
 
 

 

  

Abstract—This paper introduces two new hybrid models for 
clustering problems in which the input features and parameters 
of a spiking neural network (SNN) are optimized using 
evolutionary algorithms. We used two novel evolutionary 
approaches, the quantum-inspired evolutionary algorithm 
(QIEA) and the optimization by genetic programming (OGP) 
methods, to develop the quantum binary-real evolving SNN 
(QbrSNN) and the SNN optimized by genetic programming 
(SNN-OGP) neuro-evolutionary models, respectively. The 
proposed models are applied to 8 benchmark datasets, and a 
significantly higher clustering accuracy compared to a standard 
SNN without feature and parameter optimization is achieved 
with fewer iterations. When comparing QbrSNN and 
SNN-OGP, the former performed slightly better but at the 
expense of increased computational effort. 

I. INTRODUCTION 
LUSTERING plays an important role in the machine 
learning literature [1,2] and also in real application 
domains, including market research [3] and medical 

analysis [4]. As new and more complex applications are 
developed (high-dimensional and scalable problems), 
classical techniques, such as k-means, hierarchical clustering, 
and k-medoids, tend to perform poorly [5]. Therefore, new 
unsupervised techniques are needed to generate more 
homogeneous and reliable groups. 

Spiking neural networks (SNNs) are novel candidates for 
unsupervised learning [6]. SNNs are considered the third 
generation of neural networks and simulate how a neuron 
sends and receives information based on spikes. A neural 
spike is a discrete event within a continuous time frame with 
spatiotemporal properties. Previous studies have theoretically 
demonstrated that spiking neurons are computationally more 
powerful than neurons with sigmoidal activation functions [7, 
8].  

SNNs have been mostly applied to supervised learning [9] 
but some papers related to clustering problems can also be 
found [10, 11]. In [12], an evolving spiking neural network 
(eSNN) was proposed and applied to audio-visual pattern 
recognition [13]. Other applications include neural-based 
word recognition using liquid states [14], neural associative 
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memory [15], and function approximation [16].  Previous 
studies [12-25] have used an evolutionary algorithm to 
fine-tuning the features and parameters of SNN for 
supervised learning, more specific for classification tasks.  

In fact, fine-tuning the parameters of SNNs manually can 
be a challenging task due to the large number of adjustable 
parameter settings. Similar to other neural network models, 
the parameter refinement has a significant influence on the 
final performance of the SNN. Feature selection is also an 
important preprocessing tool to remove information that does 
not contribute to the unsupervised learning. 

However, to the best of our knowledge, no previous work 
has applied evolving algorithms for feature selection and 
parameters tuning for unsupervised learning in SNN. In this 
paper, we present two different methods, based on the SNN 
presented in [10, 11], that evolve the SNN parameters and 
accomplish feature selection for clustering problems. 

Therefore, this paper presents the evaluation of two new 
neuro-evolutionary approaches in which the SNN parameters 
are optimized and input features are automatically chosen to 
solve clustering problems. The objective is to evaluate the 
performance of both optimization methods, to verify which 
one is more suitable for this application. 

The proposed models, named the quantum binary-real 
evolving SNN (QbrSNN) and the SNN optimized by genetic 
programming (SNN-OGP), are based on two novel 
evolutionary algorithms: the quantum evolutionary algorithm 
with binary-real representation (QIEA-BR) [26] and the 
optimization by genetic programming (OGP) method [27], 
respectively. The evolutionary algorithms present, for some 
problems, a slower performance than the one that could be 
expected. The quantum-inspired evolutionary algorithms 
have been used in combinatorial optimization problems using 
a binary-based representation and have presented a better 
performance than the conventional algorithms. Besides many 
other important properties, this model has the ability to find a 
good solution faster using fewer individuals. This feature 
reduces dramatically the number of evaluations needed and is 
an important performance factor when the model is being 
used in problems where each evaluation takes too much time 
to be completed. 

The former evolutionary algorithm is a type of distribution 
algorithm, and the latter is a more classical approach based on 
Darwin’s theory of evolution. We evaluated the two proposed 
models by applying them to 8 benchmark datasets.  

The paper is organized as follows. Section II discusses the 
application of SNNs to unsupervised learning, and Section III 
introduces the QIEA-BR and OGP evolutionary algorithms. 
The framework of the proposed neuro-evolutionary models is 
presented in Section IV. Section V provides the details of our 
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experiments and presents the results, and Section VI draws 
the conclusions of this work. 

 

II. UNSUPERVISED LEARNING WITH SPIKING NEURONS 
A model of spiking neurons for clustering was proposed in 

[28] and extended in [29]. This model encodes the input 
patterns in the delays across its synapses and has been shown 
to identify the centers of high-dimensional clusters with high 
accuracy. 

Several types of information-encoding methods exist in 
SNNs. The implementation based on population encoding, as 
proposed in [11], allows continuous values to be encoded by 
using a collection of neurons with overlapping sensitivity 
profiles. For a specific variable in an interval [ ],I,I n

max
n
min , M 

neurons are used with Gaussian receptive fields. For the ith 
coding neuron of variable xn, the center (µ) and width (σ) of 
each Gaussian receptive field are calculated by (1). Parameter 
γ directly controls the width of each Gaussian receptive field. 
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The proposed architecture is similar to a traditional neural 

network, with the neurons of the first layer fully connected to 
the neurons of the following layer. The first layer is composed 
of receptive field neurons, and the second layer is composed 
of RBF neurons [11].  

Spiking neurons generate spikes when the membrane 
potential crosses a given threshold. The relationship between 
the spikes and membrane potential is described by the spike 
response model (SRM), as introduced in [30].  

The first difference between SNNs and traditional neural 
networks is the use of multiple synapses [29]. Instead of a 
single synapse with a specific delay, the neuron of the first 
layer is connected to the output layer by m synapse terminals, 
where each terminal serves as a sub-connection associated 
with different delays and weights. The delay kd of synaptic 
terminal k  is defined by the difference between the firing 
time of the pre-synaptic neuron and the time when the 
post-synaptic (PSP) potential begins to rise.  

Figure 1 presents an example of the encoding of multiple 
delayed synapses between layers I and J. 

 

 
 

Fig. 1. SNN architecture – A single connection composed of multiple 
synapses. Each input dimension of a dataset is encoded separately and 
translated into trains of spikes. 

 
In a clustering task, the learning process consists mainly of 

adapting the time delays so that each output neuron represents 
an RBF center. A winner-takes-all learning rule modifies the 
weights between the input neurons i and the first neuron j to 
fire in the output layer using a time variant of the Hebbian 
learning rule. For a weight with delay kd from neuron i to 
neuron j, the learning rule is expressed as  

 

( ) ( ) ( )( ) beb1tLw
22 /ctk

ij −−== −− βΔηΔηΔ           (2) 
 

where parameter b determines the amount by which the 
weights will be reduced, β sets the width of the positive part 
of the learning window, and c determines the position of the 
peak. The value of ∆t denotes the time difference between the 
onset of a PSP at a synaptic terminal and the time at which the 
spike is generated in the winning output neuron [11]. Figure 2 
presents the graph of the learning function L(∆t). 

 

 
 

Fig. 2. Graph of the learning function. 
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III. EVOLUTIONARY ALGORITHMS  
 
Evolutionary algorithms (EAs) are important tools for 

solving complex problems in several areas. These 
optimization methods present a high degree of parallelism 
during the search process, displaying good performance when 
applied to non-continuous, non-differentiable, or multimodal 
problems. For this reason, two new EAs were established: 
QIEA-BR [26] and OGP [27]. The next two sections describe 
the QIEA-BR approach and OGP algorithm, respectively. 

 

A. Quantum-Inspired Evolutionary Algorithm with 
Binary-Real (QIEA-BR) 

 
QEIA-BR is a model in which numerical and binary 

parameters must be optimized; these values determine the 
final topology of a SNN and identify the relevant features. 
The parameters and features will be represented in the hybrid 
chromosome representation of the QIEA-BR model. 

According to classical computing concepts, information is 
represented in bits, where each bit must hold either “0” or “1”. 
However, in quantum computing, information is instead 
represented by a q-bit, where the value of a single q-bit could 
be “0”, “1”, or a superposition of both. Superposition allows 
the possible states to represent both “0” and “1” 
simultaneously based on the states’ probabilities. 

 
As noted in [26], the state of a q-bit can be represented as 

  
10 βαψ +=                    (3) 

  
where α and β are complex numbers that determine the 
probability of observing the corresponding state and satisfy 
the following normalization condition: 
 

122 =+ βα                  (4) 
 

Thus, 2α  and 2β  are the probability that the q-bit is in 
the OFF (0) state and ON (1) state, respectively. Through 
probabilistic observation, each q-bit can be rendered as one 
binary bit [26]. 

A binary quantum chromosome is represented as a 
sequence of pairs of numbers that can be observed to 
generate classical individuals. This observation is made by 
choosing a random number; if this number is larger than 
the observed state, the bit will be “1”; otherwise, it will be 
“0”. 

Other important SNN configuration parameters will be 
represented as numerical genes in the QIEA-BR 
chromosome. The representation of the numerical portion 
of the chromosome requires a population of individuals to 
represent the superposition of possible states that might be 
observed for classical individuals. The quantum population 
Q(t) at any instant t of the evolutionary process is formed 
by a set of N quantum individuals qi (i=1, 2, 3 … N) such 
that each qi is formed by G genes gij (i=1, 2, 3… N) that are 

formed by functions that represent probability density 
functions (PDFs). The quantum individuals can be 
expressed as  

 
    ( ) ( ) ( )[ ]xpg,...,xpg,xpgq iGiG2i2i1i1ii ====        (5) 

 
where the functions pij(x) represent the PDFs. For a simple 
PDF, a pair of values (µ, σ) consisting of the mean and 
width of a square pulse was proposed to represent a gene. A 
PDF and cumulative distribution function (CDF) of a train 
of square pulses were calculated to connect a pulse 
representation with real-value variables.  

The next step of the process consists of transforming the 
PDF into a CDF by integration and then using this CDF to 
generate random observations of the quantum individual as 
classical individuals. After classical individuals are 
generated, one can choose to use traditional recombination 
and mutation operators over these values. The mutation 
operator might not be useful because the classical 
individuals are generated through a random process, but 
applying the crossover operator between individuals from 
the previous and current generations might help the 
algorithm to reach better results. 

The classical individuals that were generated can then be 
evaluated as they would in a conventional genetic 
algorithm. Then, the quantum population must be updated 
[31]. 

QIEA-BR defines a chromosome that incorporates both 
types of quantum gene. 

Thus, at instant t, a quantum individual j representing 
mixed numeric and binary features can be defined as 
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Where the first part of the chromosome represents the α 

and β values for each quantum binary gene, and the second 
part of the chromosome represents the µ and σ of each 
quantum real gene. 

Thus, a population Q(t) in generation t with n possible 
solutions t

jq can be given a  
 

( ) { }t
n

t
2

t
1 q,...,q,qtQ =        (7) 

 
A detailed description of each step of QIEA-BR is 

provided in [26, 31]. The parameters of QbrSNN are provided 
in Table I. 

 
 
 
 
 
 
 

2393



 
 

 

 
  TABLE I 

PARAMETERS OF QBRSNN 

QbrSNN Parameters  

NQ Number of quantum individuals 

NC Number of classic individuals 

T Number of generations 

Ccb Real classic crossover rate 
Ccr Binary classic crossover rate 
∆� Update the binary part of quantum  
Cq Update the real part of quantum  

updatesT Execution before using operators  
 
 

B. Optimization by Genetic Programming Method (OGP) 
 
OGP is a tree-based optimization algorithm based on 

genetic programming (GP) principles [27]. In OGP, each 
individual represents a set of k functions (trees), where k 
denotes the number of objective function parameters. For 
instance, suppose an objective function (fitness function) 
F6(x,y) attains its maximum value: F6(x,y)=1 at x=y=0. This 
optimization problem is characterized by two parameters (x 
and y). Then, using OGP, we set k=2 for each individual in 
the population. An example of solution is presented in Figure 
3. 

 

 
Fig. 3. Example of an OGP individual and the solution for problem F6. 

 
Therefore, based on mathematical operations (function set) 

and user-defined constant values (terminal set), OGP 
attempts to synthesize a suitable solution for the established 
criterion. For instance, in a set of benchmark optimization 
problems, OGP found significantly better results than a 
canonical genetic algorithm, particle swarm optimization, and 
differential evolution [27].  

As noted in [27], a common OGP routine begins by setting 
the population parameters (e.g., population size, number of 
generations), genetic operators (e.g., crossover rate, mutation 
rate), objective function (fitness function), and number of 
optimization parameters (k). From these conditions, a 
population is randomly generated, comprising individuals 
with k functions. The solutions expressed by all of the 
individuals are evaluated and verified if the stopping criterion 
is met. If this criterion is met, the current population is 
returned; otherwise, the algorithm enters in a loop that is 
interrupted only when the stopping criterion is met.  

Three operations are performed in the loop: the first is to 
select the entities of the next population based on some 
heuristic (e.g., roulette, tournament). Then, the low and 

high-level crossover (Figure 4 and 5) and mutation operators 
are applied to this new population. This process generates a 
new population that is again evaluated.  

Additional details of OGP are provided in [27].  
 

 
Fig. 4. Example of OGP low-level crossover. 

 

 
Fig. 5. Example of OGP high-level crossover. 

IV.  NEURO-EVOLUTIONARY FRAMEWORK 
 
This section presents the proposed hybrid models for 

automatically tuning of SNNs for clustering problems. The 
two neuro-evolutionary models for unsupervised learning are 
denoted quantum binary-real evolving spike neural network 
(QbrSNN) and spike neural network optimized by genetic 
programming (SNN-OGP) and are presented in the following 
sub-sections. Let us now consider a database with d features 
and n patterns (p=1,…,n). 

 

A. Quantum Binary-Real Evolving Spike Neural Network 
 
The QbrSNN model represents the connection between 

QIEA-BR and a SNN for unsupervised learning. The first 
step is to set the real and binary length of each individual in 
the QIEA-BR population. For example, suppose we wish to 
optimize the following parameters: number of Gaussian 
functions (nG), delay (∆), learning rate (η), and number of 
neurons in the output layer (number of clusters – nj). Then, 
we define the real part of the chromosome with 4 genes, 
where each gene represents one of these 4 parameters. The 
binary length is based on the number of input features (d) in 
the database. Thus, for a database with d=5, the number of 
binary genes is equal to 5, where the value of the gene is 1 if 
the feature is active (will be included in the clustering 
process) and 0 otherwise. Figure 6 depicts the complete 
chromosome. 

 

 
Fig. 6. Chromosome used to simultaneously optimize the parameters and 
feature space; nG - number of Gaussian, ∆ - delay, η - learning rate, and nj - 
neuron in the output layer. 
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With these definitions, QIEA-BR randomly initializes the 
population with the pre-specified codification. For every 
individual, the real parameters are used to configure the 
structure of the SNN and the binary values define the features 
selected to supply the information to the SNN. Then, the SNN 
is trained based on this configuration, determining which 
pattern best fits each group. The next step is to evaluate the 
grouping quality. The fitness function plays a crucial role for 
a successful application. Several methods that evaluate the 
clustering quality could be applied, such as Ward’s method 
and Silhouette (Si) [1, 32]. When the class label is available, 
one could use the Corrected Rand (cR) to evaluate the 
clustering accuracy [33]. Based on the user-defined fitness 
function, each individual is evaluated, and this procedure is 
repeated for all individuals in the population. With these 
fitness values, the individuals are ranked and selected, and 
recombination operators are applied. This process is repeated 
until a stopping criterion is met. Figure 7 presents the 
QbrSNN framework. 

 
Fig. 7. The QbrSNN architecture. 
 

B. Spike Neural Network Optimized by Genetic 
Programming 
The SNN-OGP model is created by assembling OGP with a 

SNN for unsupervised learning. Similar to QbrSNN, the first 
step is to set the real and binary length of each individual in 
the OGP population. However, in this case, each real 
parameter and binary value is a function represented in a tree 
format. For example, suppose the user wishes to optimize the 
same 4 SNN parameters previously presented and the 
database contains 5 features. Then, k=9, where k represents 
the number of functions in each individual. In the same 
manner, the value is 1 if the feature is active (will be included 
in the clustering process) and 0 otherwise. Figure 8 depicts 
the complete tree-based individual. 

 

 
Fig. 8. Tree-based individual used to simultaneously optimize the parameters 
and features.  
  

Because any real value could be generated when applying 
mathematical operations (e.g., plus, minus, times) in arbitrary 
values, we must constrain the output of each tree to make 
each solution feasible. Given a value x and feasible interval 
[a, b], Equation (8) is applied to make the x domain feasible: 
 
      x* = a + g(x) (a-b)                                                            (8) 
 
where x is the tree output (most likely unfeasible), a and b are 
the minimum and maximum values of the interval, 
respectively, g is a function that maps any real value to the 
interval [0, 1], typically the sigmoid function, and x* is the 
new tree output (feasible). To convert the tree output into a 
binary value, one can define a=-1 and b=1, with x*=1 if x>0 
and 0 otherwise. With these transformations, feasible 
solutions can be generated using OGP.  

After these definitions, OGP randomly initializes the 
population with the pre-specified codification and output 
transformation. Then, the SNN is trained based on the 
transformed outputs (parameter values and selected input 
features). Provided the groups, the next step is to evaluate 
each individual, and the population is ranked based on these 
values. Selection and recombination operators are also 
applied, and this procedure is repeated until a stopping 
criterion is achieved. Figure 9 illustrates the SNN-OGP 
framework. 

 

 
Fig. 9. The SNN-OGP architecture. 

 

V. EXPERIMENTAL RESULTS 

A. Experiments 
 

We used 8 benchmark datasets from the UCI repository to 
evaluate each proposed model [34]. Some of these datasets 
are common in the literature, such as the Iris and Wine 
datasets. These datasets were also selected due to the 
presence of a class label for each pattern. This information is 
used to compute the clustering quality measures. 

All datasets are summarized in Table II, where n, d, and k 
denote the number of patterns, features, and class labels, 
respectively.  

 
 
 

2395



 
 

 

TABLE II 
DATASETS  

Datasets n d k 

Aggregation 788 2 7 
Compound 399 2 6 

Iris 150 4 3 
Wine 178 13 3 
Glass 214 9 7 
Yeast 1484 8 10 
Breast 699 10 2 

Thyroid 215 5 2 

 
For each dataset, QbrSNN and SNN-OGP were allowed to 

evolve a total of 3000 evaluations. We also trained a standard 
SNN for clustering using all features and setting the SNN 
parameters as suggested in [11].  

Perform 3000 function evaluations entails the evaluation of 
almost 3000 different SNN configurations. This value was 
chosen to be computationally reliable and to demonstrate that 
when compared to other neuro-evolutionary approaches [35, 
36], it is possible outperform a non-evolving SNN with 
relatively few evaluations. 

To ensure statistical relevance, we executed 40 independent 
runs of the QbrSNN and SNN-OGP models for each dataset. 
These executions were performed in MATLAB R2010a [37]. 
Table III defines the parameter values of each evolutionary 
algorithm. These values were selected based on the 
recommendations of [26, 27]. The mathematical operations 
used in SNN-OGP were plus, minus, and times. 
 
 

TABLE III 
PARAMETER VALUES OF QBRSNN AND SNN-OGP 

QbrSNN Parameter  
Values SNN-OGP Parameter 

Values 
NQ 15 Population Size 50 

NC 50 Generations 60 

T 60 Tournament Size 5 

Ccb 95% High-level Crossover 
Rate 50% 

Ccr 5% Low-level Crossover 
Rate 70% 

∆� 0.050*π Mutation Rate 30% 

Cq 10% Elitism Rate 2% 

updatesT 4 Maximum Tree 
Depth 3 

 
 
We selected 4 SNN parameters for optimization: the 

number of Gaussian functions (feasible range: 8 – 20), delay 
(feasible range: 8 – 20), learning rate (feasible range: 0 – 1), 
and number of neurons in the output layer (feasible range: 2 – 
10). The binary length depends on the number of features in 
each dataset. 

Among many clustering quality measures, we selected the 
cR [33] as the fitness function. The cR index basically 
measures the relationship between the agreement and 
disagreement of two partitions (resultant clusters). Let U = 
{u1, …, uR} be the partition provided by the clustering 

algorithm and V = {v1, …, vC} the real partition based on a 
priori knowledge about the data. The corrected Rand (cR) 
index is defined by Equation (9):      
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Where nij represents the number of common objects to 

groups ui and vj; ni indicates the number of objects in the 
group ui; nj indicates the number of objects in group vj; n is the 
total number of objects; and 

⎟⎟
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⎞
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⎝

⎛
b
a  is the binomial coefficient:  
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The cR index can take values between [-1, 1], where 1 

denotes a perfect agreement between partitions and negative 
values or values close to 0 represent concordances found 
randomly. Therefore, we have to maximize the cR index.  

We also compute the Si index based on the parameters 
provided by the best individual in the population. The Si 
index provides a succinct graphical representation of how 
well each object lies within a cluster [32], as indicated below.  

 

          
{ })(),(max

)()(
kbka

kakbSi −=                      

(11) 
 
Where, for each pattern k, let a(k) be the average 

dissimilarity of k between all other patterns within the same 
cluster; b(k) is the lowest average dissimilarity of k to any 
other cluster which k is not a member. This measure can take 
values -1 ≤ Si ≤ 1, where 1 (a(k)<<b(k)) denotes a perfect 
agreement between partitions and -1(a(k)>>b(k)) indicates 
clustering of the datum in its neighboring cluster.  

 

B. Results 
 

Table IV displays the cR and Si results obtained for each 
benchmark using a standard SNN, QbrSNN, and SNN-OGP. 
These values represent an average of 40 independent runs. 
The standard SNN approach performed poorly in datasets 
with a high number of features, such as Wine and Breast. 
Both neuro-evolutionary models obtained cR results 
approximately 25% and 38% higher in terms of the average 
and median, respectively, compared to a non-optimized SNN. 

Applying the Wilcoxon rank test [38] to compare cR 
measures between the standard SNN, QbrSNN, and 
SNN-OGP, the QbrSNN and SNN-OGP models clearly 
outperformed the standard SNN in terms of the median 
(p-value < 0.01). Therefore, performing feature selection and 
parameter optimization with few evaluations can greatly 
enhance the clustering quality. However, when comparing the 
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cR and Si results between SNN-OGP and QbrSNN, there was 
not a substantial difference (p-value > 0.05). The QbrSNN 
results in terms of cR and Si are typically higher than the 
OGP-SNN results, but this difference is small.  

These similarities are also expressed in the final optimal 
parameter values for each dataset and the final number of 
input features selected for each SNN (Tables V and VI). On 
average, 45% of input features were not considered for 
clustering. Additionally, in most datasets, the number of 
output neurons (groups) obtained was very close to the 
number of class labels for each dataset. 

 
TABLE IV 

RESULTS OBTAINED FOR BENCHMARKS  

Results- cR and Si 

  SNN QbrSNN SNN-OGP 

Datasets cR cR Si cR Si 

Aggregation 0.80 0.93 0.63 0.85 0.58 
Compound 0.74 0.82 0.63 0.81 0.53 

Iris 0.71 0.92 0.79 0.88 0.69 
Wine 0.37 0.81 0.57 0.79 0.54 
Glass 0.44 0.55 0.63 0.54 0.67 
Yeast 0.18 0.29 0.50 0.29 0.44 

Breast 0.32 0.43 0.52 0.40 0.50 

Thyroid 0.78 0.81 0.55 0.78 0.45 

Average 0.54 0.70 0.60 0.67 0.55 

Median 0.58 0.81 0.60 0.79 0.54 

 
 
 

TABLE V 
AVERAGE PARAMETER VALUES  

Parameter values (average-rounded) 

  QbrSNN SNN-OGP 

Datasets nG ∆ η nj nG ∆ η nj 

Aggregation 11 14 0.002 7 10 12 0.055 7 

Compound 11 16 0.023 6 12 15 0.094 6 

Iris 9 16 0.017 3 8 20 0.056 3 

Wine 15 15 0.045 3 14 18 0.003 3 

Glass 11 16 0.467 7 10 20 0.071 7 

Yeast 12 18 0.633 8 10 12 0.077 6 

Breast 15 14 0.029 6 8 16 0.016 2 

Thyroid 16 14 0.019 2 12 18 0.066 2 

Median 12 16 0.026 - 10 17 0.061 - 

 
 
 
 
 
 
 
 
 

 
 

TABLE VI 
AVERAGE NUMBER OF FEATURES SELECTED  

Number of Features (average-rounded) 

Datasets QbrSNN SNN-OGP 

Aggregation 2 2 

Compound 2 2 

Iris 3 3 

Wine 8 7 

Glass 4 4 

Yeast 4 6 

Breast 6 8 

Thyroid 3 4 

Average 4 5 

VI. CONCLUSIONS 
This work proposed two new neuro-evolutionary models 

for parameter and feature selection for clustering problems, 
termed SNN-OGP and QbrSNN. The characteristics of both 
SNN-OGP and QbrSNN were described, including the 
chromosome codification of each individual (real and binary 
values) and the evaluation function, selection, and 
recombination procedures. We used a set of 8 benchmarks 
from the UCI repository to evaluate both models. 

The results demonstrate that SNN-OGP and QbrSNN are 
feasible in that they significantly outperformed a standard 
SNN with fewer evaluations. When comparing both 
approaches, QbrSNN yielded a slightly higher-quality 
clustering than SNN-OGP in most cases. However, QbrSNN 
required an average of 40% more computational effort than 
SNN-OGP. Therefore, the user must consider this trade-off 
when applying QbrSNN for feature selection and parameter 
optimization. 

Future works can extend both models for supervised 
learning, such as classification and forecasting problems. 
Other research can perform a behavioral analysis on the 
evolutionary algorithms’ parameters (e.g., population size, 
recombination rates) and evaluate their influence on the final 
clustering quality. Finally, both models can be evaluating 
with a larger set of benchmarks using other evolutionary 
approaches to find the most suitable evolutionary algorithm 
for feature selection and SNN parameter selection. 
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