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A stochastic model for day-ahead Micro-Grid (MG) management is proposed in this paper. The presented
model uses probabilistic reconfiguration and Unit Commitment (UC) simultaneously to achieve the opti-
mal set points of the MG’s units besides the MG optimal topology for day-ahead power market. The pro-
posed operation method is employed to maximize MG’s benefit considering load demand and wind
power generation uncertainty. MG’s day-ahead benefit is considered as the Objective Function (OF)
and Particle Swarm Optimization (PSO) algorithm is used to solve the problem. For modeling uncertain-
ties, some scenarios are generated according to Monte Carlo Simulation (MCS), and MG optimal operation
is analyzed under these scenarios. The case study is a typical 10-bus MG, including Wind Turbine (WT),
battery, Micro-Turbines (MTs), vital and non-vital loads. This MG is connected to the upstream network
in one bus. Finally, the optimal set points of dispatchable units and best topology of MG are determined
by scenario aggregation, and these amounts are proposed for the day-ahead operation. In fact, the pro-
posed model is able to minimize the undesirable impact of uncertainties on MG’s benefit by creating dif-
ferent scenarios.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

Distribution networks are reconfigured in order to power loss
reduction, load balancing and service restoration in critical opera-
tional conditions [1]. Impact of MG on Distribution Network
Reconfiguration (DNR) is discussed in [2–4]. To solve the optimal
DNR problem for power loss minimization, the PSO algorithm
using some scenarios generated by MCS is presented in [2]. Load
Economic Dispatch (ED) and DNR, considering costs of generation
and storage in MG, utility and network power loss as OF, are stud-
ied in [3,4]. The Distributed Generators (DGs) are considered by the
stochastic nature according to forecasting weather data. However,
load ED and DNR are not considered within the same time
intervals.

MG reconfiguration is analyzed in [5–8]. A new algorithm is
proposed to solve MG reconfiguration problem based on an
ordered binary decision diagram in order to minimize power loss
cost in [5]. A hybrid programming technique to solve MG reconfig-
uration problem to minimize power loss and service restoration is
proposed in [6]. Considering the operational requirements, load
maximizing and demand supply priority after fault, some method-
ologies that are based on genetic algorithm (GA) and graph theory,
are used to reconfigure MG in [7]. Neglecting network power loss
and line capacity, a scheme to recover much more loads with min-
imum switching operation is presented in [8]. However, stochastic
nature of renewable energy resources and load demand in MGs are
neglected in these studies.

MG UC and ED are discussed in [9–14]. A stochastic model for
considering wind power uncertainty is investigated in [9]. Differ-
ent scenarios are generated by MCS and are applied to solve UC
problem. A probabilistic approach including point estimate
method for handling uncertainties and a self-adaptive optimiza-
tion algorithm for optimal energy management of MGs is proposed
in [10]. The offered mutation technique makes the solution able to
meet global optimum. A new algorithm based on an adaptive mod-
ified PSO algorithm to optimize multi-objective management of
MG is presented in [11]. Three optimization algorithms are devel-
oped for optimal MG operation in [12]. A multi-objective optimiza-
tion, using weight coefficient to coordinate the proportion of
generation and environmental costs, is applied to the environmen-
tal and economic problem of MG in [13]. A new stochastic method
using the probability distribution function of variables and the
roulette wheel mechanism is proposed in [14]. Some scenarios
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Nomenclature

xn decision variable
OF objective function
Nmt number of microturbines
amt ; bmt; cmt ;Kom;ast;mt ;bst;mt micro-turbine cost coefficients
toff micro-turbine off time
uj on/off state of micro-turbine j at interval t
i the interest rate
n unit life time
CF unit capacity factor
bem micro-turbine emission coefficient
Ton
j�1; T

off
j�1 micro-turbine on/off time

MUT; MDT minimum up/down time
CWC;bat battery wear cost
Crep;bat battery replacement cost
Nbat number of batteries
Qlifetime lifetime throughput of battery

gbat battery roundtrip efficiency
SOC battery state of charge
SOCin battery initial state of charge
qbuy-network power cost bought from upstream network
Nload out number of not supplied loads
qpenalty power cost paid to vital loads if is shed
Nload vital out number of unsupplied vital loads
Nswitching number of switching
cvx variance coefficient of parameter x
rx standard deviation of parameter x
lx mean value of parameter x
Ns number of scenarios
w1;wr ;wcut-out cut-in, rated, and cut-out wind speed
Pbest, Gbest best position of each particle until current iteration

and best global particle

R. Jabbari-Sabet et al. / Electrical Power and Energy Systems 75 (2016) 328–336 329
are generated by using of the proposed probabilistic method. Then
similar scenarios are eliminated. A self-adaptive bee swarm opti-
mization algorithm is proposed in [15]. Different uncertainty mod-
eling methods are reviewed and the 2m + 1 point estimate method
is used for modeling uncertainties of load demands, market price,
WT and photovoltaic systems. UC is investigated on a MG including
several grid parallel PEM-fuel cell power plants in [16,17]. The
objective is optimal sizing of storage devices and committed units’
output power is scheduled with 15 min step over a day. A two
stage algorithm is proposed to solve the complexity of the problem
imposed by stochastic nature of electrical/thermal load, photo-
voltaic and WT output power and market price.

Some novel aspects in DNR studies are represented in [18–24].
Time varying data characteristic is considered in [18,20]. A method
to determine annual reconfiguration scheme, considering switch-
ing cost and time-dependent variables such as load profiles, is pro-
posed in [18]. The best topology for each hour is determined in
[19], aimed at minimizing power loss and switching cost. Consid-
ering time-varying loads, a probabilistic approach for optimal
DNR to reduce the total cost of operation, including power loss
and switching cost, is presented in [20]. The proposed method
can obtain an optimal balance between the number of switching
and the power loss.

Reconfiguration with different kinds of uncertain data is pre-
sented in [21,22]. Different kinds of uncertainty are modeled in
[21], in order to assess stochastic distribution feeder reconfigura-
tion in the presence of fuel cell power plants. Interval analysis is
used in [22], to deal with imprecision and uncertainties in reliabil-
ity input, electrical parameters and load data to present a reliabil-
ity oriented reconfiguration method in order to enhance
distribution network performance. A methodology to convert a dis-
tribution network to an autonomous MG is presented in [23]. The
methodology determines number, site and size of DGs and struc-
tural modifications in distribution network. Multi-scenario analy-
sis handled with decision theory concepts is applied in [24], to
determine intra-day distribution configuration. The determined
configurations are then used to formulate a demand response
scheme, aimed at demand reduction to further decreasing in distri-
bution network losses.

However, none of the above-mentioned papers has considered
the reconfiguration and UC simultaneously. As the review shows,
probabilistic reconfiguration and UC for MG optimal management,
is a novel operation scheme. Considering wind power and load
demand uncertainties, simultaneous reconfiguration and UC for
hourly scheduling is used to estimate MG’s benefit in the uncertain
environment. The paper includes five sections. In section ‘Problem
formulation’, problem formulation is introduced. In section ‘Pro-
posed algorithm’, proposed algorithm is described. Section ‘Simula
tion results’ indicates simulation results and section ‘Conclusion’ is
dedicated to conclusion.

Problem formulation

One of the most involving problems that MG owner faces is how
to increase the benefit. There are two methods to achieve this goal:
UC and reconfiguration. UC has been regarded very much. How-
ever, reconfiguration has been ignored for this purpose. Reconfigu-
ration provides MG with more benefit by changing the topology.
Topology changes can cause loss reduction or line allocation with
more power transfer capacities. Uncertainties of wind power and
load demand are taken into account in this paper. The MG under
study includes WT, battery, MTs, vital and non-vital loads. The
MG’s structure is shown in Fig. 1 [25]. In the following subsections
problem formulation is described.

Decision variables

The three MTs output power (Pmt), battery charge or discharge
(Pbat), power exchange with upstream network (Pgrid) and switches
status (n topology) are considered as decision variables for each
hour. So, there are six vectors of decision variables for each hour
and 144 variables for day-ahead, which must be determined.

xn ¼

Pmt1ð1Þ Pmt2ð1Þ Pmt3ð1Þ Pbatð1Þ Pgridð1Þ n topologyð1Þ
Pmt1ð2Þ Pmt2ð2Þ Pmt3ð2Þ Pbatð2Þ Pgridð2Þ n topologyð2Þ

� � � � � �
� � � � � �
� � � � � �

Pmt1ð24Þ Pmt2ð24Þ Pmt3ð24Þ Pbatð24Þ Pgridð24Þ n topologyð24Þ

2
66666666664

3
77777777775

ð1Þ
Objective function

MG’s benefit, which is defined as the difference between rev-
enue and cost, is considered as OF and defined as follows [26]:

Max : OF ¼
X24
t¼1

ðrevenueðtÞ � costðtÞÞ ð2Þ
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Fig. 1. MG structure scheme.
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revenue includes the price of power sold to MG’s loads (Rload) as well
as to the upstream network (Rnetwork).

revenue ¼ Rload þ Rnetwork ð3Þ

Rload ¼
XNload

k¼1

ðqload;k � pload;k � tÞ ð4Þ

where Rload depends on the k-th load demand (pload,k), and power
price (qload,k) at that hour. t is set as one hour and Rnetwork is calcu-
lated as follows:

Rnetwork ¼ qsell-network � psell-network � t ð5Þ
Cost includes costs of MTs (Cmt), WT (Cwind), battery (Cbat),

power bought from upstream network (Cnetwork), power loss cost
(Closs) and switching cost (Cswitching).

cost ¼
XNmt

j¼1

CmtðjÞ þ Cwind þ Cbat þ Cnetwork þ Closs þ Cswitching ð6Þ
MT cost
MT’s cost (Cmt) includes fuel (CFuel,mt), maintenance (Co&m),

startup (Cst,mt), capital (Ccapital,mt) and emission cost (Cem,mt). It is
formulated in (7)–(12).
Cmt ¼ CFuel;mt þ Co&m þ Cst;mt þ Ccapital;mt þ Cem;mt ð7Þ
CFuel;mt ¼ amt þ bmtPmt þ cmtP

2
mt

� �
ð8Þ

Co&m ¼ KomPmt � t ð9Þ
Cst;mt ¼ ast;mt þ bst;mt 1� e�ðtoff =sÞ

� �� ujðuj � uj�1
� � ð10Þ

Ccapital;mt ¼
I � ið1þiÞn

ð1þiÞn�1

Pmt;rated � CFmt � 8760
� Pmt � t ð11Þ

Cem ¼ ðbemÞPmt ð12Þ
Pmt,rated, Pmt are rated and hourly power of MT respectively.

WT probabilistic model
A doubly fed induction generator WT is connected to the 3rd

bus of the MG through an ac/dc dc/ac convertor. WT output uncer-
tainty is simulated by MCS similar to [9]. Wind speed data for each
hour of day-ahead within twelve past years (from 2000 to 2011) is
considered as input data. It means that there are twelve wind
speeds for each hour of the day-ahead which belongs to different
years. The Weibull parameters are calculated as follows:

r ¼ r
wmean

� ��1:086

c ¼ wmean

Gammað1þ 1=rÞ ð13Þ
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where r, c are Weibull parameters and, r, wmean are standard devi-
ation and mean values of wind speed in each hour respectively. The
Weibull density function (f(w)) for each hour is defined as:

f ðwÞ ¼ r
c

w
c

� �r�1
exp � w

c

� �r
� 	

ð14Þ

A number is generated randomly between 0 and 1 for each
hour. This number is found on theWeibull Cumulative Distribution
Function (CDF) graph and the corresponding wind speed is consid-
ered as wind speed. Twenty-four wind speeds are produced by this
way separately. WT output power (Pwind) for each scenario based
on wind speed (w) is calculated as follows:

PwindðwÞ ¼

0 0 6 w 6 w1

ða1 þ a2wþ a3w2ÞPrated w1 6 w 6 wr

Prated wr 6 w 6 wcut-out

0 w P wcut-out

8>>><
>>>:

ð15Þ

Wind cost (Cwind) is given by [4]:

CwindðtÞ ¼ Ccapital-wind þ Comwind=8760
� � ð16Þ

WT coefficients, a1, a2, a3 are set as 0.1234, �0.0963 and 0.0184,
respectively. WT capital cost (Ccapital-wind) is calculated similar to
(11) and (Comwind) is operation and maintenance cost of WT.

Battery cost
MGs need storage devices to control and manage generation

variation. Batteries, as one of the most important components of
MGs, store power to control and manage generation variation.
Battery cost is as follows:

Cbat ¼ CWC;bat � jPbatj � t þ CO&M;bat=8760 ð17Þ

CWC;bat ¼ Crep;bat

Nbat � Qlifetime
ffiffiffiffiffiffiffiffigbat

p ð18Þ

where Pbat represents battery exchange power in each hour.

Network cost
If power flows from upstream network to MG, pbuy-network is

equal to Pgrid, otherwise it is zero. So cost of the power purchased
from upstream network is calculated as follows:

Cnetwork ¼ qbuy-network � pbuy-network � t ð19Þ
Loss cost
After backward/forward load flow analysis, loss cost (Closs) is

calculated using all line losses in each hour.

ClossðtÞ ¼
XNline

k¼1

3 � qlossðtÞ � rk � I2kðt; kÞ � t
� �

ð20Þ

where qloss is loss price and rk is the real part of k-th branch
impedance.

Switching cost
Switching cost (Cswitching), is generated as a result of reconfigura-

tion, includes initial installation and changing topologies cost by
opening some lines and closing some others [27].

Cswitching ¼ qswitching � Nswitching þ CCapital switching=8760 ð21Þ
qswitching;CCapital switching indicate each switching operation and capital
cost of automatic switches respectively.

System constraints

It is supposed that the MG is connected to the upstream net-
work in one bus and according to its benefit can decide when to
exchange power with the upstream network. For observing stabil-
ity criterion, voltage stability, power balance and other constraints
should be in the allowable limitations. Whereas the load demand
may be more than the MG installed capacity in some hours espe-
cially in peak load (it can also be because of the probabilistic nature
of WT generation, load demand, the amount of energy stored in the
battery and the rate of battery discharge in one hour), the MG has
to exchange power (buy power) with the upstream network and
load shedding is neglected in this paper. The system constraints
are as below:

1. Topology: MG topology should be radial with no loop.
2. Node voltages must be in an acceptable range.
VK ; Vmin < VK < Vmax ð22Þ

where VK is the voltage of k-th bus and Vmin and Vmax are minimum
and maximum acceptable voltages.
3. Branch currents should be less than the maximum allowed

current.

IK ; IK < Imax
K ð23Þ

where IK is the current of k-th branch and Imax
K is the maximum

acceptable current.
4. All loads should be supplied, and power balance constraint

should be provided.

XNmt

k¼1

Pmt;kðtÞ þ PwindðtÞ � PbatðtÞ � PgridðtÞ �
XNload

i¼1

Pload;iðtÞ � PlossðtÞ ¼ 0

ð24Þ

where Pgrid and Ploss are MG’s power exchange with the upstream
network and power loss respectively.
Unit constraints

The constraints of the MG’s units are formulated as follows:

Pmin 6 Pmt 6 Pmax ð25Þ
ðTon

j�1 �MUTÞðuj�1 � ujÞ P 0 ð26Þ
ðToff

j�1 �MDTÞðuj � uj�1Þ P 0 ð27Þ
pbat-min 6 Pbat 6 pbat-max ð28Þ
SOCmin 6 SOCðtÞ 6 SOCmax ð29Þ
Pgrid; jPgridj < Pmax

grid ð30Þ

where Pmin, Pmax are MT’s minimum and maximum output active
power in (25). MT’s on/off constraints are formulated in (26) and
(27). pbat-min, pbat-max are battery’s minimum and maximum output
active power in (28). SOCmin, SOCmax are battery’s minimum and
maximum state of charge in (29). Pmax

grid is maximum MG’s power
exchange with upstream network in (30).
System topology

For modeling different MG topologies in the optimization algo-
rithm, one number is attributed to each topology. When a topology
number is chosen by the optimization program for each hour, the
related MG configuration is used for power flow calculations and
checking constraints at that hour. According to Fig. 1, the MG has
eleven topologies. So each hour topology number is a discrete vari-
able for PSO algorithm, which is denoted with (n topology) in the
decision variables.



Fig. 2. Proposed algorithm.
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Table 1
Line impedance of MG.

From bus To bus Line number R (pu) X (pu) Imax (A)

1 2 1 0.0025 0.01 400
2 3 4 0.0125 0.00375 250
2 6 5 0.0125 0.00375 250
2 8 7 0.0125 0.00375 250
3 4 2 0.021875 0.004375 250
4 5 3 0.02125 0.005625 250
6 7 6 0.023125 0.00625 250
6 4 10 0.0125 0.00375 250
8 6 11 0.0125 0.00375 250
8 9 8 0.021875 0.004375 250
8 10 9 0.0125 0.00375 250

Table 3
The cost characteristics of MTs (capital, maintenance and emission cost coefficients).

I ($) n (year) i (%) CFmt Kom ($/kW h) bem ð!=kWÞ
MT1 4000 20 5 0.4 0.00587 0.1
MT2 4000 20 5 0.4 0.00587 0.1
MT3 4500 20 5 0.4 0.00587 0.1
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Uncertainty model

Uncertainty is modeled by MCS. Some scenarios are generated
for uncertain inputs, i.e. wind speed and load demand. The system
is analyzed under these scenarios as deterministic inputs. So there
are different states which are studied by using different scenarios.
The expected value (f) is used for scenario aggregation.

f ¼
XNs
i¼1

ps � f s ð31Þ

ps is the probability of each scenario, and fs is the amount of vari-
ables in each scenario.cvx which is defined in (32) is called the coef-
ficient of variance.

cvx ¼ rx

lx � N1=2
s

ð32Þ

If cvx is less than a specific tolerance, the result will be relatively
good [28].

Load
Load uncertainty is modeled with a normal distribution func-

tion [4].

diff ðPkðtÞÞ ¼ 1
r

ffiffiffiffiffiffiffi
2p

p e
�ðPk ðtÞ�lÞ2

2r2 ð33Þ

where l, r are mean and standard deviation of each load. The stan-
dard deviation of loads is considered 4% in each hour. The vital load
must have a more reliable supply and so the price is more expen-
sive. This fact is more sensible when a line is out of order but in this
paper line outage is ignored.

Proposed algorithm

The proposed algorithm, as shown in Fig. 2, starts by determin-
ing the WT output power and each load point demand in a proba-
bilistic manner for each hour of the current scenario. The load
demand using mean value, standard deviation and normal
distribution function are also obtained like Ref. [4]. Therefore, the
current scenario consists of a 1 � 24 vector for WT output power
and a 10 � 24 matrix (10 bus load demand in each hour) for
Table 2
The cost characteristics of MTs (fuel and startup cost coefficients).

Pmin (kW) Pmax (kW) amt (¢) bmt ð!=kWÞ cmt ð!=
MT1 0 60 4 1.6 3 ⁄ 10�

MT2 0 60 4 1.6 3 ⁄ 10�

MT3 0 120 6 1.8 3 ⁄ 10�
day-ahead load demand. In the next step, decision variables based
on PSO algorithm are generated for a 24-h period considering their
limitations. It is important to notice that all decision variables of
day-ahead are optimized simultaneously and the MG topology is
determined in addition to the UC. Then power loss is determined
by backward/forward load flow analysis and system constraints
are checked for each hour. If each system constraint is not
observed, OF is penalized. As the PSO algorithm iterations are fin-
ished, the optimal set points of dispatchable units, power exchange
and the best topology of MG are determined for the current
scenario. After enough scenario generation, the amount of MG’s
benefit, optimal set points of units and MG’s topology for each hour
are determined by scenario aggregation. Finally expected value for
each variable is calculated. The average of continuous variables and
the most repeated topology for each hour are determined for sce-
narios as a suggestion for the next day. The average of MG’s benefit
is also determined for scenarios.
Simulation results

The proposed algorithm has been implemented on a MG,
including WT, battery, MTs, vital and non-vital loads. The MG is
connected to the upstream network in one bus. The value of Sbase
and Vbase are equal to 100 KVA and 400 V. Table 1 represents the
MG’s structure data. The characteristic of MG’s units is shown in
Tables 2–6. Load data are presented in Tables 7–9. Power market
price in each hour is shown in Table 10. There are eleven accept-
able topologies in the MG. Therefore, MG topology can have a code
from 1 to 11 for each hour. This code show which lines are under
operation, and which ones are unused. The code which is attribu-
ted to each topology is shown in Table 11. Wind speed data calcu-
lated for each hour by using 12-last-year data is shown in Table 12.

As it is seen in Table 13, after scenario aggregation in the first
hours, MTs do not operate with nominal output power, and batter-
ies start to be charged because of low power price. In the hours
that power price is high (15–21) battery mean power shows a dis-
charge and MTs operate near nominal output power with mini-
mum variance. 1st and 11th topologies have the most
repetitions. These values are proposed as the unit output set point.
Power exchange with the upstream network in most hours is sold
because of less internal unit output power price but during the
hours (19–22) power is purchased while the power price is high
in these hours. This is because of high load demand low power gen-
eration of WT in the most scenarios.

Considering real data of the same day date at year 2012 as a
deterministic criterion, two modes of operation are analyzed:
1 – stochastic UC and 2 – stochastic UC and reconfiguration
kW2Þ ast,mt (¢) bst,mt (¢) MUT (h) MDT (h) s (h)

4 5 10 1 1 2
4 5 10 1 1 2
4 5 10 1 1 2



Table 4
The WT unit characteristic.

Pmin (kW) Pmax (kW) w1 (m/s) wr (m/s) wcut-out (m/s) I ($) n (year) i (%) CFwt Com, wt ($/year)

WT (100 kW) 0 100 3 10 25 90,000 20 5 0.35 1000

Table 5
Battery parameters.

CO&M;bat ($/year) Crep,bat ($) Qlifetime (kW h) Nbat SOCmin (kW) SOCmax (kW) Pmin (kW) Pmax (kW) SOCin (kW)

10 900 10,569 40 80 300 �40 40 200

Table 6
Switching parameters.

qswitching (¢) CCapitalswitching
ð$Þ

1 9071

Table 7
Loads priority.

Load bus number Priority

Load3 Vital
Load4 Not vital
Load5 Vital
Load6 Not vital
Load7 Not vital
Load8 Vital
Load9 Vital
Load10 Not vital

Table 10
Hourly power price.

Hour qsell-network

(¢/kW h)
qbuy-network

(¢/kW h)
qload (not vital)
(¢/kW h)

qload (vital)
(¢/kW h)

1 7 11 6 11
2 7 11 6 11
3 7 11 6 11
4 7 11 6 11
5 7 11 6 11
6 7 11 6 11
7 10 13 9 13
8 10 13 9 13
9 10 13 9 13

10 10 13 9 13
11 10 13 9 13
12 12 15 11 15
13 12 15 11 15
14 12 15 11 15
15 14 18 13 18
16 14 18 13 18
17 14 18 13 18
18 16 24 9 24
19 16 24 9 24
20 16 24 9 24
21 14 18 5 18
22 12 15 5 15
23 12 15 5 15
24 8 11 3 11
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simultaneously (the proposed algorithm). As Table 14 shows the
mean value and standard deviation of MG’s benefits are 49,891
and 3270 cents respectively, when using simultaneous probabilis-
tic reconfiguration and UC. However, if only probabilistic UC is
used, the mean value and standard deviation are 53,068 and
13,863 cents respectively. Comparing these results with determin-
istic combined reconfiguration and UC management using real
data of the same date on year 2012 show that absolute relative
error is 1.58% for the proposed algorithm (probabilistic reconfigu-
ration and UC), however absolute relative error is 4.69% for proba-
bilistic UC. This fact show that the proposed algorithm directs the
MGmanager to achieve to a better approximation of the day-ahead
benefit and optimal units set points. This combined reconfigura-
tion and UC algorithm determines the optimal MG’s topology in
Table 8
Mean value of loads in each hour.

Load3 Load4 Load5 Loa

Pmean (kW) 18 15 40 20

Table 9
Normalized load coefficient (to calculate the hourly mean value) for each hour.

Hour 1 2 3 4

Pload (pu) 0.63 0.57 0.51 0
Hour 9 10 11 1
Pload (pu) 1 0.98 0.96 1
Hour 17 18 19 2
Pload (pu) 0.96 1.28 1.63 1
addition to the units’ set points for day-ahead under uncertainty
environment. Besides, comparing with deterministic UC manage-
ment using real data of the same date on year 2012, the absolute
relative error is 0.75% for the proposed algorithm and 5.57% for
probabilistic UC. This is another result that proves the proposed
algorithm effectiveness. The probability distribution function of
MG’s benefit is shown in Fig. 3. The analysis shows an estimation
of MG’s benefit with different possible input states. The conver-
d6 Load7 Load8 Load9 Load10

20 18 40 12

5 6 7 8

.47 0.37 0.36 0.57 0.71
2 13 14 15 16
.08 1.1 1.02 1 0.96
0 21 22 23 24
.8 1.84 1.77 1.39 1.24



Table 11
Code for each configuration topology.

Code 1 2 3 4 5 6 7 8 9 10 11

Open lines L4 L4 L4 L5 L5 L2 L2 L2 L5 L7 L10
L5 L7 L11 L7 L11 L5 L7 L11 L10 L10 L11

Table 12
Wind speed data calculated for each hour using the 12-last-year data.

Hour 1 2 3 4 5 6 7 8

wmean 4.05 4.65 4.67 3.84 4.53 3.75 3.78 3.23
r 2.14 2.94 3.3 2.53 2.8 2.2 2.58 2.16
Hour 9 10 11 12 13 14 15 16
wmean 4.62 6.2 6.06 5.57 5.69 6.68 6.89 7.77
r 2.4 4.43 2.38 2.7 2.62 3.88 3.91 4.12
Hour 17 18 19 20 21 22 23 24
wmean 7.82 6.93 5.56 5.12 4.78 6.37 5.02 4.46
r 4.37 4.37 3.91 2.49 3.45 4.4 3.16 3

Table 13
Simultaneous optimal configuration and UC result for the mean value of WT and load demand.

Hour Battery (kW) MT1 (kW) MT2 (kW) MT3 (kW) Power exchange
(kW)

Code

l r l r l r l r l r

1 4.49 16.45 42.4 24.1 47.27 20.09 94.55 36.41 �69.64 60.97 11
2 4.57 17.47 40.43 24.05 39.57 23.11 80.2 46.23 �66.77 62.52 1
3 3.27 15.57 34.97 25.43 39.33 24.74 68.92 49.19 �59.87 75.22 11
4 1.6 17.14 34.25 25.51 39.12 24.13 79.12 44.26 �68.99 60.64 11
5 3.16 17.16 28.09 25.47 30.86 26.17 68.31 45.18 �67.01 61.55 11
6 �0.47 15.28 28.79 25.49 33.93 25.01 62.82 45.94 �62.65 60.68 1
7 0.12 16.82 45.61 22.05 46.12 20.27 97.15 39.73 �87.11 63.07 11
8 �2.88 16.09 52.13 15.96 51.8 16.15 102.48 33.72 �82.8 54.91 11
9 �2.76 18.28 50.69 17.49 55.53 10.04 108.34 27.72 �44.68 47.18 11

10 0.83 18.19 54.07 18.32 51.68 17.28 108.72 27.81 �57.55 55.16 11
11 �3.04 15.89 56.27 15.71 49.09 18.52 110.75 23.79 �65.96 44.54 11
12 �1.4 17.08 54.79 10.99 55.56 12.19 114.51 18.05 �47.31 32.7 1
13 �3.8 17.22 51.29 14.21 55.29 12.66 113.51 19.96 �45.3 45.67 11
14 �2.52 17.93 54.33 18.21 53.08 16.05 106.36 30.02 �64.89 54.05 11
15 �4.99 19.43 55.76 13.13 52.3 16.11 112.48 20.85 �77.06 48.49 11
16 �3.1 19.93 55.77 12.09 54.46 14.25 109.44 27.07 �90.27 48.6 11
17 �2.95 17.7 59.22 13.67 55.43 12.46 109.78 21.55 �89.3 46.01 11
18 �9.56 16.6 59.99 4.44 57.93 6.44 118.64 6.03 �44.49 36.29 11
19 �19.06 15.28 59.95 0.43 59.72 2.85 119.59 1.8 21.1 33.79 11
20 �21.48 15.77 59.98 0.15 59.95 0.51 119.53 2.23 52.06 26.66 11
21 �12.5 19.92 59.45 3 59.76 1.44 118.77 6.61 69.72 35.03 11
22 �9.71 17.87 59.18 5.58 59.72 1.6 117.16 12.89 50.95 41.68 11
23 �7.24 16.5 58.83 4.67 58.89 4.86 117.58 8.64 �0.62 35.32 1
24 0.58 17.64 49.8 20 48.53 19.83 105.84 31.53 �26.6 55.74 11

Table 14
Simulation results.

Mode of operation Mean value (cent) Standard deviation (cent) Absolute relative error (%)

Compare with row 3 Compare with row 4

1 – Probabilistic reconfiguration and UC 49,891 3270 1.58 0.75
2 – Probabilistic UC 53,068 13,863 4.69 5.57
3 – Deterministic reconfiguration and UC with real data of the same

date at year 2012
50,691 – –

4 – Deterministic UC with real data of the same date at year 2012 50,266 – –

R. Jabbari-Sabet et al. / Electrical Power and Energy Systems 75 (2016) 328–336 335
gence of benefit coefficient of variation is shown in Fig. 4. In order
to verify the results, the optimization algorithm is changed from
PSO to teacher-learning algorithm. The MG’s benefit resulted by
the teacher-learning algorithm is equal to 49,529 cents for the
deterministic UC with real data of the same date on year 2012
and proved the accuracy of the method.



Fig. 3. Probability distribution function of MG’s benefit.

Fig. 4. Benefit coefficient of variation converges versus scenarios.
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Conclusion

A stochastic method for simultaneous MG reconfiguration and
UC is proposed for each hour of the day-ahead. MG operation
and performance are analyzed with different input scenarios. The
results show more benefit of this algorithm than only economic
dispatch. The proposed algorithm is able to approach to the opti-
mal MG benefit, the units’ set points and MG’s topology for each
hour of day-head. WT generation and load demand are considered
as uncertain inputs. Considering enough scenarios, optimal three
MTs generation, battery charge or discharge power exchange with
upstream network and the most repeated topology are determined
for each hour of the next day. The average of continuous variables
and the most repeated topology for each hour are assessed by sce-
narios as a suggestion for the next day. This method was applied to
a typical MG. The benefit coefficient of variation becomes con-
verges after approximately 50 iterations.

The future work in the field of this paper should take substantial
problems which MG manager faces into consideration. Some of the
examples include demand response, photovoltaic generation, plug-
in hybrid electric vehicles, and uncertainty of prices.
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[24] Coroamă I, Chicco G, Gavrilas M, Russo A. Distribution system optimization
with intra-day network reconfiguration and demand reduction procurement.
Electr Power Syst Res 2013;98:29–38.

[25] Mohammadi M, Hosseinian SH, Gharehpetian GB. GA-based optimal sizing of
microgrid and DG units under pool and hybrid electricity markets. Electr
Power Energy Syst 2012;35:83–92.

[26] Bagherian A, Tafreshi SM. A developed energy management system for a
microgrid in the completive electricity market. In: IEEE conf (PowerTech);
2009. p. 1–6.

[27] Chen CS, Lin CH, Chuang HJ, Li CS, Huang MY, Huang CW. Optimal placement of
line switches for distribution automation systems using immune algorithm.
IEEE Trans Power Sys 2006;21(3):1209–17.

[28] Billinton R, Allan RN. Reliability evaluation of power systems. New York, NY,
USA: Springer; 1996. p. 114–7.

http://refhub.elsevier.com/S0142-0615(15)00394-4/h0005
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0005
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0005
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0005
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0020
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0020
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0020
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0045
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0045
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0050
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0050
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0050
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0050
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0055
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0055
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0055
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0070
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0070
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0070
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0075
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0075
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0075
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0075
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0075
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0080
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0080
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0080
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0085
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0085
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0085
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0085
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0090
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0090
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0090
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0090
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0100
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0100
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0100
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0105
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0105
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0105
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0110
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0110
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0110
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0115
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0115
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0115
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0120
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0120
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0120
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0125
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0125
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0125
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0135
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0135
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0135
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0140
http://refhub.elsevier.com/S0142-0615(15)00394-4/h0140

	Microgrid operation and management using probabilistic reconfiguration and unit commitment
	Introduction
	Problem formulation
	Decision variables
	Objective function
	MT cost
	WT probabilistic model
	Battery cost
	Network cost
	Loss cost
	Switching cost

	System constraints
	Unit constraints
	System topology
	Uncertainty model
	Load


	Proposed algorithm
	Simulation results
	Conclusion
	References




