if not impossible, to use
this MATLAB/SIMULINK model for power flow analysis,
not to mention their incorporation into a commercial software.
3 Ann model of PVG

3.1 ANN technique

An ANN maps an input space to an output space, and the
mapping is built by training the ANN using input–output
data pairs [18]. Once the ANN is well trained, the desired
output can be gotten for an input using the mapping
relationship possessed within the ANN.
A typical feed-forward ANN is used to model PVGs in this

paper. The typical architecture of the feed-forward neural
network is shown in Fig. 5. In this paper, l is the notation
for the lth hidden layer of an ANN whereas 0 for the input
layer and L for the output layer. The variable x is the input
for ANN and the variable y is the output of ANN. The
number of neurons in input layer N0 and the number of
neurons in output layer NL are determined by (1). The
number of hidden layers L−1 and the number of neurons in
the lth hidden layer Nl is prudently chosen such that
training time is the least and the mapping is most accurate.
A neuron in hidden layer or output layer is formed by one

or more inputs, a functional element and an output. Fig. 6
shows the structure of the jth neuron in the lth layer. In
Fig. 6, olj is the output of the jth neuron in the lth layer.
The variable wl

ji is the weight of connection between the
ith neuron in the (l−1)th layer and the jth neuron in the lth
layer. The variable vl

j is the bias of the jth neuron in the lth
layer which is usually considered as a weight of connection
between a neuron with constant output 1 and this neuron.
Fig. 5 Multiplayer feed-forward neural network
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Fig. 6 Neuron in hidden layer or output layer

Fig. 7 AAE of different ANN configurations
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The neurons in input layer have only one input and no
functional element.
In each iterative training step, the error at the output layer

back propagates to each hidden layer to adjust the weights.
The weight update equation is as [18]

Dwl
ji = −h

∂E

∂olj
ol−1
i ḟ

∑Nl−1

i=1

wl
jio

l−1
i + vl

j

( )
(2)

where η is the learning rate and E is the output error which can
be written as

E = 1

2

∑NL

i=1

ti − yi
( )2

(3)

where ti is the target value of the ith output neuron in a certain
training pattern. The partial differential in (2) can be written as

∂E

∂olj
=

∑Nl+1

i=1

∂E

∂ol+1
i

∂ol+1
i

∂olj
, 0 , l , L (4)

ANN model training algorithm was programmed in Matlab.
At the first iterative step, random weights and bias were
assigned. Then the output of every node in each layer was
calculated by feed-forwarding the inputs of ANN (outputs
of nodes in the input layer). When the outputs of ANN
(outputs of nodes in the output layer) were obtained, error
between outputs and targets was calculated using (3). Then
the error was back-propagated to each layer using (4). The
weights are updated in order to minimise the error at the
output layer. The updating formula is given in (2) and (5)

wl,n+1
ji = wl,n

ji + Dwl,n
ji (5)

where n is the iteration count. The weights are updated in each
iterative step. The maximum absolute error (MAE), the
average absolute error (AAE) and average root mean square
error (ARMSE) are estimated by (6), (7) and (8),
respectively, in each iteration

MAE = max ti − yi
∣∣ ∣∣ ∀i (6)

AAE =
∑NL

i=1

∑P
p=1

ti − yi
∣∣ ∣∣

P

( )
/NL (7)

ARMSE =
∑NL

i=1

∑P
p=1

ti − yi
( )2

P

( )
/NL (8)

where P is the number of input–output patterns used to train
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ANN. The values of MAE, AAE and ARMSE indicate
accuracy of the ANN in mapping input domain to output
domain.
3.2 ANN model for three-phase PVGs

The input and output variables need to be identified to build
ANN model. In this case, eight inputs and six outputs are
determined according to (1). The training data set can be
created through measurements or simulations. A pattern of
eight inputs and six outputs (targets) can be obtained in
each measurement or simulation. The number and coverage
of input/output domains by training data sets are very
important factors in building an accurate ANN model.
In order to create training data sets through simulation, a

Simulink model of PVG connecting to grid as shown in
Fig. 2 is built in Matlab/Simulink software. In this Matlab/
Simulink model, the temperature of photovoltaic cell Temp,
the solar irradiance Irra, the three-phase PCC voltage
amplitudes Va, Vb and Vc, and phase angles ja, jb and jc,
which are also the inputs of the proposed ANN model of
PVG, can be set independently. For each simulation, the
values of input variables are randomly chosen from certain
ranges following uniform distribution. The range of Temp
is between −20 and 35°C, and the range of Irra is between
0 and 1000 w/m−2. The range of Va, Vb and Vc is between
0.94 and 1.06 pu following uniform distribution, while the
ranges of ja, jb and jc are −5° to 5°, −125° to −115° and
115° to 125°, respectively. The three-phase active power
and reactive power flowing into the PCC, Pa, Pb, Pc, Qa,
Qb and Qc, which are the targets of ANN model, are
recorded during simulation in the Matlab/Simulink model.
The inputs and outputs of a simulation compose a training
data set or set of epochs. Through simulations, 10 000 data
sets are generated to train the ANN model of PVG. Min–
Max data normalisation technique was used to normalise
inputs and outputs for training the proposed ANN model.
Although the number of neurons in the input and output

layers are determined from (1), number of hidden layers
and their neurons are to be chosen. To determine the
optimal configuration (number of hidden layers and neurons
in each hidden layer), different configurations were trained
using 1000 data sets. The criterion for termination of
training is when the difference between AAEs of any two
consecutive iterative steps is less than 0.00001. The AAE,
MAE and convergence time of different configurations were
compared and shown in Figs. 7–9. The configuration with 2
hidden layers and 14 neurons in each hidden layer has the
smallest AAE as shown in Fig. 7, whereas the configuration
with 2 hidden layers and 9 neurons in each hidden layer
1349
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has the smallest MAE as shown in Fig. 8. On the other hand,
the training time of the former configuration is distinctly
larger than the latter one (Fig. 9), but the AAE of the latter
is nearly equal to the former. Hence the latter was chosen
as the best configuration (two hidden layers and nine
neurons in each hidden layer).
For the chosen configuration, that is, two hidden layers,

nine neurons in each hidden layer, eight neurons in input
layer, six neurons in output layer [corresponding to eight
input and six output in (1)], the smallest ARMSE was
found to be 4.985 × 10−5 when the bias of layer 1 through
layer 3 were set as −2, 0 and −1.5. The configuration
consists of 8 neurons in the input layer, 14 neurons in the
first and the second hidden layers, and 6 neurons in the
output layer. The bias values at each layer were set as −1.0,
respectively. The variation of AAE along with iterations for
this ANN is shown in Fig. 10.
Fig. 9 Convergence time of different ANN configurations

Fig. 8 MAE of different ANN configurations

Fig. 10 Reduction of absolute error over the number of iterations
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The graph in Fig. 10 shows reduction in the AAE with fully
training for 1000 patterns within 1000 iterations. This ANN
model, being a feed forward network, holds a set of
matrices and it easily implementable in ladder iterative
technique programs or PSS®SINCAL type commercial
programs for power flow analysis.
4 Distribution system power flow study with
ANN PVG model

Successful training in Section 3 shows that the proposed
ANN model accurately maps the Matlab/Simulink model of
PVG. In this section, the performance of the proposed ANN
model of PVG is tested in power flow analysis. Although
we implement the proposed ANN model in the modified
ladder iterative technique, it is equally suitable for use with
other methods of power flow analysis.
A 48-bus distribution system with two feeders from a

Canadian utility, shown in Fig. 11, was used to assess the
performance of the proposed ANN model of PVG in power
flow analysis. This is an unbalanced three-phase distribution
system with unbalanced loads and underground cables. The
power balance equations were solved using the ladder
iterative technique [7], Fig. 1. All the unbalanced network
components were modelled accurately considering their
mutual couplings and capacitance elements. In accurate
three-phase power flow studies, PVGs have to be modeled
accurately considering all the three phases. There are 21
loads in the system and 17 of them are unbalanced. The
proposed ANN model of PVG was compared with fixed PQ
PVG model to assess the speed and accuracy of the
proposed model and solution. The ANN model of PVG that
estimates power output is function of solar irradiance,
temperature, and three-phase PCC voltage phasors (angle
and magnitude). In the case of fixed PQ model, the power
output is estimated externally using the Matlab/Simulink
simulation considering the operating solar irradiance and
temperature assuming rated balanced PCC voltage.
The details of power flow study include:
Fig. 11 PVG connection to the distribution system (a Canadian
utility)
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(1) the transformers T1 and T2 are of 220 kV/27.6 kV 75
MVA, and other transformers are of 27.6 kV/8.32 kV 5MVA,
(2) the rated voltage of Bus1 is 220 kV, the rated voltage of
Bus193, Bus317, Bus288, Bus286, Bus208, Bus305 and
Bus155 are 8.32 kV, the rated voltage of other buses is
27.6 kV,
(3) the MVA base was set to 27.6 MVA. Two power flow
study cases with different PVG models were considered.

4.1 Power flow studies with two PVGs

Case 1a is a power flow study using two fixed PQ models of
1 MW connected to Bus317 and Bus286. The 1 MW fixed
PQ model has negative active power loads of 328.367,
327.067 and 327.833 kW, respectively, for the three phases,
and negative reactive power −0.433, 0.300 and −0.770
kVAr, respectively, for the three phases.
Case 1b is a power flow study using two fixed PQ models of
5 MW connected to Bus317 and Bus286. The 5 MW fixed
PQ model has negative active power loads of 1.642, 1.635
and 1.639 MW, respectively, for the three phases, and
negative reactive power 0.0022, 0.0015 and −0.0038
MVAr, respectively, for the three phases.
Case 2a is power flow study using the proposed ANN PVG
model explained Section 3. This study uses two 1-MW
PVGs connected to Bus317 and Bus286. The PVGs are
represented using the proposed ANN model.

Except for the PVG model, all other values were the same
as Case 1a. For the two power flow studies Cases 1a and 2a
considering ANN and fixed PQ models, respectively, the
solar irradiance and temperature were assumed equal to
900 W/m−2 and 25○C, respectively. For the fixed PQ
model, the fixed output power corresponds 1.0 per unit
balanced voltage at PCC.
Case 2b is same as case 2a except that PVGs are rated at 5
MW.

Power flow analyses were completed for cases 1a, 1b, 2a
and 2b considering PVGs with ratings of 1 and 5 MW.
Then voltage solutions for 1 MW PVG cases 1a and 2a
were compared. This comparison is shown in Fig. 12.
Similarly, voltage solutions for cases 1b and 2b considering
5 MW PVGs were compared, refer Fig. 12. These
Fig. 12 Absolute bus voltage difference between cases 1a and 2a
(1 MW generators) and cases 1b and 2b (5 MW generators) are
shown
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comparisons consider absolute bus voltages. Clearly, effect
of larger unbalanced PVGs is more pronounced. In these
studies, the ANN model of PVGs is considered more
accurate as it very closely models the actual PVG as shown
in Section 3.
This preceding analysis and comparisons clearly point out

that the fixed PQ model, which does not consider PCC
voltage, causes power flow analysis to give inaccurate
solutions. Errors increase with the size of PVG.

4.2 Power flow studies with several PVGs

To further investigate errors in power flow solutions caused
by using fixed PQ models of PVGs, systems with more
PVGs were considered. Power flow solutions computed
using fixed PQ models of PVGs were compared with power
flow solutions determined using ANN model of PVGs. In
addition to PVGs connected to Bus317 and Bus286, three
5 MW PVGs were connected to Bus193, Bus288 and
Bus208 in steps and a power flow solutions were
determined using the fixed PQ model and ANN model of
PVG in each case, respectively.
The results are presented in Fig. 13. It can be found that

power flow solutions computed using fixed PQ model has
increasing error with additional PVGs when compared to
accurate solutions computed using ANN model of PVGs.
This is because the PVGs produce unbalanced power output
when PCC voltage is unbalanced. PVGs in an unbalanced
distribution system output unequal power in three phases
further compounding the problem of unbalance.
However, as the fixed PQ model can only give the balanced

output power irrespective of PCC voltage, errors in power
flow solutions computed using fixed PQ model of PVGs are
compounded as well.
The computational speed is a key factor in power flow

algorithms. Inclusion of non-linear PVG models would
significantly slowdown power flow algorithms. It must be
pointed out that ANN models of PVGs are extremely
efficient and suitable for fast computation. The execution
times of power flow algorithm in both cases 1a and 2a with
a 1 MW PVG are compared in Table 2. The proposed ANN
model has a longer execution time than the fixed PQ model
but has the same convergence iterations as the latter. Since
PVG model computational process is just a little portion
Fig. 13 Absolute voltage difference between fixed PQ PVG model
and ANN PVG model considering multiple 5 MW PVGs without
additional load
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Table 2 Execution times with PVG models

Fixed
PQ

ANN

time taken for executing the model once,
ms

0.005 0.508

number PF iterations 44 44
average execution time taken for the PF
study, s

0.928956 0.971451

www.ietdl.org
(milliseconds) of the whole power flow study program
(seconds), the total execution times of two cases are quite
close.
Accordingly, one may conclude that use of ANN model of

PVGs does not slow the power flow analysis algorithm.
Fig. 15 Variation of three-phase active power output mismatch of
ANN PVG model in PSS®SINCAL
5 Implementation in commercial software
packages

Another important advantage of the proposed ANN model of
PVGs is that it can be integrated into commercial power
system analysis software. The implementation is possible
because the ANN model does not require any complex
solvers or optimisation techniques to estimate the power
outputs for a given set of input values. To investigate this
flexibility of implementation in commercial power flow
software, the ANN model of PVGs was coded in
PSS®SINCAL (Siemens Network Calculator), which can
solve bus-wise power balance equations of three-phase
unbalanced distribution systems. At the end of each iterative
step of the power flow algorithm, bus voltages are updated
and then the power outputs from the PVGs are updated
using ANN model.
The 48-bus distribution system shown in Fig. 11 was

implemented in PSS®SINCAL (Fig. 14) with a 5 MW solar
farm integrated in through Bus317 was taken as an example
to show the validity of integrating ANN PVG model into
PSS®SINCAL power flow analysis. PV generators are
considered as negative loads and power values are updated
Fig. 14 48-bus distribution system implemented in PSS®SINCAL

1352
& The Institution of Engineering and Technology 2014
at each power flow iterative step. In this analysis, Bus1 is
connected to an external system with 107.2 MVA
short-circuit power just as it is in the realistic system.
The ANN model of the PVG was coded as a Windows

Script macro in PSS®SINCAL. During the solution process,
the solar irradiance and temperature were fixed at 900 W/m−2

and 25°C, respectively. The active power output mismatch
of the ANN model of PVG at the end of each iterative step
of the power flow algorithm is shown in Fig. 15. When the
voltage solution converges, the output of the ANN PVG
model also stabilises, and the total mismatch approaches zero.
This solution from PSS®SINCAL is compared the study

(case 2b) results completed in matlab script. The two
solutions are identical demonstrating that the proposed
ANN model of PVGs works accurately with custom
developed software in matlab and the commercially used
software: PSS®SINCAL. Further, it is important to point
out that, on testing the proposed ANN model of PVG, it is
evident that it does not cause any algorithmic stability
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 7, pp. 1346–1353
doi: 10.1049/iet-gtd.2013.0562
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issues with Ladder Iterative Technique or other techniques for
power flow analysis used in PSS®SINCAL.

6 Conclusions

This paper presents the development of an ANN-based PVG
model, tests its performance and demonstrates its ready
integration into a popular commercial power system
analysis software, PSS®SINCAL.
The ANN model of PVG is an accurate three-phase model

which is a function of sunlight irradiance, temperature and
terminal voltage phasors (magnitude and angle). It is
suitable for both balanced and unbalanced three-phase
systems and implementable with any type of power flow
algorithm. The computational speed of ANN PVG model is
almost as fast as the simplest fixed PQ model while the
accuracy of the proposed model is much higher than the
latter. This ANN model method is universal hence it can be
trained to model any type/size of PVGs. It is readily
extendable to model PVGs using measured data, and, easily
extendable for modelling solar farms.
The proposed ANN model is trained using data sets from

Matlab/Simulink simulations and implemented in power
flow algorithms in Matlab and PSS®SINCAL. The results
from this commercial software packages thus evidently
prove the feasibility of applying the proposed ANN model
to practical engineering power flow studies.
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