

Abstract—This paper introduces two new hybrid models for
clustering problems in which the input features and parameters
of a spiking neural network (SNN) are optimized using
evolutionary algorithms. We used two novel evolutionary
approaches, the quantum-inspired evolutionary algorithm
(QIEA) and the optimization by genetic programming (OGP)
methods, to develop the quantum binary-real evolving SNN
(QbrSNN) and the SNN optimized by genetic programming
(SNN-OGP) neuro-evolutionary models, respectively. The
proposed models are applied to 8 benchmark datasets, and a
significantly higher clustering accuracy compared to a standard
SNN without feature and parameter optimization is achieved
with fewer iterations. When comparing QbrSNN and
SNN-OGP, the former performed slightly better but at the
expense of increased computational effort.

I. INTRODUCTION
LUSTERING plays an important role in the machine
learning literature [1,2] and also in real application
domains, including market research [3] and medical

analysis [4]. As new and more complex applications are
developed (high-dimensional and scalable problems),
classical techniques, such as k-means, hierarchical clustering,
and k-medoids, tend to perform poorly [5]. Therefore, new
unsupervised techniques are needed to generate more
homogeneous and reliable groups.

Spiking neural networks (SNNs) are novel candidates for
unsupervised learning [6]. SNNs are considered the third
generation of neural networks and simulate how a neuron
sends and receives information based on spikes. A neural
spike is a discrete event within a continuous time frame with
spatiotemporal properties. Previous studies have theoretically
demonstrated that spiking neurons are computationally more
powerful than neurons with sigmoidal activation functions [7,
8].

SNNs have been mostly applied to supervised learning [9]
but some papers related to clustering problems can also be
found [10, 11]. In [12], an evolving spiking neural network
(eSNN) was proposed and applied to audio-visual pattern
recognition [13]. Other applications include neural-based
word recognition using liquid states [14], neural associative

M. Silva, M.M.B.R. Vellasco, and A. Koshiyama are with the Department

of Electrical Engineering, Pontifical Catholic University of Rio de Janeiro
(PUC-Rio), Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ Brazil,
22451-900 (phone: +55 21 3527-1630; fax: +55 21 3527-1232; email:
{mabs21, marley, adriano}@ele.puc-rio.br).

E. Cataldo is with the Applied Mathematics Department, Graduate
Program in Telecommunications Engineering, Federal Fluminense
University (UFF), Rua Passos da Pátria, 156, São Domingos, Niterói, Rio de
Janeiro, Brazil (email: ecataldo@im.uff.br).

This work was supported by CNPq and FAPERJ.

memory [15], and function approximation [16]. Previous
studies [12-25] have used an evolutionary algorithm to
fine-tuning the features and parameters of SNN for
supervised learning, more specific for classification tasks.

In fact, fine-tuning the parameters of SNNs manually can
be a challenging task due to the large number of adjustable
parameter settings. Similar to other neural network models,
the parameter refinement has a significant influence on the
final performance of the SNN. Feature selection is also an
important preprocessing tool to remove information that does
not contribute to the unsupervised learning.

However, to the best of our knowledge, no previous work
has applied evolving algorithms for feature selection and
parameters tuning for unsupervised learning in SNN. In this
paper, we present two different methods, based on the SNN
presented in [10, 11], that evolve the SNN parameters and
accomplish feature selection for clustering problems.

Therefore, this paper presents the evaluation of two new
neuro-evolutionary approaches in which the SNN parameters
are optimized and input features are automatically chosen to
solve clustering problems. The objective is to evaluate the
performance of both optimization methods, to verify which
one is more suitable for this application.

The proposed models, named the quantum binary-real
evolving SNN (QbrSNN) and the SNN optimized by genetic
programming (SNN-OGP), are based on two novel
evolutionary algorithms: the quantum evolutionary algorithm
with binary-real representation (QIEA-BR) [26] and the
optimization by genetic programming (OGP) method [27],
respectively. The evolutionary algorithms present, for some
problems, a slower performance than the one that could be
expected. The quantum-inspired evolutionary algorithms
have been used in combinatorial optimization problems using
a binary-based representation and have presented a better
performance than the conventional algorithms. Besides many
other important properties, this model has the ability to find a
good solution faster using fewer individuals. This feature
reduces dramatically the number of evaluations needed and is
an important performance factor when the model is being
used in problems where each evaluation takes too much time
to be completed.

The former evolutionary algorithm is a type of distribution
algorithm, and the latter is a more classical approach based on
Darwin’s theory of evolution. We evaluated the two proposed
models by applying them to 8 benchmark datasets.

The paper is organized as follows. Section II discusses the
application of SNNs to unsupervised learning, and Section III
introduces the QIEA-BR and OGP evolutionary algorithms.
The framework of the proposed neuro-evolutionary models is
presented in Section IV. Section V provides the details of our

Evolutionary Features and Parameter Optimization of Spiking
Neural Networks for Unsupervised Learning

Marco Silva, Adriano Koshiyama, Marley Vellasco, and Edson Cataldo

C

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2391

experiments and presents the results, and Section VI draws
the conclusions of this work.

II. UNSUPERVISED LEARNING WITH SPIKING NEURONS
A model of spiking neurons for clustering was proposed in

[28] and extended in [29]. This model encodes the input
patterns in the delays across its synapses and has been shown
to identify the centers of high-dimensional clusters with high
accuracy.

Several types of information-encoding methods exist in
SNNs. The implementation based on population encoding, as
proposed in [11], allows continuous values to be encoded by
using a collection of neurons with overlapping sensitivity
profiles. For a specific variable in an interval [],I,I n

max
n
min , M

neurons are used with Gaussian receptive fields. For the ith
coding neuron of variable xn, the center (µ) and width (σ) of
each Gaussian receptive field are calculated by (1). Parameter
γ directly controls the width of each Gaussian receptive field.

() () ()2M/II*2/3i*2I n

min
n
max

n
min −−−+=μ

() ()2M/II/1 n
min

n
max −−= γσ , 21 ≤≤ γ (1)

The proposed architecture is similar to a traditional neural

network, with the neurons of the first layer fully connected to
the neurons of the following layer. The first layer is composed
of receptive field neurons, and the second layer is composed
of RBF neurons [11].

Spiking neurons generate spikes when the membrane
potential crosses a given threshold. The relationship between
the spikes and membrane potential is described by the spike
response model (SRM), as introduced in [30].

The first difference between SNNs and traditional neural
networks is the use of multiple synapses [29]. Instead of a
single synapse with a specific delay, the neuron of the first
layer is connected to the output layer by m synapse terminals,
where each terminal serves as a sub-connection associated
with different delays and weights. The delay kd of synaptic
terminal k is defined by the difference between the firing
time of the pre-synaptic neuron and the time when the
post-synaptic (PSP) potential begins to rise.

Figure 1 presents an example of the encoding of multiple
delayed synapses between layers I and J.

Fig. 1. SNN architecture – A single connection composed of multiple
synapses. Each input dimension of a dataset is encoded separately and
translated into trains of spikes.

In a clustering task, the learning process consists mainly of

adapting the time delays so that each output neuron represents
an RBF center. A winner-takes-all learning rule modifies the
weights between the input neurons i and the first neuron j to
fire in the output layer using a time variant of the Hebbian
learning rule. For a weight with delay kd from neuron i to
neuron j, the learning rule is expressed as

() () ()() beb1tLw
22 /ctk

ij −−== −− βΔηΔηΔ (2)

where parameter b determines the amount by which the
weights will be reduced, β sets the width of the positive part
of the learning window, and c determines the position of the
peak. The value of ∆t denotes the time difference between the
onset of a PSP at a synaptic terminal and the time at which the
spike is generated in the winning output neuron [11]. Figure 2
presents the graph of the learning function L(∆t).

Fig. 2. Graph of the learning function.

2392

III. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EAs) are important tools for

solving complex problems in several areas. These
optimization methods present a high degree of parallelism
during the search process, displaying good performance when
applied to non-continuous, non-differentiable, or multimodal
problems. For this reason, two new EAs were established:
QIEA-BR [26] and OGP [27]. The next two sections describe
the QIEA-BR approach and OGP algorithm, respectively.

A. Quantum-Inspired Evolutionary Algorithm with
Binary-Real (QIEA-BR)

QEIA-BR is a model in which numerical and binary

parameters must be optimized; these values determine the
final topology of a SNN and identify the relevant features.
The parameters and features will be represented in the hybrid
chromosome representation of the QIEA-BR model.

According to classical computing concepts, information is
represented in bits, where each bit must hold either “0” or “1”.
However, in quantum computing, information is instead
represented by a q-bit, where the value of a single q-bit could
be “0”, “1”, or a superposition of both. Superposition allows
the possible states to represent both “0” and “1”
simultaneously based on the states’ probabilities.

As noted in [26], the state of a q-bit can be represented as

10 βαψ += (3)

where α and β are complex numbers that determine the
probability of observing the corresponding state and satisfy
the following normalization condition:

122 =+ βα (4)

Thus, 2α and 2β are the probability that the q-bit is in
the OFF (0) state and ON (1) state, respectively. Through
probabilistic observation, each q-bit can be rendered as one
binary bit [26].

A binary quantum chromosome is represented as a
sequence of pairs of numbers that can be observed to
generate classical individuals. This observation is made by
choosing a random number; if this number is larger than
the observed state, the bit will be “1”; otherwise, it will be
“0”.

Other important SNN configuration parameters will be
represented as numerical genes in the QIEA-BR
chromosome. The representation of the numerical portion
of the chromosome requires a population of individuals to
represent the superposition of possible states that might be
observed for classical individuals. The quantum population
Q(t) at any instant t of the evolutionary process is formed
by a set of N quantum individuals qi (i=1, 2, 3 … N) such
that each qi is formed by G genes gij (i=1, 2, 3… N) that are

formed by functions that represent probability density
functions (PDFs). The quantum individuals can be
expressed as

 () () ()[]xpg,...,xpg,xpgq iGiG2i2i1i1ii ==== (5)

where the functions pij(x) represent the PDFs. For a simple
PDF, a pair of values (µ, σ) consisting of the mean and
width of a square pulse was proposed to represent a gene. A
PDF and cumulative distribution function (CDF) of a train
of square pulses were calculated to connect a pulse
representation with real-value variables.

The next step of the process consists of transforming the
PDF into a CDF by integration and then using this CDF to
generate random observations of the quantum individual as
classical individuals. After classical individuals are
generated, one can choose to use traditional recombination
and mutation operators over these values. The mutation
operator might not be useful because the classical
individuals are generated through a random process, but
applying the crossover operator between individuals from
the previous and current generations might help the
algorithm to reach better results.

The classical individuals that were generated can then be
evaluated as they would in a conventional genetic
algorithm. Then, the quantum population must be updated
[31].

QIEA-BR defines a chromosome that incorporates both
types of quantum gene.

Thus, at instant t, a quantum individual j representing
mixed numeric and binary features can be defined as

() ()[]

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

==

r

t
jm

t
jm

t
2j

t
2j

t
1j

t
1j

b

t
jk

t
jk

t
2j

t
2j

t
1j

t
1j

r
t
jb

t
j

t
j

......

qqq

σ

μ

σ

μ

σ

μ

β

α

β

α

β

α (6)

Where the first part of the chromosome represents the α

and β values for each quantum binary gene, and the second
part of the chromosome represents the µ and σ of each
quantum real gene.

Thus, a population Q(t) in generation t with n possible
solutions t

jq can be given a

() { }t
n

t
2

t
1 q,...,q,qtQ = (7)

A detailed description of each step of QIEA-BR is

provided in [26, 31]. The parameters of QbrSNN are provided
in Table I.

2393

 TABLE I

PARAMETERS OF QBRSNN

QbrSNN Parameters

NQ Number of quantum individuals

NC Number of classic individuals

T Number of generations

Ccb Real classic crossover rate
Ccr Binary classic crossover rate
∆� Update the binary part of quantum
Cq Update the real part of quantum

updatesT Execution before using operators

B. Optimization by Genetic Programming Method (OGP)

OGP is a tree-based optimization algorithm based on

genetic programming (GP) principles [27]. In OGP, each
individual represents a set of k functions (trees), where k
denotes the number of objective function parameters. For
instance, suppose an objective function (fitness function)
F6(x,y) attains its maximum value: F6(x,y)=1 at x=y=0. This
optimization problem is characterized by two parameters (x
and y). Then, using OGP, we set k=2 for each individual in
the population. An example of solution is presented in Figure
3.

Fig. 3. Example of an OGP individual and the solution for problem F6.

Therefore, based on mathematical operations (function set)

and user-defined constant values (terminal set), OGP
attempts to synthesize a suitable solution for the established
criterion. For instance, in a set of benchmark optimization
problems, OGP found significantly better results than a
canonical genetic algorithm, particle swarm optimization, and
differential evolution [27].

As noted in [27], a common OGP routine begins by setting
the population parameters (e.g., population size, number of
generations), genetic operators (e.g., crossover rate, mutation
rate), objective function (fitness function), and number of
optimization parameters (k). From these conditions, a
population is randomly generated, comprising individuals
with k functions. The solutions expressed by all of the
individuals are evaluated and verified if the stopping criterion
is met. If this criterion is met, the current population is
returned; otherwise, the algorithm enters in a loop that is
interrupted only when the stopping criterion is met.

Three operations are performed in the loop: the first is to
select the entities of the next population based on some
heuristic (e.g., roulette, tournament). Then, the low and

high-level crossover (Figure 4 and 5) and mutation operators
are applied to this new population. This process generates a
new population that is again evaluated.

Additional details of OGP are provided in [27].

Fig. 4. Example of OGP low-level crossover.

Fig. 5. Example of OGP high-level crossover.

IV. NEURO-EVOLUTIONARY FRAMEWORK

This section presents the proposed hybrid models for

automatically tuning of SNNs for clustering problems. The
two neuro-evolutionary models for unsupervised learning are
denoted quantum binary-real evolving spike neural network
(QbrSNN) and spike neural network optimized by genetic
programming (SNN-OGP) and are presented in the following
sub-sections. Let us now consider a database with d features
and n patterns (p=1,…,n).

A. Quantum Binary-Real Evolving Spike Neural Network

The QbrSNN model represents the connection between

QIEA-BR and a SNN for unsupervised learning. The first
step is to set the real and binary length of each individual in
the QIEA-BR population. For example, suppose we wish to
optimize the following parameters: number of Gaussian
functions (nG), delay (∆), learning rate (η), and number of
neurons in the output layer (number of clusters – nj). Then,
we define the real part of the chromosome with 4 genes,
where each gene represents one of these 4 parameters. The
binary length is based on the number of input features (d) in
the database. Thus, for a database with d=5, the number of
binary genes is equal to 5, where the value of the gene is 1 if
the feature is active (will be included in the clustering
process) and 0 otherwise. Figure 6 depicts the complete
chromosome.

Fig. 6. Chromosome used to simultaneously optimize the parameters and
feature space; nG - number of Gaussian, ∆ - delay, η - learning rate, and nj -
neuron in the output layer.

2394

With these definitions, QIEA-BR randomly initializes the
population with the pre-specified codification. For every
individual, the real parameters are used to configure the
structure of the SNN and the binary values define the features
selected to supply the information to the SNN. Then, the SNN
is trained based on this configuration, determining which
pattern best fits each group. The next step is to evaluate the
grouping quality. The fitness function plays a crucial role for
a successful application. Several methods that evaluate the
clustering quality could be applied, such as Ward’s method
and Silhouette (Si) [1, 32]. When the class label is available,
one could use the Corrected Rand (cR) to evaluate the
clustering accuracy [33]. Based on the user-defined fitness
function, each individual is evaluated, and this procedure is
repeated for all individuals in the population. With these
fitness values, the individuals are ranked and selected, and
recombination operators are applied. This process is repeated
until a stopping criterion is met. Figure 7 presents the
QbrSNN framework.

Fig. 7. The QbrSNN architecture.

B. Spike Neural Network Optimized by Genetic
Programming
The SNN-OGP model is created by assembling OGP with a

SNN for unsupervised learning. Similar to QbrSNN, the first
step is to set the real and binary length of each individual in
the OGP population. However, in this case, each real
parameter and binary value is a function represented in a tree
format. For example, suppose the user wishes to optimize the
same 4 SNN parameters previously presented and the
database contains 5 features. Then, k=9, where k represents
the number of functions in each individual. In the same
manner, the value is 1 if the feature is active (will be included
in the clustering process) and 0 otherwise. Figure 8 depicts
the complete tree-based individual.

Fig. 8. Tree-based individual used to simultaneously optimize the parameters
and features.

Because any real value could be generated when applying
mathematical operations (e.g., plus, minus, times) in arbitrary
values, we must constrain the output of each tree to make
each solution feasible. Given a value x and feasible interval
[a, b], Equation (8) is applied to make the x domain feasible:

 x* = a + g(x) (a-b) (8)

where x is the tree output (most likely unfeasible), a and b are
the minimum and maximum values of the interval,
respectively, g is a function that maps any real value to the
interval [0, 1], typically the sigmoid function, and x* is the
new tree output (feasible). To convert the tree output into a
binary value, one can define a=-1 and b=1, with x*=1 if x>0
and 0 otherwise. With these transformations, feasible
solutions can be generated using OGP.

After these definitions, OGP randomly initializes the
population with the pre-specified codification and output
transformation. Then, the SNN is trained based on the
transformed outputs (parameter values and selected input
features). Provided the groups, the next step is to evaluate
each individual, and the population is ranked based on these
values. Selection and recombination operators are also
applied, and this procedure is repeated until a stopping
criterion is achieved. Figure 9 illustrates the SNN-OGP
framework.

Fig. 9. The SNN-OGP architecture.

V. EXPERIMENTAL RESULTS

A. Experiments

We used 8 benchmark datasets from the UCI repository to
evaluate each proposed model [34]. Some of these datasets
are common in the literature, such as the Iris and Wine
datasets. These datasets were also selected due to the
presence of a class label for each pattern. This information is
used to compute the clustering quality measures.

All datasets are summarized in Table II, where n, d, and k
denote the number of patterns, features, and class labels,
respectively.

2395

TABLE II
DATASETS

Datasets n d k

Aggregation 788 2 7
Compound 399 2 6

Iris 150 4 3
Wine 178 13 3
Glass 214 9 7
Yeast 1484 8 10
Breast 699 10 2

Thyroid 215 5 2

For each dataset, QbrSNN and SNN-OGP were allowed to

evolve a total of 3000 evaluations. We also trained a standard
SNN for clustering using all features and setting the SNN
parameters as suggested in [11].

Perform 3000 function evaluations entails the evaluation of
almost 3000 different SNN configurations. This value was
chosen to be computationally reliable and to demonstrate that
when compared to other neuro-evolutionary approaches [35,
36], it is possible outperform a non-evolving SNN with
relatively few evaluations.

To ensure statistical relevance, we executed 40 independent
runs of the QbrSNN and SNN-OGP models for each dataset.
These executions were performed in MATLAB R2010a [37].
Table III defines the parameter values of each evolutionary
algorithm. These values were selected based on the
recommendations of [26, 27]. The mathematical operations
used in SNN-OGP were plus, minus, and times.

TABLE III
PARAMETER VALUES OF QBRSNN AND SNN-OGP

QbrSNN Parameter
Values SNN-OGP Parameter

Values
NQ 15 Population Size 50

NC 50 Generations 60

T 60 Tournament Size 5

Ccb 95% High-level Crossover
Rate 50%

Ccr 5% Low-level Crossover
Rate 70%

∆� 0.050*π Mutation Rate 30%

Cq 10% Elitism Rate 2%

updatesT 4 Maximum Tree
Depth 3

We selected 4 SNN parameters for optimization: the

number of Gaussian functions (feasible range: 8 – 20), delay
(feasible range: 8 – 20), learning rate (feasible range: 0 – 1),
and number of neurons in the output layer (feasible range: 2 –
10). The binary length depends on the number of features in
each dataset.

Among many clustering quality measures, we selected the
cR [33] as the fitness function. The cR index basically
measures the relationship between the agreement and
disagreement of two partitions (resultant clusters). Let U =
{u1, …, uR} be the partition provided by the clustering

algorithm and V = {v1, …, vC} the real partition based on a
priori knowledge about the data. The corrected Rand (cR)
index is defined by Equation (9):

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

=

∑ ∑∑ ∑

∑∑ ∑ ∑
−

−

R

i

C

j

ji
R

i

C

j

ji

R

i

C

j

R

i

C

j

jiij

nnnnn

nnnn

cR

222222
1

2222
1

1

 (9)

Where nij represents the number of common objects to

groups ui and vj; ni indicates the number of objects in the
group ui; nj indicates the number of objects in group vj; n is the
total number of objects; and

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
b
a is the binomial coefficient:

()!!
!

bab
a
−

 (10)

The cR index can take values between [-1, 1], where 1

denotes a perfect agreement between partitions and negative
values or values close to 0 represent concordances found
randomly. Therefore, we have to maximize the cR index.

We also compute the Si index based on the parameters
provided by the best individual in the population. The Si
index provides a succinct graphical representation of how
well each object lies within a cluster [32], as indicated below.

{ })(),(max

)()(
kbka

kakbSi −=

(11)

Where, for each pattern k, let a(k) be the average

dissimilarity of k between all other patterns within the same
cluster; b(k) is the lowest average dissimilarity of k to any
other cluster which k is not a member. This measure can take
values -1 ≤ Si ≤ 1, where 1 (a(k)<<b(k)) denotes a perfect
agreement between partitions and -1(a(k)>>b(k)) indicates
clustering of the datum in its neighboring cluster.

B. Results

Table IV displays the cR and Si results obtained for each
benchmark using a standard SNN, QbrSNN, and SNN-OGP.
These values represent an average of 40 independent runs.
The standard SNN approach performed poorly in datasets
with a high number of features, such as Wine and Breast.
Both neuro-evolutionary models obtained cR results
approximately 25% and 38% higher in terms of the average
and median, respectively, compared to a non-optimized SNN.

Applying the Wilcoxon rank test [38] to compare cR
measures between the standard SNN, QbrSNN, and
SNN-OGP, the QbrSNN and SNN-OGP models clearly
outperformed the standard SNN in terms of the median
(p-value < 0.01). Therefore, performing feature selection and
parameter optimization with few evaluations can greatly
enhance the clustering quality. However, when comparing the

2396

cR and Si results between SNN-OGP and QbrSNN, there was
not a substantial difference (p-value > 0.05). The QbrSNN
results in terms of cR and Si are typically higher than the
OGP-SNN results, but this difference is small.

These similarities are also expressed in the final optimal
parameter values for each dataset and the final number of
input features selected for each SNN (Tables V and VI). On
average, 45% of input features were not considered for
clustering. Additionally, in most datasets, the number of
output neurons (groups) obtained was very close to the
number of class labels for each dataset.

TABLE IV

RESULTS OBTAINED FOR BENCHMARKS

Results- cR and Si

 SNN QbrSNN SNN-OGP

Datasets cR cR Si cR Si

Aggregation 0.80 0.93 0.63 0.85 0.58
Compound 0.74 0.82 0.63 0.81 0.53

Iris 0.71 0.92 0.79 0.88 0.69
Wine 0.37 0.81 0.57 0.79 0.54
Glass 0.44 0.55 0.63 0.54 0.67
Yeast 0.18 0.29 0.50 0.29 0.44

Breast 0.32 0.43 0.52 0.40 0.50

Thyroid 0.78 0.81 0.55 0.78 0.45

Average 0.54 0.70 0.60 0.67 0.55

Median 0.58 0.81 0.60 0.79 0.54

TABLE V
AVERAGE PARAMETER VALUES

Parameter values (average-rounded)

 QbrSNN SNN-OGP

Datasets nG ∆ η nj nG ∆ η nj

Aggregation 11 14 0.002 7 10 12 0.055 7

Compound 11 16 0.023 6 12 15 0.094 6

Iris 9 16 0.017 3 8 20 0.056 3

Wine 15 15 0.045 3 14 18 0.003 3

Glass 11 16 0.467 7 10 20 0.071 7

Yeast 12 18 0.633 8 10 12 0.077 6

Breast 15 14 0.029 6 8 16 0.016 2

Thyroid 16 14 0.019 2 12 18 0.066 2

Median 12 16 0.026 - 10 17 0.061 -

TABLE VI
AVERAGE NUMBER OF FEATURES SELECTED

Number of Features (average-rounded)

Datasets QbrSNN SNN-OGP

Aggregation 2 2

Compound 2 2

Iris 3 3

Wine 8 7

Glass 4 4

Yeast 4 6

Breast 6 8

Thyroid 3 4

Average 4 5

VI. CONCLUSIONS
This work proposed two new neuro-evolutionary models

for parameter and feature selection for clustering problems,
termed SNN-OGP and QbrSNN. The characteristics of both
SNN-OGP and QbrSNN were described, including the
chromosome codification of each individual (real and binary
values) and the evaluation function, selection, and
recombination procedures. We used a set of 8 benchmarks
from the UCI repository to evaluate both models.

The results demonstrate that SNN-OGP and QbrSNN are
feasible in that they significantly outperformed a standard
SNN with fewer evaluations. When comparing both
approaches, QbrSNN yielded a slightly higher-quality
clustering than SNN-OGP in most cases. However, QbrSNN
required an average of 40% more computational effort than
SNN-OGP. Therefore, the user must consider this trade-off
when applying QbrSNN for feature selection and parameter
optimization.

Future works can extend both models for supervised
learning, such as classification and forecasting problems.
Other research can perform a behavioral analysis on the
evolutionary algorithms’ parameters (e.g., population size,
recombination rates) and evaluate their influence on the final
clustering quality. Finally, both models can be evaluating
with a larger set of benchmarks using other evolutionary
approaches to find the most suitable evolutionary algorithm
for feature selection and SNN parameter selection.

REFERENCES
[1] B. S. Everitt, S. Landau, and M. Leese, “Cluster Analysis,” 4th Edition,

Oxford University Press, Inc., New York; Arnold, London, 2001.
[2] I. H. Witten, E. Frank, and M. A. Hall, “Data Mining: Practical

Machine Learning Tools and Techniques,” Elsevier, 2001.
[3] A. Seret, T. Verbraken, S. Versailles, and B. Baesens, “A new

SOM-based method for profile generation: Theory and an application
in direct marketing,” European Journal of Operational Research, vol.
220, pp. 199-209, 2012.

[4] Z. Ma, J. M. R. Tavares, R. N. Jorge, and T. Mascarenhas, “A review
of algorithms for medical image segmentation and their applications to
the female pelvic cavity,” Computer Methods in Biomechanics and
Biomedical Engineering, vol. 13, pp. 235-246, 2010.

2397

[5] J. Liang, L. Bai, C. Dang, and F. Cao, “The K-Means-Type Algorithms
Versus Imbalanced Data Distributions,” IEEE Transactions on Fuzzy
Systems, vol. 20, pp. 728-745, 2012.

[6] W. Mass, and C. M. Bishop, “Pulsed Neural Networks,” MIT Press,
Cambridge, MA, 1999.

[7] W. Gerstner, and W. M. Kistler, “Spiking Neuron Models: Single
Neurons, Populations, Plasticity,” Cambridge University Press,
Cambridge, UK, 2002.

[8] W. Mass, “Networks of Spiking Neurons: The Third Generation of
Neural Network Models,” Neural Networks, vol.10, no.9. pp.
1659-1671, 1997.

[9] S. M. Bohte, H. L. Poutré, and, J. N. kok, “SpikeProp:
Error-Backpropagation for Networks of Spiking Neurons,” The
proceedings of ESANN, pp. 419-425, 2000.

[10] B. Ruf, and, M. Schmitt, “Self-organization of spiking neurons using
action potential timing,” IEEE-Transactions Neural Networks, vol.9,
no.3, pp. 575-578, 1998.

[11] S. M. Bohte, H. L. Poutré, and, J. N. kok, “Unsupervised Clustering
with Spiking Neurons by Sparse Temporal Coding and Multilayer RBF
Networks,” IEEE-Transactions Neural Networks, vol.13, no.2, pp.
426-435, 2002.

[12] N. Kasabov, “Evolving Connectionist Systems: The Knowledge
Engineering Approach,” 2nd ed. Secaucus, USA: Springer-Verlag, New
York, 2007.

[13] S. Soltic, S. Wysoski, and N. Kasabov, “Evolving Spiking Neural
Networks for taste recognition,” in IEEE World Congress on
Computational Intelligent (WCCI), Hon Kong, 2008.

[14] D. Verstraeten, B. Schrauwen, and D. Stroobandt, “Isolated word
recognition using a Liquid State Machine,” in ESANN, pp. 534-440,
2005.

[15] A. Knoblauch, “Neural associative memory for brain modeling and
information retrieval,” Inf. Process Lett, vol. 95, no. 6, pp. 537-544,
2005.

[16] N. Iannella and L. Kindermann, “Finding iterative roots with a spiking
neural network,” Information Processing Letters, vol. 95, no. 6, pp.
545-551, 2005.

[17] M. D. Platel, S. Schliebs, and N. Kasabov, “A Versatile
Quantum-inspired Evolutionary Algorithm,” in IEEE Congress on
Evolutionary Computation, pp. 423-430, Singapore, 2007.

[18] S. G. Wysoski, L. Benuskova, and N. Kasabov, “Evolving spiking
neural networks for audiovisual information processing,” Neural
Networks 23, pp. 819-835, 2010.

[19] H. N. A. Hamed, N. Kasabov, and S. Shamsuddin, “Integrated feature
selection and parameters optimization for evolving spiking neural
networks using quantum inspired particle swarm optimization,”
International Conference on Soft Computing and Pattern Recognition,
pp. 695-698, IEEE Press, 2009.

[20] H. N. A. Hamed, S. Shamsuddin, and N. Kasabov, “Quantum-inspired
particle swarm optimization for feature selection and parameter
optimization in evolving spiking neural networks for classification
tasks,” In: Numerical Analisys and Scientific Computing, pp. 133-148,
2011.

[21] S. Schliebs, M. Defoin-Platel, and N. Kasabov, “Integrated feature and
parameter optimization for an evolving spiking neural network,”
Lecture Notes in Computer Science, vol. 5506, pp. 1229-1236,
Springer, Germany, 2009.

[22] S. Schliebs, M. Defoin-Platel, and N. Kasabov, “Integrated feature and
parameter optimization for an evolving spiking neural network:
Exploring heterogeneous probabilistic models,” Neural Networks, vol.
22, Issues: 5-6, pp. 623-632, 2009.

[23] S. Schliebs, M. Defoin-Platel, and N. Kasabov, “Quantum-inspired
feature and parameter optimization of evolving spiking neural networks
with a case study from ecological modeling,” In: International joint
conference on Neural Networks, IEEE Computer Society (IJCNN), pp.
2833-2840, CA – USA, 2009.

[24] S. Schliebs, H. N. A. Hamed, and N. Kasabov, “A reservoir-based
evolving spiking neural networks for on-line spatio-temporal pattern
learning and recognition,” In: 18th International Conference on Neural
Information Processing, no. 7063, pp. 160-168, Springer, Shanghai –
China, 2011.

[25] S. G. Wysoski, L. Benuskova, and N. Kasabov, “Evolving spiking
neural networks for audiovisual information processing,” Neural
Networks, vol. 23, pp. 819-835, 2010.

[26] A. G. de Pinho, M. Vellasco, and A. V. Abs da Cruz, “A New Model for
Credit Approval Problems: A Quantum-Inspired Neuro-Evolutionary
Algorithm with Binary-Real Representation,” World Congress on
Nature & Biologically Inspired Computing (NaBIC), pp. 445-450,
2009.

[27] A. S. Koshiyama, D. M. Dias, A. V. Abs da Cruz, and M. A. C.
Pacheco, “Numerical Optimization by Multi-Genetic Programming,”
GECCO, pp. 145-146, 2013.

[28] J. J. Hopfield, “Pattern recognition computing using action potential
timing for stimulus representation,” Nature, vol. 376, pp. 33-36, 1995.

[29] T. Natschlãger and B. Ruff, “Spatial and temporal pattern analysis via
spiking neurons,” Network Comp. Neural Syst., vol. 9, no.3, pp.
319-332, 1998.

[30] W. Gerstner, “Time structure of the activity in neural network models,”
Phys. Rev. E, vol. 51, pp. 738-758, 1995

[31] A. V. Abs Cruz, M. B. R. Vellasco, and M. A. C. Pacheco,
“Quantum-inspired evolutionary algorithms for numerical
optimization,” IEEE, pp. 2630-2637, 2006.

[32] L. Kaufman and P. J. Rousseeuw, “Finding groups in data: An
introduction to cluster analysis”, John Wiley & Sons, New York, 1990.

[33] L. I. Kuncheva,“Combining Pattern Classifiers: Methods and
Algorithms”, Wiley-Interscience, 2004.

[34] K, Bache and M. Lichman, “UCI Machine Learning Repository”,
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science.

[35] R. Chandra, and M. Zhang, “Cooperative coevolution of Elman
recurrent neural networks for chaotic time series prediction,”
Neurocomputing, vol. 86, pp. 116-123, 2012.

[36] K. O. Stanley, and R. Miikkulainen, “Evolving neural networks
through augmenting topologies,” Evolutionary Computation, vol. 10,
pp. 99–127, 2002.

[37] MATLAB R2010a. MATLAB R2010a. Mathworks, Natick, 2010.
[38] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on

the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms,” Swarm
and Evolutionary Computation, vol. 1,pp. 3-18, 2011.

2398

