

International Journal of Pharma and Bio Sciences

ISSN 0975-6299

AN OVERVIEW OF PURIFICATION STRATEGIES FOR MICROBIAL MANNANASES

PRAKRAM SINGH CHAUHAN¹, NANCY GEORGE¹, SONICA SONDHI¹, NEENA PURI² AND NAVEEN GUPTA¹*

¹Department of Microbiology, Basic Medical Science Block, Panjab University, Chandigarh, India. ²Department of Microbiology, Guru Nanak Khalsa College, Yamunanagar, India.

ABSTRACT

β-Mannanases hydrolyze mannan-based hemicelluloses and liberate short β-1,4 manno oligomers, which can be further hydrolysed to mannose by β-mannosidases. Such enzymes are not only of academic interest but also they have potential biotechnological applications in a wide range of industrial enzyme market, including food and feed technology, coffee extraction, bioethanol production, slime control agents, pharmaceutical field, pulp and paper industry, etc. Purified mannanases are required for some of the industrial applications like food and pharmaceutical industry. Moreover, purification of mannanase has enabled their successful sequence determination and their three-dimensional structure leading to better understanding of kinetic mechanism. Mannanases from a large number of bacteria, fungi, and actinomycetes have been purified to homogeneity. This article presents a critical review of different strategies which have been employed for the purification of bacteria, fungi and actinomycetes mannanases. Since protein purification is normally done in series of sequential steps involving a combination of different techniques, the effect of a sequence of steps and the number of times each step is used has been analyzed. This will prove to be of immense help while planning mannanase purification. Moreover special features of this class of enzymes, such as carbohydrate binding domains (CBDs) and their importance in the development of affinity methodologies to increase and facilitate mannanase purification has also been discussed. New directions to improve mannanase separation and purification from fermentation media are described.

KEYWORDS : Mannanase, Precipitation, Electrophoresis, Characterization, Molecular Weight, Carbohydrate Binding Domains.

NAVEEN GUPTA Department of Microbiology, Basic Medical Science Block, Panjab University, Chandigarh, India.

1. INTRODUCTION

In recent years, hemicellulases have emerged as key enzymes in the rapidly growing biotechnology industry, owing to their multifaceted properties, which find use in a wide array of industrial applications. Mannans are major constituents of hemicelluloses fraction in softwoods and show widespread distribution in plant tissues. The major mannan-degrading enzymes are β -mannanases (E.C 3.2.1.78), β mannosidases (E.C 3.2.1.25) and ßglucosidases (E.C 3.2.1.21). In addition to these, other enzyme such as α -galactosidases and acetyl mannan esterases, are required to side chain substituents^{1,2}. Out of these, most important enzyme is β -mannanase, which hydrolyze mannan-based hemicelluloses and liberate short β -1,4 manno oligomers, which can be further hydrolysed to mannose by β mannosidases. The *β*-mannanases are known to be produced by a variety of bacteria, fungi, actinomycetes, plants, animals and have potential biotechnological applications in a wide range of industrial enzyme market, including food and feed technology, coffee extraction, bioethanol production, slime control agents, pharmaceutical field, pulp and paper industry etc.^{2,3}.

Purified mannanases are required for some of the commercial applications like bioconversion of mannan into a commercially usable form of manno-oligosaccharides and mannose which can be used for pharmaceuticals, food and in improvement of animal feeds etc.^{2,3}. In addition, purified mannanase are required for determination of their primary amino acid sequence and threedimensional structure. Knowledge of the threedimensional structure of mannanases plays an important role in designing and engineering mannanases for specific purposes. The X-ray studies of pure mannanases enable the establishment of structure-function relationships for a better understanding of the kinetic mechanisms of mannanase action on hydrolysis, identification of catalytic residues and binding residues of oligosaccharides and also investigate the basis of adaptation mechanism of β -mannanase to extreme conditions like thermo-alkali-stability⁴⁻⁸.

Industries look for purification strategies that are inexpensive, rapid, high yielding and amenable to large-scale operations. Various traditional purification techniques such as precipitation and chromatographic methods etc. can be used for the purification of mannanases. However. main constraint in traditional purification strategies is low yield. Alternative new technologies such as aqueous two-phase and affinity methods svstems (usina Carbohydrate Binding Domains) are gradually coming to the forefront in the purification of mannanases. Purification protocols available in literature are important for consultation when attempting to purify any new preparation. So far there is no review available which gives complete information regarding purification of mannanases. Thus, review article а summarizing up-to-date literature on purification of mannanases shall serve as a ready reference for researchers engaged in the area of mannanase purification. The present review summarizes the various purification strategies applied by different workers for purification of mannanases. The extent of purification varies with different protocols; a comparison of strategies used by various workers has been discussed in this article. On analyzing various articles for purification microbial mannanases published from 1976 to 2013, conclusions have been drawn to develop the best strategy used in the purification of mannanases. Moreover special features of this class of enzymes, such as carbohydrate binding domains (CBDs) and their importance in the development of affinity methodologies to increase and facilitate mannanase purification been has also discussed.

2. OVERALL ANALYSIS OF MANNANASE PURIFICATION METHOD

Most of the microbial mannanases are extracellular and purification process is usually followed by the removal of cells from culture broth, either by centrifugation or by filtration. The enzyme from cell- free culture broth is then concentrated by ammonium sulphate precipitation or extraction with organic solvents. Further purification is done by a combination of several chromatographic methods. The data has been complied and shown in Table 1. This table summarizes the purification strategies used for each enzyme, including the number of steps in purification scheme (which includes the concentration and purification steps) and the corresponding recovery yields, purification factor, and final specific activities of the different enzymes.

Int J Pharm Bio Sci 2014 Jan; 5(1): (B) 176 - 192

Table 1Purification strategies for microbial mannanases

S.No.	Microorganisms	Source	Temp.	рН	Purification strategies	No. of	Recovery (%) /	Specific	Molecular	References
			optima of activity	optima of activity		steps	Purification fold	Activity	weight	
Bacteria										
1	Bacillus sp. KK01 Four enzyme component F1 F2 F3 F4	Soil	60 55 55 50	7.1 7.1 7.1 7.1 7.1	Isopropanol precipitation (30-65%), Diethylaminoethyl (DEAE)-ion exchange chromatography	2	9.7/33.5 1.7/28.5 9.7/22.5 8.9/32.5	1.3 1.1 0.9 1.3	NR	(56)
2	Bacillus sp.TN-31	Soil	50	6	Poly ethylene glycol, Ammonium sulphate precipitation (30- 60%), DEAE-cellulose chromatography, Hydroxylapatite chromatography, Sephadex G-200 chromatography	5	12/246	56	131 kDa	(37)
3	<i>Bacillus</i> sp. AM-001 M-1 M-11 M-111		60 60 65	9.0 9.0 8.5	Ammonium sulphate precipitation (80%), DEAE-Toypearl 650 M column chromatography, Hydroxyapatite column chromatography, Sephacryl S-200 column chromatography	4	31/13.6 9/20.4	312 470	58 kDa 59 kDa 42 kDa	(24)
4	Bacillus stearothermophilus	Culture Collection	70	6.5	Ammonium sulphate precipitation (50-95%), Sephacryl S-200 Gel filtration, Mono S cation exchange chromatography, Phenyl-superose hydrophobic interaction chromatography, Gel filtration	5	4.5/43	97	162 kDa (dimeric) Native- PAGE	(11)
5	Bacillus subtilis KU-1	Culture Collection	50-55	7.0	Ammonium sulphate precipitation, DEAE-Toyopearl, Phenyl- Sepharose, FPLC Mono Q column chromatography	4	39/810	407.7	39 kDa	(57)
6	Bacillus licheniformis	Culture Collection	60	7.0	Flocculation,Ultrafiltration (50 kDa), Ultrafiltration (10 kDa), DEAE-cellulose column (1 st), DEAE-cellulose column (2 nd)	5	47/33.1	4341	NR	(58)
7	Bacillus subtilis SA-22	NR	70	6.5	Ammonium sulphate precipitation, Hydroxyapatite chromatography, Sephadex G-75 gel filtration, DEAE-52 anion exchange chromatography	4	23.43/30.75	34780.56	38 kDa	(59)
8	Bacillus sp. JAMB-750	Soil	55	10	Ammonium sulphate precipitation (30-60%), DEAE-Toyopearl ion exchange chromatography, Hydroxyapatite chromatography	3	9.0/454	39.5	130 kDa	(60)
9	Bacillus subtilis WY34	Soil	65	6.0	Ammonium sulphate precipitation (40-80%), Superdex column,Q-Sepharose fast flow anion exchange column chromatography	3	20.3/5.4	8302.4	39.6 kDa	(53)
10	Bacillus subtilis B36	NR	50	6.4	Ammonium sulphate precipitation (30-80%), Anion exchange (HiTrap Q-Sepharose column,Gel filtration Superdex S-200 chromatography	3	7/178.43	927.84	38 kDa	(61)
11	Bacillus sp. MSJ-5	Konjac field	50	5.5	Ammonium sulphate precipitation (40-60%), Bio-gel P60 gel filtration, DEAE-Sepharose anion exchange chromatography	3	18.9/19	5383	40.5 kDa	(62)
12	Bacillus sp. MG-33	Desert soil	65	6.5	Ammonium sulphate precipitation (50%), Sephadex G-150 Column chromatography	2	16/11.8	591.7	NR	(13)
13	Bacillus circulans M-21	Soil	50	7.0	Acetone precipitation,Q-Sepharose fast flow anion exchange column chromatography	2	70.1/9.0	19373.3	33.4 kDa	(10)
14	Bacillus subtilis BCC 41051	Soil, Manure	60	7.0	Ultrafiltration (10 kDa), DEAE-Sepharose CL-6B column chromatography, Phenyl Sepharose CL-4B column	4	3/94	3169	38 kDa	(23)

Int J Pharm Bio Sci 2014 Jan; 5(1): (B) 176 - 192

16 Backenologies Ontitute 57 6.5 Difference Construction of the sector of			samples			chromatography, Gel filtration Superdex S-200					
10 00035-1 00035-1 00045-1 00045-1 0005-1<	15	Bacteroides ovatus	Culture	37	65	Chromatography Mono Q ion exchange chromatography. Gel filtration on Bio-	2	NP	76	94 kDa/ 61	(41)
10 Bacterial of autor Callier of autor ST 6.5 Uttailization, DEA-Sephacel of nonsulography 4 4/139 NR 61 hD (22) 17 Designification baryman 50 7.4 Uttailization, DEA-Sephacel of the autor suborts pecipitation 4 2.32752 3.761 53 hDa 633 18 Classification before autor baryman 55 6.5 Annonum suborts pecipitation (600 99%), DEA-Sephace C 3 NR NR 64 19 Collastification before autor baryman 50 7.0 Annonum suborts pecipitation (600 99%), DEA-Sephace C 3 NR 84 bDa (15) 20 FloreObacterium sp. Collation (collastification (600 99%), Plent (400 99%), DEA-Sephace C 3 71.248.1 NR 84 bDa (6) 21 Psenbacillas en.D.23 Soll 50 Annonum suborts pecipitation (600 99%), DEA-Sephace C 4 64/00.2 635.4 88 bDa (6) 22 Psenbacillas en.D.23 Soll Soll Soll Soll Annonum suborts pecipitation (600 99%), DEA-Sephace C 4 636.0 </td <td>10</td> <td>0038-1</td> <td>Collection</td> <td>57</td> <td>0.5</td> <td>Gel P-10 column</td> <td>2</td> <td></td> <td>70</td> <td>kDa/ 43 kDa</td> <td>(41)</td>	10	0038-1	Collection	57	0.5	Gel P-10 column	2		70	kDa/ 43 kDa	(41)
17 Clostridium bulgwarer Human 50 7.8 Uttrafination (10 kDa), Ammonium subprate precipitation 2.32752 3.761 53 kDa 63) 18 Clostridium future NT- Sail 55 6.6 Ammonium subprate precipitation (50-00%), BEAE-Septadex NR As9 kDa (15) 19 Scale Abstraction resp. Sail 50 Sail Sail Asset Name Sail	16	Bacteroides ovatus 0038-1	Culture Collection	37	6.5	Ultrafiltration, DEAE-Sephacel chromatography, Chromatofocusing, Gel filtration	4	4/138	NR	61 kD	(22)
beigenerative loces constraint (4) constraint	17	Clostridium butyricum /	Human	50	7-8	Ultrafiltration (10 kDa), Ammonium sulphate precipitation		2.32/752	3.761	53 kDa	(63)
13 Costributin fertium Kr. Soil 55 6.5 Annonum suphrate precipitation (60-697), Market Septadex A50 arise scharge column foromatography, MPrep Caluma phone functions and pharket precipitation (40-697), MPRep Caluma phone function (40-697), MPRep Caluma phone function (40-697), MPRep Caluma phone function (40-697), MPRep Caluma phone function (40-697), MPRep Caluma phone functind (40-697), MPRep Caluma phone function (40-697), MPRep Caluma		beijerinckii	feces			(35%), DEAE-Toypearl, Phenyl Superose HR	4			[]	(2.1)
19 Scale Soil 7.0 Antmonium sulphate precipitation (40.00%), HiPrec column, Superdex 200 gg column, Ge permeation chromatography 6 71.248.1 NR 34 9 KDa (15) 20 <i>Flavobacterium sp.</i> Collection 35 6.0 Uttraffiltation 1 NR NR 46 KDa (65) 21 <i>Paenibacillus sp.</i> D23 Soil 6.0 Armonotum sulphate precipitation (80%), DEAE is extrained by the period state of the precipitation (90%), DEAE septances 1 ⁻¹¹ , Tay period state of the period state	18	Clostridium tertium KT- 5A	Soil	55	6.5	Ammonium sulphate precipitation (50-90%), DEAE-Sephadex A-50 anion exchange column chromatography, Sephadex G- 100 gel filtration	3	NR	NR	NR	(64)
20 Flavobacterium sp. Culture collection 35 6.0 Uttrafiltation 1 NR NR 46 kDa (65) 21 Peenibacillus sp. D23 Soll 60 5.0 Ammonium sulphate precipitation (80%), DEAE Sepharose, Hi-Trap phenyl sepharose thromatography, Phenyl Sepharose, Hi-Trap phenyl sepharose thromatography, Sepharose thromatography, Sepharose thromatography, Phenyl Sepharose thromatography,	19	<i>Cellulosimicrobium</i> sp. strain HY-13	Soil	50	7.0	Ammonium sulphate precipitation (40-80%), HiPrep column chromatography, HiPrep DEAE resin fast flow column, Superdex 200 pg column, Gel permeation chromatography	5	71.2/48.1	NR	34.9 kDa	(15)
21 Paenibacillus sp. DZ3 Soil 60 5.0 Ammonium sulphate precipitation (80%), DEAE ion exchange is phenyi sepharose. I ⁺⁺ A 15/34 169 39 kDa (66) 22 Paenibacillus coolil Soil 50 5.0 Ammonium sulphate precipitation (80%), DEAE Sepharose. I ⁺⁺ 4 6.4/60.2 635.4 68 kDa (16) 23 Thermotoge meapolitins 5008 Culture Collection 90-92 6.9 Ammonium sulphate precipitation (75%), Sepharose of st flow, royopearl HW-SSS column, Gigapite column, DEAE Sepharose - Gast flow, royopearl HW-SSS column, Gigapite Column, Column cormalography 3 8.3/6.0 28.5/8.0 65	20	Flavobacterium sp.	Culture collection	35	6.0	Ultrafiltration	1	NR	NR	46 kDa	(65)
22 Peenbacilius cookii Soil 50 5.0 Ammonium sulphate (400%), DEAE-Sepharose, 1% 100 HR 4 6.4/90.2 635.4 68 kDa (16) 23 Thermotoga neepolitina 5068 Culture Collection 90-92 6.5 Ammonium sulphate precipitation, Butyl-sepharose exchange column chromatography. Butyl-sepharose-0 rat fow, Toyopeari HW-55S column, Gigapite column, Mono-Q 3 13.6/4.8 Fill 65 kDa (9) 24 Vibrio sp. strain MA: 138 Seawed 40 6.5 Ammonium sulphate precipitation, (75%), Sepharose-0 rast fow, Toyopeari HW-55S column, Gigapite column, Mono-Q 2 23/633 51.9 49 kDa (28) 25 Aspergilius niger Wood 5.5 Ammonium sulphate precipitation, Column 3 23/175.89 19.09 NR (67) 26 Aspergilius niger Output 3.5 Ammonium sulphate precipitation, Anion-exchange column chromatography (Resource Q0) 3 8.3/9.0 26 53 kDa (25) 27 Aspergilius niger Culture Collection 5.0 Ammonium sulphate precipitation, Anion-exchange column chromatography (Resource Q0) 3 6	21	Paenibacillus sp. DZ3	Soil	60	5.0	Ammonium sulphate precipitation (80%), DEAE ion exchange chromatography, Phenyl Sepharose, Hi-Trap phenyl sepharose chromatography (HIC)	4	15/34	169	39 kDa	(66)
23 Thermotoga neapolitina 5068 Culture Collection 90-92 6.9 Animonium sulphate precipitation. Butyl-sepharose hydrophobic interaction chromatography. Mono-Q anion 3 13.6/4.8 Image: Collection 65 KDa (9) 24 Vibrio sp. strain MA- 138 Seaweed 40 6.5 Ammonium sulphate precipitation (75%). Sepharose-Q fast fow, Toyopean HW-55S column, Gigapite column, Mono Q 5 23/633 51.9 49 kDa (28) Fung Experime Wood Sample 30 5.5 Ammonium sulphate precipitation, Gel filtration, Ion exchange column 3 23.115.89 19.09 NR (67) 26 Aspergillus niger Wood Collection 37 4.5 Poly ethylene glycol. Hydroxyapatile column, DEAE-cellulose Column chromatography 3 8.39.0 26 53 KDa (25) 27 Aspergillus niger Culture Collection 50 3.5 Ammonium sulphate precipitation, Anion-exchange column chromatography (Resource Q - 1m alono-exchange column), Gel filtration (HiLoad 166) pre-packed with Superdex 200) 46/46 3860 40 KDa (68) 28 Aspergillus niger NR 40 6.0 Acetone precipitation, DEAE-cellulose chromatography, Sephatose chromatography, EAE-Sephatose chromatogra	22	Paenibacillus cookii	Soil	50	5.0	Ammonium sulphate (40-60%), DEAE-Sepharose, 1 st Sephacryl S-100 HR, 2 rd Sephacryl S-100 HR	4	6.4/90.2	635.4	68 kDa	(16)
24 <i>Vibro</i> sp. strain MA- 138 Seawed 40 6.5 Ammonium sulphate precipitation (75%), Sepharose-O fast fow, Toyopeat HW-55S column, Gigapite column, Mono Q 5 23/633 51.9 49 kDa (28) Funge Vibro sp. sample 30 5.5 Ammonium sulphate precipitation, Gel filtration, Ion exchange chromatography 3 23/633 51.9 49 kDa (28) 26 Aspergillus riger Wood Sample 30 5.5 Ammonium sulphate precipitation, Gel filtration, Ion exchange chromatography 3 23/15.89 19.09 NR (67) 27 Aspergillus niger Culture Collection 50 3.5 Ammonium sulphate precipitation, DetA-cellulose column chromatography 26 8.39.0 26 53 kDa (25) 28 Aspergillus niger NR 40 6.0 Action precipitation, DetA-cellulose column chromatography, Sephatex 6-10 column chromatography 40 6.0 Action precipitation (10 kDa), DEAE Sephatex 6-10 column chromatography 40 60 41 471.0 60 kDa 41 29 Aspergillus niger gr Soil 55 55 Actone precipitation (0-80%), DEAE-Sephatex chromatography	23	Thermotoga neapolitina 5068	Culture Collection	90-92	6.9	Ammonium sulphate precipitation, Butyl-sepharose hydrophobic interaction chromatography, Mono-Q anion exchange column chromatography	3	13.6/4.8		65 kDa	(9)
Fungi Separgillus niger Aspergillus niger Mode Sample S.5 Ammonium sulphate precipitation, Gel filtration, Ion exchange chromatography S.31/15.89 19.09 NR (67) 26 Aspergillus tamarii Culture Culture Collection 37 4.5 Poly ethylene glyloci, Hydroxyapatite column, DEAE-cellulose 3 8.39.0 26 53 kDa (25) 27 Aspergillus niger Culture Collection 50 3.5 Ammonium sulphate precipitation, Anion-exchange chromatography 3 46/46 3860 40 kDa (68) 28 Aspergillus niger Culture Collection 60 Acetone precipitation, DEAE-cellulose column, Load 16:60 pre-packed with Superdex 200) 4 10.290.7 1760 110 kDa (12) 29 Aspergillus niger Man 11 Culture Collection 60 4.5 Ultrafiltration (10 kDa), DEAE-cellulose column nchromatography 4 10.6/102.4 471.0 60 kDa (31) 20 Aspergillus niger gr Soli Soli 5.5 Ammonium sulphate precipitation (0-80%), DEAE-Sephace chromatography 3 0.5/34.0 225.4 63 kDa (31) 30 Aspergillus niger gr	24	<i>Vibrio</i> sp. strain MA- 138	Seaweed	40	6.5	Ammonium sulphate precipitation (75%), Sepharose-Q fast flow, Toyopearl HW-55S column, Gigapite column, Mono Q column	5	23/633	51.9	49 kDa	(28)
Aspergillus nigerWood Sample305.5Ammonium sulphate precipitation, Gel filtration, Ion exchange convonatography323.1/15.8919.09NR(67)26Aspergillus tamariiCulture Collection374.5Poly ethylene glycol, Hydroxyapatite column, DEAE-cellulose column chromatography38.3/9.02653 kDa(25)27Aspergillus niger CollectionCulture Collection503.5Ammonium sulphate precipitation, Anion-exchange chromatography (Resource Q 1-ml anion-exchange column), Gel filtration (HLoad 16:60 pre-packed with Superdex 200) (Arget packed with Superdex 200)46/46386040 kDa(68)28Aspergillus oryzae & Aspergillus nigerNR406.0Acetone precipitation, DEAE-cellulose column chromatography. SP-Triscry! M (sulphopropyl-poly [N-tris (Argetaphy, SP-Triscry! M (sulphopropyl-poly) [N-tris (Argetaphy, SP-Triscry! M (sulphopropyl-poly)10.2/90.7110 kDa (Argetaphy)(11) kDa29Aspergillus niger grSoil555.5Armonium sulphate precipitation (0-80%), DEAE-Sepharce chromatography30.53/49.0225.463 kDa(68)	Fungi		-	-	-						
26 Aspergillus tamarii Culture Collection 37 4.5 Poly ethylene glycol, Hydroxyapatile column, DEAE-cellulose 3 8.3/9.0 26 53 kDa (25) 27 Aspergillus niger Culture Collection 50 3.5 Ammonium sulphate precipitation, Anion-exchange chromatography 3 8.3/9.0 26 53 kDa (25) 28 Aspergillus oryzae & Aspergillus niger NR 40 6.0 Acetone precipitation, DEAE-cellulose column chromatography, Sephacke C-10 column chromatography 4 10.2/90.7 1760 110 kDa (12) 29 Aspergillus niger Luitrefiltration (Hi Loba), DEAE Sepharose chromatography. Sephacke C-10 column chromatography Sepharose chromatography 3 10.6/102.4 471.0 60 kDa (31) 30 Aspergillus niger gr Soil 55 5.5 Ammonium sulphate precipitation (0-80%), DEAE-Sepharose chromatography 25.7/7.82 65.06 66 kDa 66 kDa (18) 31 Aspergillus niger gr Soil 55 5.5 Ammonium sulphate precipitation (75%), DEAE-Sepharose chromatography, Sephadex G-100 gel filtration 3 9.4/10 66 kDa 66 kDa (18) (31) (31)	25	Aspergillus niger	Wood Sample	30	5.5	Ammonium sulphate precipitation, Gel filtration, Ion exchange chromatography	3	23.1/15.89	19.09	NR	(67)
27 Aspergillus niger Culture Collection 50 3.5 Ammonium sulphate precipitation, Anion-exchange chromatography (Resource Q 1-ml anion-exchange column), Gel filtration (HiLoad 16:50 pre-packed with Superdex 200) 3 46/46 3860 40 kDa (68) 28 Aspergillus origer NR 40 6.0 Acetone precipitation, DEAE-cellulose column chromatography, Sephadex G-10 column chromatography 4 10.2/90.7 1760 110 kDa (12) 29 Aspergillus fumigatus INI 385708 Man 1 Functional operation (10 kDa), DEAE Sepharose chromatography, Phenyl Sepharose chromatography 3 10.6/102.4 471.0 60 kDa 60 kDa (31) 30 Aspergillus niger gr Soll 55 5.5 Armonium sulphate precipitation (0-80%), DEAE-Sepharose chromatography 2 9.5/7.82 65.06 66 kDa 66 kDa (18) 31 Aspergillus niger gr Soll 55 5.5 Acetone precipitation (0-80%), DEAE-Sepharose chromatography 2 9.5/7.82 65.06 66 kDa (18) 31 Aspergillus niger LW-1 Soll 65 4.8 Armonium sulphate precipitation (75%), Phenyl sepharose chromatography, Sephadex G-100 gel filtration 9.4/10 16.8 N	26	Aspergillus tamarii	Culture Collection	37	4.5	Poly ethylene glycol, Hydroxyapatite column, DEAE-cellulose column chromatography	3	8.3/9.0	26	53 kDa	(25)
28Aspergillus oryzae & Aspergillus nigerNR406.0Acetone precipitation, DEAE-cellulose colum< (hydroxy-methy) locking chromatography, SP-Trisacryl M (sulphopropyl-poly [N-tris chromatography, SP-Tris chromatography, SP-Tris <td>27</td> <td>Aspergillus niger</td> <td>Culture Collection</td> <td>50</td> <td>3.5</td> <td>Ammonium sulphate precipitation, Anion-exchange chromatography (Resource Q 1-ml anion-exchange column), Gel filtration (HiLoad 16:60 pre-packed with Superdex 200)</td> <td>3</td> <td>46/46</td> <td>3860</td> <td>40 kDa</td> <td>(68)</td>	27	Aspergillus niger	Culture Collection	50	3.5	Ammonium sulphate precipitation, Anion-exchange chromatography (Resource Q 1-ml anion-exchange column), Gel filtration (HiLoad 16:60 pre-packed with Superdex 200)	3	46/46	3860	40 kDa	(68)
29Aspergillus fumigatus IMI 385708 Man 1 Man 11Culture CollectionUltrafiltration (10 kDa), DEAE Sepharose chromatography, Phenyl Sepharose chromatography, Phenyl Sepharose310.6/102.4471.060 kDa(31)30Aspergillus niger gr NRRL 3448Soil555.5Ammonium sulphate precipitation (0-80%), DEAE-Sepharose chromatography2660 kDa66 kDa(18)31Aspergillus niger LW-1Soil555.5Actione precipitation (60%), DEAE-Cellulose anion exchange column chromatography, Sephades G-100 gel filtration39.4/10156.8NR(69)32Aspergillus niger LW-1Soil654.8Ammonium sulphate precipitation (75%), PEAE-Sepharose column chromatography, DEAE-Sepharose column chromatography, DEAE	28	Aspergillus oryzae & Aspergillus niger	NR	40	6.0	Acetone precipitation, DEAE-cellulose column chromatography, SP-Trisacryl M (sulphopropyl-poly [N-tris (hydroxy-methyl)methyl acrylamide] cation exchange chromatography, Sephadex G-10 column chromatography	4	10.2/90.7	1760	110 kDa	(12)
LengthCollection604.5Ultrafiltration (10 kDa), DEAE Sepharose chromatography, Phenyl Sepharose chromatography30.53/49.0225.463 kDa30Aspergillus niger grSoil555.5Ammonium sulphate precipitation (0-80%), DEAE-Sephacel chromatography29.5/7.8265.0666 kDa(18)31Aspergillus oryzae NRRL 3448Culture Collection555.5Acetone precipitation (60%), DEAE-Cellulose anion exchange column chromatography, Sephadex G-100 gel filtration39.4/10156.8NR(69)32Aspergillus niger LW-1Soil654.8Ammonium sulphate precipitation (75%), Phenyl sepharose CL-4B hydrophobic chromatography, DEAE-Sepharose Fast4NR42 kDa(14)	29	Asperaillus fumiaatus									
30Aspergillus niger grSoil555.5Ammonium sulphate precipitation (0-80%), DEAE-Sephacel29.5/7.8265.0666 kDa(18)31Aspergillus oryzae NRRL 3448Culture Collection555.5Acetone precipitation (60%), DEAE-Cellulose anion exchange column chromatography, Sephadex G-100 gel filtration39.4/10156.8NR(69)32Aspergillus niger LW-1Soil654.8Ammonium sulphate precipitation (75%), Phenyl sepharose CL-4B hydrophobic chromatography, DEAE-Sepharose Fast4NR42 kDa(14)		IMI 385708 Man 1 Man 11	Culture			Ultrafiltration (10 kDa), DEAE Sepharose chromatography, Phenyl Sepharose chromatography	3	10.6/102.4	471.0	60 kDa	(31)
31 Aspergillus oryzae NRRL 3448 Culture Collection 55 5.5 Acetone precipitation (60%), DEAE-Cellulose anion exchange column chromatography, Sephadex G-100 gel filtration 3 9.4/10 156.8 NR (69) 32 Aspergillus niger LW-1 Soil 65 4.8 Ammonium sulphate precipitation (75%), Phenyl sepharose CL-4B hydrophobic chromatography, DEAE-Sepharose Fast 4 NR 42 kDa (14)		IMI 385708 Man 1 Man 11	Culture Collection	60	4.5	Ultrafiltration (10 kDa), DEAE Sepharose chromatography, Phenyl Sepharose chromatography Ultrafiltration (10 kDa), DEAE Sepharose chromatography, Phenyl Sepharose chromatography	3 3	10.6/102.4 0.53/49.0	471.0 225.4	60 kDa 63 kDa	(31)
32 Aspergillus niger LW-1 Soil 65 4.8 Ammonium sulphate precipitation (75%), Phenyl sepharose NR 42 kDa (14)	30	IMI 385708 Man 1 Man 11 Aspergilllus niger gr	Culture Collection Soil	60 55	4.5	Ultrafiltration (10 kDa), DEAE Sepharose chromatography, Phenyl Sepharose chromatography Ultrafiltration (10 kDa), DEAE Sepharose chromatography, Phenyl Sepharose chromatography Ammonium sulphate precipitation (0-80%), DEAE-Sephacel chromatography	3 3 2	10.6/102.4 0.53/49.0 9.5/7.82	471.0 225.4 65.06	60 kDa 63 kDa 66 kDa	(31) (18)
	30 31	IMI 385708 Man 1 Man 11 Aspergilllus niger gr Aspergillus oryzae NRRL 3448	Culture Collection Soil Culture Collection	60 55 55	4.5 5.5 5.5	Ultrafiltration (10 kDa), DEAE Sepharose chromatography, Phenyl Sepharose chromatography Ultrafiltration (10 kDa), DEAE Sepharose chromatography, Phenyl Sepharose chromatography Ammonium sulphate precipitation (0-80%), DEAE-Sephacel chromatography Acetone precipitation (60%), DEAE-Cellulose anion exchange column chromatography, Sephadex G-100 gel filtration	3 3 2 3	10.6/102.4 0.53/49.0 9.5/7.82 9.4/10	471.0 225.4 65.06 156.8	60 kDa 63 kDa 66 kDa NR	(31) (18) (69)

Int J Pharm Bio Sci 2014 Jan; 5(1): (B) 176 - 192

					Flow ion exchange chromatography and Sephadex G-75 gel filtration.					
33	Penicillium occitanis Pol6 (Man 111)	Cayla Company	40	4.0	Ammonium sulphate precipitation (60%), Gel filtration on Biogel P-100, Ion-exchange chromatography on MonoQ- Sepharose column	3	1.87/25.17	129.37	18 kDa	(21)
34	Sclerotium rolfsii	NR	74	2.9	Ultrafiltration (10 kDa), Anion exchange chromatography using Q-Sepharose fast flow column, Gel filtration on Superdex 75 column	3	25.85/5.52	475	61.2 kDa	(40)
35	Scopulariopsis candida strains LMK004 LMK008	Solar saltern	50 40	5.0 6	Ammonium sulphate precipitation, Q-Anion-exchange chromatography Ammonium sulphate precipitation, Q-Anion-exchange chromatography	2 2	5.99/64.73 3.07/5.67	27864.6 3321	41 kDa 28 kDa	(17)
36	Trichoderma reesei I II	NR	70 70	3.5 3.5	Ion exchange chromatography, Affinity chromatography, Chromatofocusing	3	NR	NR	51 kDa 53 kDa	(27)
37	<i>Trichoderma reesei</i> C- 30	Culture Collection	75	5	Ethanol precipitation, Chromatofocusing, Mono Q anion exchange column chromatography	3	11/18	21.6	46(±2) kDa	(26)
Actinomycetes										
38	<i>Streptomyces galbus</i> NR	Soil	40	6.5	Ammonium sulphate precipitation (0-80%)	1	62.79/8.71	44.79	NR	(70)

Analysis shows that microbial mannanases are mainly purified by chromatographic methods, using from two to five purification steps (including precipitation and concentration), and providing recovery yields ranging from 0.53 to 71.2%. As expected, lower yields were generally obtained when greater numbers of purification steps were used. When two purification steps are used, the purification fold can range from 5.67 to 64.73 and with four purification steps it can range from 13.6 to 810. The data also suggest that lower recovery

yields are obtained with fungal mannanases in comparison to bacterial mannanases. The relationship between average mannanase yields and the number of purification steps in the overall purification schemes for enzymes is shown in Fig 1. Increasing the number of steps led to decrease in mannanase recovery, and with five purification steps, low enzyme recovery is observed (about 13%). In general, high purification fold correlated with purification schemes for low molecular weight mannanases (ranging from 39 to 53 kDa).

Figure 1 Mannanase yields (averages of 38 purification schemes) as function of the number of steps of purification procedure.

Various mannanase purification schemes were studied in detail, taking into account the sequence of the purification steps, the number of times each purification method is used (Fig 2) and average purification fold achieved with different strategies at each step (Fig 3). In the first step of mannanase purification about 71% of the researchers used precipitation, with 58% of these used ammonium sulphate and 13% used organic solvent (mainly acetone). An

alternative to precipitation methods was ultrafiltration which was used as a first step in 18% of the procedures for protein concentration (Fig 2). Maximum average purification fold (6.05) at first step has also been reported when ammonium sulphate was used as first step of purification. With other methods, average purification fold ranged from 5.67 to 1.10 (Fig 3).

Figure 2 Strategies used in mannanase purification in relation to number of steps, showing different methods used in each step according to their utilization rate

In the second step of mannanase purification, ion-exchange chromatography (IEX) has been used by 58% of the researchers, other methods were used from 18.40% to 2.63% (Fig 2). Maximum average purification fold (47.03) at second step has been reported when IEX was used. With other methods, average purification fold ranged from 9.30 to 3.20 (Fig 3). Resins with weak ion exchange groups were most commonly used, with diethylaminoethyl (DEAE) group being the most commonly used group (60%) in anion-exchange chromatography. Strong ion exchanger compounds were used in 31% of cases with Mono Q, Q-Sepharose, Mono-S and SP-Trisacryl M were the most commonly used columns⁹⁻¹².

Int J Pharm Bio Sci 2014 Jan; 5(1): (B) 176 - 192

Figure 3 Relationship between average purification fold with different strategies at each step for mannanase purification.

In the third step of mannanase purification ionexchange chromatography (IEX) has been used by 37% of researchers, other methods were used from 18.40% to 2.63% (Fig 2). Maximum average purification fold (85.33) at third step has been reported with hydroxapatite chromatography. With other methods, average purification fold ranged from 74.02 to 9.2 (Fig 3). In the fourth step of mannanase purification gel filtration (GF) has been used by 18% of the researcher, other methods were used by 7.89% 5.26% researchers (Fig 2). Maximum to average purification fold (89.30) at fourth step has also been reported when GF was used. With other methods, average purification fold ranged from 30.50 to 23.62 (Fig 3). Various highly cross linked gel matrices such as Sephadex, Sephacryl, Superdex and Biogel P are most commonly used¹³⁻¹⁶. A five steps purification procedure was used when a high purity level was required. At fifth step GF was used in 7.8% of the protocols comparatively to

IEX (5.2%) (Fig 2). Average purification fold at this step ranged from 112 to 33 (Fig 3). Most of the purification schemes examined, included the use of a three-step strategy (36.8%) for the purification of mannanses giving average purification fold of about 85.33. A four-step and five step strategies were used in 26% and 13% of the reports respectively. On the basis of this analysis, a three-step mannanase purification strategy can be suggested. The data showed that the purification factor was not only related to the purification strategy used, but was also dependent on other factors, such as enzyme origin and excretion level.

3. DRAWBACKS OF PURIFICATION STRATEGIES

Analysis of recovery yields and purification factors achieved per step of mannanase purification was undertaken in order to determine the limiting step of the purification process. Detailed study of the purification

procedures led to the conclusion that, in general, the first step in the purification procedures was the limiting step. Concentration involving ammonium steps sulphate precipitation, organic solvent and ultrafiltration were steps mainly responsible for the low final recovery yields. In 31% of the procedures, decrease in recovery yield ranging from 11 to 69% has been reported. Further analysis of the multiplicity of purification (ratio of the purification factor between steps) obtained after IEX and GF chromatography, showed that the decrease in recovery yield did not correlate with an increase in the purification factor.

3.1 Problem Associated with Some Purification Methodologies

3.1.1 Precipitation

With regard to mannanase purification, the most commonly used salt for precipitation was ammonium sulphate. However this led to average low enzyme recovery yield in 22% cases^{13,17-18}. Other reports shows that ammonium sulfate promotes flocculation rather than precipitation of mannanases¹⁹. In these cases, a decanting funnel can be recommended for visualizing the separation of enzyme phases. Each of the enzyme phases can be analyzed separately in order to balance the enzyme protein concentration and enzyme activity and to check the purity level of the enzyme by electrophoresis high-pressure or liauid chromatography (HPLC). Another problem associated with the utilization of ammonium sulfate precipitation is that salt interferes in determinations of mannanase activity, leading to overestimations of such activity in crude extracts²⁰. Thus, in general a dialysis or desalting step is generally required before the determination of enzyme activity. Ultrafiltration markedly membranes can also reduce mannanase recovery yields (MW >20 kDa), owing to the ability of mannanase to pass through ultrafiltration membranes with lowmolecular-weight cut off values (5-10 kDa). This drawback was suggested to result from mannanase compact structure and/or from non uniformity in membrane pore size²¹. Since most commercial ultrafiltration membranes are made of cellulose or its derivatives, the presence of carbohydrate binding domains (CBDs) in mannanase should be determined before ultrafiltration. If they contain CBDs, mannanase can be retained on ultrafiltration membranes. Some reports refer to activity losses of about 27-40% after an ultrafiltration step^{22,23}.

3.1.2 Gel Filtration

GF chromatography is widely used as a mannanase purification method. however may interact with some mannanase GF matrices. The interaction of mannanases with the column matrices Superdex 200^{15,23} and Sephacryl S200^{11,24} retards mannanase elution. These results could suggest the presence of carbohydrate binding domain (CBD) in mannanase that interact with gel matrix (agarose and dextran), since dextran consist of α-glucose units, whereas cellulose is composed of β -glucose units, resulting in delayed protein elution. Enzyme glycosylation was also described as causing anomalous elution patterns in gel filtration chromatography. Since this feature is common among microbial mannanase especially fungi it would be useful to check whether the enzyme being purified is glycosylated²⁵⁻³³.

3.1.3Electrophoresis

Some microbial mannanases showed а discrepancy in molecular weight, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), GF chromatography, and HPLC. Such differences in mannanase molecular weight determinations can in some cases be associated with enzyme glycosylation³³⁻³⁵. Interaction of the glycoprotein with the acrylamide matrix in SDSPAGE can lead to anomalous migration of an enzyme in the acrylamide gel. Anomalous migration in SDS-PAGE of proteins with an unusual composition of amino acids, could result from differences in surface net-charge density¹¹. Consequently, a gradient gel is necessary to determine molecular weights with accuracy. In substrate gel, mannanase can bind tightly to a substrate and their migration on gel can be delaved. affecting molecular weight а

determination. As an example, a mannanase from Vibrio sp. strain MA-138 containing Carbohydrate binding module (CBM) that binds specifically to soluble mannan exhibited slower gel migration owing to interaction with substrate gels³⁶. Most microbial mannanases are singlesubunit proteins with molecular weights ranging from 18 to 131 kDa^{21,37}. However, a strain of Bacillus stearothermophilus produced three mannanases denoted as A, B and C. Migration of the mannanase B and C on SDS-PAGE showed identical and relative molecular weights of 73±6 kDa. The mannanase A migrated as two sharp bands on SDS-PAGE, one of which migrated identically to mannanase B and C migration while the of second band corresponded to a protein of lower molecular 58±5¹¹. Similarly four weight. different mannanases having molecular weight of 22, 61.2, 57 and 42 kDa, have been reported from Sclerotium rolfsii³⁸. Bacteroides ovatus, a gram negative obligate anaerobe bacteria produce two mannanases, one outer membrane bound and one soluble. It was found that outer membrane bound mannanase was made up of three subunits having MWs 94.5, 61 and 43 kDa respectively,³⁹ whereas soluble mannanase was monomeric protein having MW 61 kDa on SDS-PAGE²². Both enzymes differs each other with respect to stability and isoelectric point. Difference in the gel mobility behavior of mannanases suggests that extra care is needed in analyzing these enzymes with SDS-PAGE gels when their molecular weight and purity are to be evaluated.

4. PURIFICATION OF RECOMBINANT MANNANASES

Gene cloning is a rapidly progressing technology that has been instrumental in improving our understanding of the structure–function relationship of genetic systems. Apart from this purification of recombinant enzyme is straight forward as high expression levels of the target enzyme can be attained⁴⁰, which increases the ratio of target enzyme to contaminants, and can eliminate or reduce the requirement for an initial concentration step. Purification can be further simplified if the recombinant protein displays

some pronounced physicochemical characteristic, which is not displayed by native This is exemplified by the host protein. extremelv recombinant expression of thermostable enzyme (derived from thermophilic bacterium Thermoanaerbacterium polysaccharolyticum) in mesophilic host organism such as E.coli. Heating of crude extract at 70°C for 10 min results in the denaturation and precipitation of native E.coli proteins, which can be removed by centrifugation, leaving behind a partially purified recombinant protein in solution ⁴¹. Genetic engineering techniques also facilitate the incorporation of specific peptides or protein tags to the protein of interest. A tag is chosen which confers on the resultant hybrid protein some pronounced physicochemical characteristics. facilitating the subsequent purification. Such a molecule is normally produced by fusing a DNA sequence which codes for the tag to one end of the genetic information encoding the protein of interest. Tags that allow rapid and straightforward purification of the protein by techniques such as ion exchange, hydrophobic interaction and affinity chromatography have been designed and successfully employed. A number of microbial mannnases have been cloned and expressed in heterologous hosts². In most of the recombinant mannanases a purification tag consisting of polyhistidine are employed to purify protein by metal chelate affinity chromatography. The metal ions most commonly used are Zn⁺², Ni⁺² and Cu⁺². Basic groups on protein surfaces, most notably the side chain of histidine residues, are attracted to the metal ions, forming the weak coordinate bonds. Elution of bound proteins is under taken by lowering the buffer pH (this cause protonation of the histidine residues, which are then unable to coordinate with the metal ions)42-49.

5. CONCLUDING REMARKS AND FUTURE TRENDS ON MANNANASE PURIFICATION STRATEGIES

A critical overview of the purification procedures for microbial mannanases shows that they have largely been purified through traditional multistep chromatographic methods. These are

time-consuming and generally yield low sequence optimal recoveries. An of chromatographic methods that maximizes recovery yields and purification factors is difficult to achieve, but a three-step mannanase purification strategy can be suggested which can give appropriate purification fold and yield (Ammonium Sulphate precipitation Anion Exchange Chromatograph Hydroxyapatite Chromatography/Anion Exchange Chromatography). We found that IEX was commonly used as the first chromatographic step as well as last step along with gel filtration in the purification schemes for these enzymes. A detailed examination of the mannanase purification procedures reported in the literature showed that, in general, the first step of the purification schemes was the limiting step with regard to the yield. Aqueous two-phase systems (ATPS) can be applied to the first downstream purification steps for mannanases, permitting simultaneous separation and concentration of the target protein and the integration of fermentation with downstream processing. We found very few examples of ATPS for mannanase purification in the literature^{50,51}. ATPS-based approaches to enzyme recovery may have immense potential in the purification of mannanases. CBDs are specific features of multimeric mannanases that can affect the development of mannanase affinity-purification processes⁵². The CBDs are also versatile new tools for the construction of efficient affinitypurification systems through the engineering of a fusion protein consisting of a target polypeptide and specific CBDs in combination with a specific affinity matrix^{53,54,55}. These structures are used as biological anchorage systems and are already commercially available (Velcro®), linking a large variety of molecules chemicals readily and to available. cellulose matrices. biocompatible Velcro (FuturaGene Israel Ltd [formerly known as CBD Technologies, Ltd]) is a registered trademark that uses cellulose-binding domains (CBDs). CBD is a protein, which acts as a biologic "Velcro," binding to cellulose and chitin. The CBD can thus serve as a molecular anchor or trap by binding a wide variety of molecules of interest to readily available cellulose matrices, thus serving a broad range of purposes, including purification. diagnostics. and transgenics: bioprocessing: plant waste management-bioremediation, environmental decontamination; biotechnology-peptide isolation, enzyme immobilization; diagnosticsdiagnosis of water and food contamination. Furthermore, plants transformed with the CBD gene show significant growth enhancement.

In order to fully exploit the immense potential of CBDs, it is necessary to understand the ways in which they bind to and desorbs from cellulose. The range of their applications will be greatly extended by having a comprehensive library of CBDs with different binding and desorption characteristics and substrate "anchoring" specificities. Using mannanase CBD for biospecific interaction with cellulose offers several advantages over chemical immobilization of mannanases, as do other protein-engineering methods of coupling proteins to matrices. The characteristics for anchoring CBDs do not require chemical activation of the matrix, thus eliminating the use of hazardous compounds. Purification and immobilization may be provided in a one-step procedure, decreasing the number of steps in the purification scheme, which significantly reduces the downstream costs. Also, cellulose is an inexpensive support and can be obtained commercially in various forms. A hurdle for many current biotechnology processes is the large volume of water from which an enzyme or other desired product must be recovered, thereby requiring a concentration step before purification. The major production costs (50-90%) for a typical biological product reside in the strategy used_for purifying. Therefore, an efficient and cost effective bio separation technique for purifying the protein in high quantity is required. The key to the wide utilization of mannanases lies in furthering the understanding of their downstream processing integrating it with their upstream and processing. This should provide better insights into improving the economics of the entire purification process. To obtain a competitive purification process, it is necessary to evaluate

both the separation and purification processes, taking into account each individual purification step. The influence of each step on the following step, in terms of recovery yield and purification factor is crucial for the optimization of a purification strategy. Process strategies that integrate unit operations must be developed to decrease the total number of steps in the downstream purification process. A multidisciplinary approach, based on techniques from molecular biology to engineering sciences,

CONFLICT OF INTEREST: None

REFERENCES

- Hema, T.A., Helen Pappa, T., (2012). Production, Optimization and Enzymatic removal of oligosaccharides removal from soymilk by alpha galactosidase enzyme from rock soil *Pseudomonas* spp. MCCB3. Int J Pharma Bio Sci, 3(4): B 770-781.
- Chauhan, P.S., Puri, N., Sharma, P., Gupta, N., (2012). Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol, 93(5):1817-1830.
- Van Zyl, W.H., Rose, S.H., Trollope, K., 3. Gorgens, J.F., (2010). Fungal βmannanases: mannan hvdrolvsis. heterologous production and biotechnological applications. Proc Biochem, 45:203–213.
- Harjunpaa, V., Teleman, A., Aho, M.S., Drakenberg, T., (1995). Kinetic and Stereochemical studies of mannooligosaccharides hydrolysis catalysed by β-mannanases from *Trichoderma reesei*. Eur J Biochem, 234:278-283.
- Yan, X.X., An, X.M., Gui, L.L., Liang, D.C., (2008). From the structure to function: Insights into the catalytic substrate specificity and thermo stability displayed by *Bacillus subtilis* mannanase BCman. J MolBio, 379:535-544.
- 6. Zhang, Y., Ju, J., Peng, H., Gao, F., Zhou, C., Zeng, Y., Xue, Y., Li, Y., Henrissat, B.,

is needed to more efficiently purify mannanases.

ACKNOWLEDGEMENT

Prakram Singh Chauhan is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing a Senior Research Fellowship.

Gao, G.F., Ma, Y., (2008). Biochemical and Structural characterization of the intracellular mannanase AaManA of *Alicyclobacillus acidocaldarius* reveals a novel glycoside hydrolase family belonging to clan GH-A. J Biochem Molbio, 283(46):31551-31558.

- Zhao, Y., Zhang, Y., Cao, Y., Qi, J., Mao, L., Xue, Y., Gao, F., Hao, P., Wang, X., Gao, G.F., Ma, Y., (2011). Structural analysis of alkaline β-mannanase from alkalophilic *Bacillus* sp. N16-5: implication for adaptation to alkaline conditions. PLoS One, 6(1):e14608. doi:10.1371/journal. pone.0014608.
- Songsiriritthigul, C., Lapboonrueng, S., Roytrakul, S., Haltrich, D., Yamabhai, M., (2011). Crystallization and preliminary crystallographic analysis of β-mannanase from *Bacillus licheniformis*. Struc Biol Crystal Commu, 67: 217–220. doi:10.1107/S1744309110049067.
- Duffaud, G.D., McCutchen, C.M., Leduc, 9. P., Parker, K.N., Kelly, R.M., (1997). Purification and characterization of extremely thermostable β -mannanase, β mannosidase, and α -galactosidase from eubacterium the hyperthermophilic Thermotoga neopolitana 5068. Appl Environ Microbiol, 63:169–177.
- 10. Mou, H., Zhou, F., Jiang, X., Liu, Z., (2011). Production, purification and

properties of β-mannanase from soil bacterium *Bacillus circulans* M-21. J Food Biochem, 35:1451–1460.

- Talbot, G., Sygusch, J., (1990). Purification and characterization of thermostable βmannanase and α-galactosidase from *Bacillus stearothermophilus*. Appl Environ Microbiol, 56:3505-3510.
- Regalado, C., Garcia-Almendarez, B.E., Venegas-Barrera, L.M., Tellez-Jurado, A., Rodriguez-Serrano, G., Huerta-Ochoa, S., Whitaker, J.R., (2000). Production, partial purification and properties of βmannanases obtained by solid substrate fermentation of spent soluble coffee wastes and copra paste using *Aspergillus oryzae* and *Aspergillus niger*. J Sci Food Agric, 80: 1343–1350.
- Meenakshi., Singh, G., Bhalla, A., Hoondal, G.S., (2010). Solid state fermentation and characterization of partially purified thermostable mannanase from *Bacillus* sp. MG-33. Bioresources, 5(3):1689–1701.
- Wu, M., Tang, C., Li, J., Zhang, H., Guo, J., (2011). Bimutation breeding of *Aspergillus niger* strain of β-mannanase production by solid state fermentation. Carbohy Res, 346:2149-2155.
- 15. Kim, D.Y., Ham, S.J., Lee, H.J., Cho, H.Y., Kim, J.H., Kim, Y.J., Shin, D.H., Rhee, Y.H., Son, K.H., Park, H.Y., (2011). Cloning and characterization of a modular GH5 β -1,4-mannanase with high specific activity from the fibrolytic bacterium *Cellulosimicrobium* sp. strain HY-13. Biores Technol, 102:9185–9192. doi:10.1016/j.biortech.2011.06.073.
- Yin, L.J., Tai, H.M., Jiang, S.T., (2012). Characterization of mannanase from a novel mannanase producing bacterium. J Agri Food Chem, 60:6425–6431.
- Mudau, M.M., Setati, M.E., (2008). Partial purification and characterization of endo-β-1,4 mannanases from *Scopularipsis candida* strains isolated from solar salterns. Afri J Biotechnol, 7(13):2279-2285.

- Naganagouda, K., Salimath, P.V., Mulimani, V.H., (2009). Purification and characterization of endo-β-1,4 mannase from *Aspergillus niger gr.* for application in food processing industry. J Microbiol Biotechnol, 19(10):1184-1190.
- Georis, J., Giannotta, F., Buyl, E., Granier, B., Frère, J.M., (2000). Purification and characterization of three endo-β-1,4xylanases produced by *Streptomyces* sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulps. Enz Microb Technol, 26: 178–186.
- Bailey, M.J., (1988) A note on the use of dinitrosalicylic acid for determining the products of enzymatic reactions. Appl Microbiol Biotechnol, 29:494–496.
- 21. Blibech, M., Ghorbel, R.E., Chaari, F., Dammak, I., Bhiri, F., Neifar, М., S.E., (2010). Chaabouni. Improved mannanase production from Penicillium occitanis by fed-batch fermentation using ISRN acacia seeds. Microbiol, doi:10.5402/2011/938347.
- Gherardini, F.C., Salyers, A.A., (1987a). Characterization of an outer membrane mannanase from *Bacteroides ovatus*. J Bacteriol 16:2031–2037.
- Summpunn, P., Chaijan, S., Isarangkul, D., Wiyakrutta, S., Meevootisom, V., (2011). Characterization, gene cloning and heterologous expression of β-mannanase from a thermophilic *Bacillus subtilis*. J Microbiol, 49(1):86–93.
- Akino, T., Nakamura, N., Horikoshi, K., (1988). Production of β-mannosidase and β-mannanase by an alkalophilic *Bacillus* sp.. App Microbiol Biotechnol, 26:323–327.
- Civas, A., Eberhard, R., le Dizet, P., Petek, F., (1984). Glycosidases induced in Aspergillus tamarii secreted α-Dgalactosidase and β-D-mannanase. Biochem, 219:857–863.
- Atac, I.A., Hodits, R., Kristufek, D., Kubicek, C.P., (1993). Purification and characterization of a β- mannanase of *Trichoderma reesei* C-30. Appl Microbiol Biotechnol, 39:58-62.

- Stalbrand, H., Aho, M.S., Tenkanen, M., Viikari, V., (1993). Purification and characterization of two β-mannanase from *Trichoderma reesei*. J Biotechnol, 29(3):229-242.
- Tamaru, Y., Araki, T., Amagoi, H., Mori, H., Morishita, T., (1995). Purification and characterization of an extracellular β-1,4mannanase from a marine bacterium, *Vibrio* sp. strain MA-138. App Environ Microbiol, 61:4454-4458.
- Yoshida, S., Sako, Y., Uchida, A., (1998). Cloning, Sequence analysis and expression in *Escherichia coli* of a gene coding for an enzyme from *Bacillus circulans* K-1 that degrade guar gum. Biosci Biotechnol Biochem, 62:514-520.
- Setatti, M., Adenmark, P., Zyl, WH., (2001). Expression of the Aspergillus aculeatus Endo-β-1,4-mannanase encoding gene (man1) in Saccharomyces cerevisiae and characterization of the recombinant enzyme. Pro Exp Purif, 21:105-114.
- Puchart, V., Vršanská, M., Svoboda, P., Pohl, J., Ögel, ZB., Biely, P., (2004). Purification and characterization of two forms of endo-β-1,4-mannanase from a thermotolerant fungus, *Aspergillus fumigates* IMI 385708 (formerly *Thermomyces lanuginosus* IMI 158749). Biochem Biophys Acta, 1674:239–250.
- Jiang, Z., Wei, Y., Li, D., Chai, P., Kusakabe, I., (2006). High-level production, purification and characterization of a thermostable βmannanase from the newly isolated *Bacillus subtilis* WY34. Carbohydr Polym, 66:88–96.
- 33. Cai, H., Shi, P., Luo, H, Bai, Y., Huang, H., Yang, P., Yao, B., (2011). Acidic βmannanase from *Penicillium pinophilum* C1: Cloning, characterization and assessment of its potential for animal feed application.

Doi:10.1016/j.jbiosc.2011.08.018.

34. He, X., Liu, N., Li, W., Zhang, Z., Zhang, B., Ma, Y., (2008). Inducible and constitute expression of a novel thermostable alkaline β -mannanase from alkalophilic *Bacillus* sp. N16-5 in *Pichia pastoris* and characterization of the recombinant enzyme. Enz Micro Technol, 43:13-18.

- Katrolia, P., Zhou, P., Zhang, P., Yan, Q., Li, Y., Jiang, Z., Xu, H., (2012). High level expression of a novel β-mannanase from *Chaetomium* sp. exhibiting efficient mannan hydrolysis. Carbohy Pol, 87:480-490.
- Tanaka, M., Umemoto, Y., Okamura, H., Nakano, D., Tamaru, Y., Arak, T., (2009). Cloning and characterization of a β-1,4mannanase 5C possessing a family 27 carbohydrate –binding module from a marine bacterium, *Vibrio* sp. strain MA-138. Biosci Biotechnol Biochem 73:109-116.
- 37. Nakajima, N., Matsuura, Y., (1997). Purification and Characterization of konjac glucomannan degrading enzyme from anaerobic human intestinal bacterium, *Clostridium butyricum-Clostridium beijerinckii* group. Biosci Biotechnol Biochem, 61(10):1739-1742.
- Gübitz, G.M., Hayn, M., Sommerauer, M., Steiner, W., (1997). Mannan degrading enzymes from *Sclerotium rolfsii*: characterization and synergism of two endo-β-mannanases and β-mannosidase. Biores Technol, 58:127–135.
- Gherardini, F.C., Salyers, A.A., (1987a). Characterization of an outer membrane mannanase from *Bacteroides ovatus*. J Bacteriol, 16:2031–2037.
- Luo, H., Wang, Y., Wang, H., Yang, J., Yang, Y., Huang, H., Yang, P., Bai, Y., Shi, P., Fan, Y., Yao, B., (2009). A novel highly acidic β-mannanase from the acidophilic fungus *Bispora* sp. MEY-1: gene cloning and overexpression in *Pichia pastoris*. App Microbiol Biotechnol, 82:453-461.
- 41. Cann, I.K.O., Kocherginskaya, S., King, M.R., White, B.A., Mackie, R.I., (1999). Molecular cloning, sequencing and expression of a novel multidomain mannanase gene from *Thermoanaerobacterium polysaccharolyticum*. 181(5):1643-1651.

- 42. Shi, P., Yuan, T., Zhao, J., Huang, H., Luo, H., Meng, K., Wang, Y., Yao, B., (2010). Genetic and biochemical characterization of a protease–resistant mesophilic βmannanase from *Streptomyces* sp. S27. J Ind Microbiol Biotechnol, 38:451–458. doi:10.1007/s10295-010-0789-3.
- Vu., Hang, T.T., Quyen, D.T., Dao, T.T., Nguyen, S.L.T., (2012). Cloning, High-Level Expression, Purification, and Properties of a Novel Endo-β-1,4-Mannanase from *Bacillus subtilis* G1 in *Pichia pastoris*. J Microbiol Biotechnol, 22(3):331–338.
- 44. Ethier, N., Talbot, G., Sygusch, J., (1998).
 Gene Cloning, DNA Sequencing, and Expression of Thermostable β-Mannanase from *Bacillus stearothermophilus*. Appl Environ Microbiol, 64: 4428-4432.
- 45. Perret, S., Belaich, A., Fierobe, H.P., Belaich, J.P., Tardif, C., (2004). Towards designer cellulosomes in *Clostridia*: mannanase enrichment of the cellulosomes produced by *Clostridium cellulolyticum*. Appl Biochem Biotechnol, 40:255-259.
- 46. Li, Yanan., Yang, P., Meng, K., Wang, Y., Luo, H., Wu, N., Fan, Y., Yao, B., (2008). Gene Cloning, Expression and Characterization of a novel β-mannanase from *Bacillus circulans* CGMCC 1416. J Microbiol Biotechnol, 18:160-166.
- 47. Song, J.M., Nam, K.W., Kang, S.G., Kim, C.G., Kwon, S.T., Lee, Y.H., (2008).
 Molecular cloning and characterization of a novel cold active β-1,4-D-mannanase from the Antarctic springtail *Cryptopugus antarcticus*. Comp Biochem Physio, Part B 151:32-40.
- Hsiao, Y.M., Liu, Y.F., Fang, M.C., Tseng, Y.H., (2010). Transcriptional regulation and molecular characterization of the manA gene encoding the biofilm dispering enzyme mannan endo-1,4-β-mannosidase in *Xanthomonas campestris*. J Agri Food Chem, 58:1653-1663.
- 49. Zhou, J., Zhang, R., Gao, Y., Li, J., Tang, X., Mu, Y., Wang, F., Li, C., Dong, Y., Huang, Z., (2012). Novel low temperature-

active, salt tolerant and protease-resistant endo-1,4- β -mannanase from a new *Sphingomonas* strain. J Biosci Bioeng, 113(5):568-574.

- 50. Antov, M., Anderson, L., Anderson, A., Tjerneld, F., Stalbrand, H., (2006). Affinity portioning of a *Cellulomonas fimi* βmannanase with a mannan-binding module in galactomannan/starch aqueous twophase system. J Chromatogr, 1123:53-59.
- 51. Ruiz, F.R., Benavides, J., Aguillar, O., Palomares, R., (2012). Aqueous twophase affinity portioning systems: Current applications and trends. doi.org/10.1016/j.chroma.2012.04.077.
- 52. Shpigel, E., Goldlust, A., Eshel, A., et al. (2000). Expression, purification and applications of *staphylococcal* Protein A fused to cellulose binding domain. Appl Biochem Biotechnol, 31:197–203.
- 53. Millward-Saddler S.J. Poole, D.M., Henrissat, B. et al. (1994). Evidence for a general role for high affinity noncatalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol Microbiol, 11:375–382.
- 54. Linder, M., Teeri, T.T., (1997). The roles and function of cellulose-binding domains. J Biotechnol, 57:15-28.
- 55. Linder, M., Nevanen, T., Söderholm, L., Bengs, O., Teeri, T.T., (1998). Improved immobilization of fusion proteins via cellulose-binding domains. Biotechnol Bioeng, 60: 642–647.
- 56. Hossain, M.Z., Abe, J.I., Hizukuri, S., (1996). Multiple forms of β- mannanase from *Bacillus* sp. KK01. Enz Microbiol Technol, 18:95–98.
- Zakaria, M.M., Yamamoto, S., Yagi, T., (1998b). Purification and characterization of an endo-1,4-β-D-mannanase from *Bacillus subtilis* KU-1. FEMS Microbiol Lett, 158:25-31.
- Zhang, J., He, Z., Hu, K., (2000). Purification and characterization of βmannanase from *Bacillus licheniformis* for industrial use. Biotechnol Lett, 22:1375-1378.

- Yu, H.Y., Sun, Y.M., Wang, W.J., Yang, Y.S., Yang, Y.H., (2003). Purification and properties of *Bacillus subtilis* SA-22 endo-1,4-β-D-mannanase. She. Wu Gon Che Xu Ba, 19(3):327-330.
- Takeda, N., Hirasawa, K., Uchimura, K., Nogi, Y., Hatada, Y., Akita, M., (2004). Purification and enzymatic properties of a highly alkaline mannanase from alkaliphilic *Bacillus* sp. strain JAMB-750. J Biol Macromol, 4:67–74.
- Li, Y.N., Meng, K., Wangm, Y.R., Yao, B., (2006). A β-mannanase from *Bacillus* subtilis B36: purification, properties sequencing, gene cloning and expression in *E. coli.* Z. Naturforsch (C), 61:840–846.
- Zhang, M., Chen, X.L., Zhang, Z.H., Sun, C.Y., Chen, L.L., He, H.L., Zhou, B.C., Zhang, Y.Z., (2009). Purification and functional characterization of endo-βmannanase MAN5 and its application in oligosaccharides production from konjac flour. Appl Microbiol Biotechnol, 83: 865-873.
- 63. Nakajima, N., Matsuura, Y., (1997). Purification and Characterization of konjac glucomannan degrading enzyme from anaerobic human intestinal bacterium, *Clostridium butyricum-Clostridium beijerinckii* group. Biosci Biotechnol Biochem, 61(10):1739-1742.
- 64. Kataoka, N., Tokiwa, Y., (1998). Isolation and characterization of an active mannanase-producing anaerobic bacterium, *Clostridium tertium* KT- 5A from lotus soil. J Appl Microbiol, 84:357–367.

- Zakaria, M.M., Yamamoto, S., Yagi, T., (1998b). Purification and characterization of an endo-1,4-β-D-mannanase from *Bacillus subtilis* KU-1. FEMS Microbiol Lett, 158:25-31.
- Chandra, M.R.S., Lee, Y.S., Park, I.H., Zhou, Y., Kim, K.K., Choi, Y.L., (2011). Isolation, purification and characterization of a thermostable β-mannanase from *Paenibacillus* sp. DZ3. J Kor Soc App Bio Chem, 54(3):325–331.
- Adesina, F.C., Oluboyede, O.A., Onilude, A.A., (2013). Production, purification and characterization of a β-mannanase by *Aspergillus niger* through solid state fermentation (SSF) og *Gmelina arborea* shavings. Afr J Microbio Res, 7(4):282-289.
- Adenmark, P., Varga, A., Medve, J., Harjunpaa, V., Drakenberg, T., Tjerneld, F., Stalbrand, H., (1998). Softwood hemicellulose-degrading enzymes from *Aspergillus niger*: purification and properties of a β-mannanase. J. Biotechnol. 63, 199–210.
- Fattah, A.F., Hashem, A.M., Ismail, A.M.S., Refai, M.A.E., (2009). Purification and some properties of β-mannanases from *Aspergillus oryzae* NRRL 3448. J Appl Sci, 5(12):2067-2073.
- Kansoh, A.L., Nagieb, Z.A., (2004). Xylanase and mannanase enzymes from *Streptomyces galbus* NR and their use in biobleaching of softwood kraft pulp. Anton Van Leeuwonhoek, 85:103–114.

This article can be downloaded from www.ijpbs.net B - 193